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Course Outline 
●  Lecture 1: Basics and Formalization 

•  Usage examples, basic notions of traffic-secure 
communications, mixes and onion routers 

•  Onion routing design basics: circuit construction protocols, 
network discovery 

•  Formalization and analysis, possibilistic and probabilistic 
definitions of anonymity 

●  Lecture 2: Security for the real world 
•  Simple demo of obtaining/using Tor 
•  Security of obtain/using Tor 
•  Adding network link awareness 
•  Importance of modeling users 
•  Importance of realistic and practical 

•  Adversary models        Security definitions 
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“Our motivation here is not to 
provide anonymous 
communication, but to separate 
identification from routing.” 

●  “Proxies for anonymous routing”. Reed, 
Syverson, and Goldschlag. ACSAC 1996 



A Motivational Use Case Example 

●  Navy Petty Officer Alice is on temporary duty 
out of the U.S. 





Motivational Use Case Example 

●  Safe back in her hotel, PO Alice wants to 
read and/or post to sealiftcommand.com 

1.  The site is blocked where she is deployed 
2.  The Internet is monitored where she is deployed 
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Use Case Example 

●  Safe back in her hotel, PO Alice wants to 
read and/or post to sealiftcommand.com 

1.  The site is blocked where she is deployed 
2.  The Internet is monitored where she is deployed 
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Connecting when overseas 

Navy PO Alice 
in her hotel  
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Connecting when overseas 

Navy PO Alice 
in her hotel  Contacted: 

sealiftcommand.com 
08/09/2015, 9PM, 
20 min, encrypted 
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Connecting when overseas 

Navy PO Alice 
in her hotel  Contacted: 

sealiftcommand.com 
08/09/2015, 9PM, 
20 min, encrypted 
Rm: 216 
Ckout on: 
08/14/2015 
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Security of operations concern as 
well as personnel security concern 

Navy PO Alice 
in her hotel  Contacted: 

nrl.navy.mil 
08/09/2015, 9PM, 
20 min, encrypted 
Rm: 216 
Ckout on: 
08/14/2015 
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Some more government uses 

●  Open source intelligence gathering 
●  Sensitive communications with untrusted/

untrusting parties 
●  Encouraging open communications with citizens 
●  Reduce risk/liability from data breaches, DNS 

hijacks,… 
●  Location protected servers for defense in depth 
●  Protecting the public infrastructure 

–  Interacting with network sensors 
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Officer Alice 

●  Setting up a sting operation: 
–  as a collaborator 
–  as a service provider 

●  Monitoring criminal activity online 
●  Encouraging anonymous tips 
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Corporation Alice 

●  Checking out the competition 
●  Exploration of collaborations and 

partnerships 
●  Patent searches 
●  Protecting her customers 
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Researcher/Reporter/Rights Worker 
Alice 
●  Gathering information while protecting 

sources 
●  Accessing information that is locally 

censored or monitored 
●  Reporting information that is locally censored 

or monitored 
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Ordinary citizen Alice 

●  Protecting her behavior from: 
●  Cyberstalking abusive ex-spouse 
●  Behavior tracking, DNS shenanigans by her ISP 
●  Misunderstanding from her employer when she 

investigates disease info for an ailing friend 
●  Harassment for blogging her views 
●  Spear phishers watching her log into her bank 
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Recent U.N. Human Rights Commission 
Report Conclusion 

“States should promote strong encryption and 
anonymity.” 
 
●  Also specifically mentions the importance of 

protecting IP address, and Tor as an 
important technology protecting freedom to 
hold and express opinions. 
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First Anonymous Comms Design 
(Chaum Mix) 
●  Untraceable Electronic Mail, Return addresses, and 

Digital Pseudonyms   – David Chaum, CACM 1981 
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message 2 

Key property: Adversary can’t tell which ciphertext corresponds 
to a given message 

? 

What does a mix network do? 











Mixes 

  Invented by Chaum 1981 (not counting ancient 
Athens) 

  As long as one mix is honest, network hides 
anonymity up to capacity of the mix 

  Sort of 
-  Flooding 
-  Trickling 

  Many variants 
-  Timed 
-  Pool 
-  ... 



Athenian Jury Ballots (4th C BCE) 
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Also had cool randomized jury selection 
mechanism (kleroterion) 



Mixes 

  Invented by Chaum 1981 (not counting ancient 
Athens) 

  As long as one mix is honest, network hides 
anonymity up to capacity of the mix 

  Sort of 
-  Flooding 
-  Trickling 

  Many variants 
-  Timed 
-  Pool 
-  ... 



Chaum ‘81: First Adversary Model 
1.  “No one can determine anything about the 

correspondences between a set of sealed items and the 
corresponding set of unsealed items, or create forgeries 
without the appropriate random string or private key.” 

 

Crypto is black-box secure (Dolev-Yao Model) 
 

2.  “Anyone may learn the origin, destination(s), and 
representation of all messages in the underlying 
telecommunication system and anyone may inject, 
remove, or modify messages.” 

Active and Global Adversary 

28 



David Chaum: Way 
Ahead of His Time 
In 1981 
●  SMTP was one year in the future 
●  IRC was seven years in the future 
●  The Web (Mosaic) was twelve years in the future 
●  (Dolev-Yao Model was two years in the future) 
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●  Explicitly recognized and 
countered replay attacks 



1993: The Web takes off 

A useful adversary model must fit usage environment 
–  Application protocols must function 
–  Usability is a security property 

 

Both interactivity and low-latency break Chaum’s 
assumptions 

–  Web comms mostly based on bidirection TCP connections 
–  Web comms are low latency 
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Low-latency systems are vulnerable 
to correlation by a global adversary 

Low-latency: Alice1 sends:                          
                        Bob2  gets:                           $
      

                     Alice2 sends:                  
               Bob1   gets:                     

                         
High-latency: Alice1 sends:                          
                      Alice2 sends:                        $
 

                 Bob1   gets:                       ..... 
                        Bob2   gets:                               ..... 

Time 

These attacks work in practice. The obvious defenses 
are expensive (like high-latency), useless, or both.  

match! 

match! 



Connecting when overseas 

Navy PO Alice 
in her hotel  
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Practical Secure 
Solutions Navy PO Alice 

in her hotel  

Solution 
System 

Solution must 
•    Carry traffic bidirectionally with low latency 
•    But that is broken against our adversary model?! 
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Practical Secure 
Solutions Navy PO Alice 

in her hotel  

Solution 
System 

Solution must 
•    Carry traffic bidirectionally with low latency 
•    But that is broken against our adversary model?! 
•    So need a design making global adversary unlikely 

 -   very large and diversely managed network 
 

•    Carry traffic for a diverse user population 
-  not just Navy or U.S. govt. 
-  cannot have single point of failure/trust  for any type of user 

•  Diversely managed infrastructure 
•  Open source 
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Network of diversely managed relays so 
that no single one can betray Alice. 

R1 

R4 
R2 

R5 

R3 

Bob 
Alice 
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A corrupt first hop can tell that Alice is 
talking, but not to whom. 

R4 
R2 

R5 

R3 

Bob 
Alice 
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A corrupt last hop can tell someone is 
talking to Bob, but not who. 

R1 

R4 
R2 

R3 

Bob 
Alice 
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Onion Routing: Circuit construction 

R1 

R4 
R2 

R5 

R3 

Bob 
Alice 
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Onion Routing: Circuit construction 

R1 

R4 
R2 

R5 

R3 

Bob 
Alice 
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Onion Routing: Circuit construction 

R1 

R4 
R2 

R5 

R3 

Bob 
Alice 
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Onion Routing: Connection creation 

R1 

R4 
R2 

R5 

R3 

Bob 
Alice 
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Onion Routing: Data Exchange 

R1 

R4 
R2 

R5 

R3 

Bob 
Alice 
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Onion Routing: Data Exchange 

R1 

R4 
R2 

R5 

R3 

Bobs 
Alice 
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That's onion routing in a nutshell 
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What onion routing is NOT: Mixes 

●  Entirely different threat model 
•  mixes are based on an adversary not being able to 

correlate inputs and outputs he sees 
•  onion routing is based on an adversary not being able to 

see both inputs and outputs to correlate 
●  Entirely different communications paradigm:  

Circuit based encryption vs. per message  
•  onion routing supports bidirectional communication 
•  onion routing supports low-latency communication 

●  Can be combined to make mixing onion routers, 
but not typically done or desired 
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What onion routing is  

●  Uses expensive crypto (public-key) to lay a 
cryptographic circuit over which data is 
passed 

●  Typically uses free-route circuit building to 
make location of circuit endpoints 
unpredictable  
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Why call it “onion routing”? 
Answer: Because of the original key 
distribution data structure 
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R1 

R4 
R2 

R5 

R3 

Bob 
Alice 



Why is it called onion routing? 

●  Onion: Just layers of public-key crypto 
•  Nothing in the center, just another layer 

Bob Alice 
R1 

R2 

R5 

R4 R3 

KA,R1  R2 

KA,R2  R5 

KA,R5  ⊥ $
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Circuit setup 

●  NRL v0 and v1 onion routing and also ZKS 
Freedom network used onions to build circuits 

•  Lacked Forward Secrecy 
•  Required storing record of onions against replay 

●  Tor (NRL v2) uses one layer “onion skins”  
•  ephemeral Diffie-Hellman yields forward secrecy 
•  No need to record processed onions against replay 
•  From suggestion out of Zack Brown’s Cebolla 

KA,R1  R2 

KA,R2  R5 

KA,R5  ⊥ $
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Aside: Why is it called ‘Tor’ and 
what does ‘Tor’ mean? 
●  Frequent question to Roger c. 2001-2: Oh 

you’re working on onion routing... which one? 
●  Roger: THE onion routing. The original onion 

routing project from NRL. 
●  Rachel: That’s a good acronym. 
●  Roger: And it’s a good recursive acronym. 
●  Plus, as a word, it has a good meaning in 

German (door/gate/portal) and Turkish (fine-
meshed net) 
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Aside: Why is it called ‘Tor’ and 
what does ‘Tor’ mean? 
●  We foolishly called the first Tor paper “Tor: 

the second generation onion router” 
●  But this was very confusing 

•  ‘Tor’ stands for “The onion routing” or “Tor’s onion 
routing”. It does not stand for “the onion router” 

•  The paper is about the whole system, not just the 
onion routers 

•  Tor is not the second generation 
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Onion routing origins: Generation 0 

●  Fixed-length five-node circuits 
●  Integrated configuration 
●  Static topology 
●  Loose-source routing 
  Partial active adversary 
●  Rendezvous servers and reply onions 
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Onion routing, the next generation 
   Running a client separated from running an OR 
●  Variable length circuits (up to 11 hops per 

onion---or tunnel for more) 
●  Application independent proxies (SOCKS) plus 

redirector 
  Entry policies and exit policies 
●  Dynamic network state, flat distribution of state 

info 
●  Multiplexing of multiple application connections 

in single onion routing circuit 
●  Mixing of cells from different circuits 
●  Padding and bandwidth limiting 
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Third-generation onion routing 
(Tor)  
  Onion skins, not onions: Diffie-Hellman based 

circuit building 
●  Fixed-length three-hop circuits 
●  Rendezvous circuits and hidden servers 
●  Directory servers, caching (evolved w/in Tor) 
●  Most application specific proxies no longer 

needed (still need e.g. for DNS) 
●  Congestion control 
●  End-to-end integrity checking 
●  No mixing and no padding 
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Circuit setup 

●  NRL v0 and v1 onion routing and also ZKS 
Freedom network used onions to build circuits 

•  Lacked Forward Secrecy 
•  Required storing record of onions against replay 

●  Tor (NRL v2) uses one layer “onion skins”  
•  ephemeral Diffie-Hellman yields forward secrecy 
•  No need to record processed onions against replay 
•  From suggestion out of Zack Brown’s Cebolla 

KA,R1  R2 

KA,R2  R5 

KA,R5  ⊥ $
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Client	


Initiator	



Original Tor Circuit Setup (Create) 

, Hash(          )	



Onion Router	



Client chooses first node, establishes session key over TLS connection 
 "

TLS connection 
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Client chooses first node, establishes session key over TLS connection 
 "

Client	


Initiator	



Original Tor Circuit Setup (Create) 

, Hash(          )	



Onion Router	
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Client chooses first node, establishes session key over TLS connection 
 "

Original Tor Circuit Setup (Extend) 

Client 
Initiator 

, Hash (      ) 
OR2 OR1	



, Hash (      ) 

OR2, 
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Slight simplification of actual protocol 
 "

Original Tor Circuit Setup (Begin) 
and Data Flow 

Client 
Initiator 

OR1 

Web server 

Reply 

OR2 

Connect 

Reply 
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Why a Tor authenticated key 
establishment protocol 
●  Designing your own authentication protocol is error prone. 

Why not use an established protocol in the first place? 
●  Answer 1: We require only one-way authentication. Two way 

wastes expensive computation. 
●  Answer 2: To fit whole messages inside Tor cells. A public 

key and a signature don’t both fit in one 512-byte cell. 
●  Protocol was verified using the NRL protocol analyzer in the 

Dolev-Yao model. 
●  In 2005 Ian Goldberg found flaw in the way Tor implemented 

this protocol (checking that a public value was not based on 
a weak key). 

●  In 2006 Ian proved the (properly implemented) protocol 
secure in the random oracle model. 
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Circuit establishment efficiency 
●  Original Tor Authentication Protocol (TAP) uses RSA to encrypt the 

Diffie-Hellman public key 

 

●  New/Old idea (1st considered in 1996): Let the nodes use published 
public DH keys 

●  Clients create ephemeral DH keys to combine with published node 
DH keys (ElGamal key exchange aka half-certified Diffie-Hellman 
exchange) 

●  Saves one exponentiation at client and one at node for each node in 
circuit (about half current load) 

●  Significantly reduces Tor overhead for running a volunteer node 
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Brief history of using Diffie-Hellman in 
Tor Circuit Establishment 
1996: We (Goldschlag, Reed, me) considered including DH keys in layers of 

circuit-establishment onion 
–  For computational efficiency (not considering Forward Secrecy then) 

2004: TAP replaces onions, includes DH for Forward Sec. (Dingledine, 
Mathewson, me) 

–   Verified using NRL Protocol Analyzer in Dolev-Yao Model 

2005: Goldberg verifies TAP in Random Oracle Model 

2007: We (Øverlier and me) propose “fourth protocol”, DH-based 
authentication and key-establisment (with informal security argument) 

2012: Goldberg, Stebila, and Ostaoglu break fourth protocol, introduce ntor 

2013: ECDH (curve 25519) version of ntor included in Tor stable release 
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Network and Route Discovery 
●  Alice has to know a set of nodes and pick a 

route from them 
–  Must know how to find R1 
–  Must learn more network nodes to pick a route 
–  Cannot trust R1 to tell about the rest of the 

network 

Bob Alice 
R1 

R2 

R5 

R4 R3 
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Network and Route Discovery 
●  Alice has to know a set of nodes and pick a 

route from them 
–  Must know how to find R1 
–  Must learn more network nodes to pick a route 
–  Cannot trust R1 to tell about the rest of the 

network 

Bob Alice 
R1 

R1’ 

R1’’ 

R4 R3 
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How do we know where to build a 
circuit? Network discovery. 
●  Important for all clients to get same picture of 

network to avoid epistemic partitioning 
●  Initial onion routing design had trivial/brittle 

solution  
–  network and identity keys simply hard coded in 

prototypes 
●  Next generation had a design for flat flooding of 

network state to all relays 
–  complex, tricky, scales in principal but ? 
–  not ever deployed in practice  

●  Tor has a directory system: See next slides 
●  Bridge distribution: Should have gone to FOCI.   
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Tor Directory Version 1 

●  Directory authorities serve 
–  Relay descriptors containing e.g. identity keys & IP 

addresses 
–  Network status: whether relays are up or down 

●  Network caches added to prevent DirAuths 
from being comms bottleneck 
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Tor Directory Version 2 

Issue 1: 
●  As Tor network grew so did size of directory 

–  large downloads a problem 
●  Most descriptor info relatively persistent 
Solution: 
●  Directory authorities serve 

–  Network status summary: Hashes of each relay’s 
current descriptor 

–  Clients retrieve full descriptors only for relays they 
don’t know or that have changed 
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Tor Directory Version 2 

Issue 2: 
●  Version 1 DirAuths function independently 

–  trust bottleneck 
–  Risk grows with number of DirAuths 

Solution: 
●  Clients trust statements about relays made 

by majority of DirAuths 
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Tor Directory Version 3 

Issue 1: Descriptors contain much useful info 
not needed for basic contact 

Solution: Microdescriptors go into consensus 
–  Identity key, address, exit ports 

–  Good for about a week typically 
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Tor Directory Version 3 

Issue 2: Update and synch. Issues can lead to 
clients having different network views 

Solution: Collective DirAuth vote on network 
consensus 

 

Issue 3: Identity keys for DirAuths most sensitive 
data 

Solution: Create DirAuth network info signing keys 
and keep identity keys offline 
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Onion routing started from a 
practical motivation 
●  How do we know the whole enterprise is not 

fundamentally broken on an abstract level? 
●  Where’s the underlying theory to back this up? 

●  Note: OK not to have a rigorous notion of 
security at first 

–  Analyses based on state of the art would have been 
misleading 

–  Global Passive Adversary both too strong and too weak 
●  Cf. “Why I’m not an Entropist” and “Sleeping Dogs Lie in a Bed 

of Onions but Wake when Mixed” 
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Anonymous Communication c. 2000 

Mix Networks 
Dining cryptographers 
Onion routing 
Crowds 

Deployed Analyzed 

4 
72 



Adversary observing all traffic entering 
and leaving network breaks onion routing 

73 R4 
R2 

R3 

Alice 

Bob 



Low-latency systems are vulnerable 
to correlation by a global adversary 

Low-latency: Alice1 sends:                          
                        Bob2  gets:                           $
      

                     Alice2 sends:                  
               Bob1   gets:                     

                         
High-latency: Alice1 sends:                          
                      Alice2 sends:                        $
 

                 Bob1   gets:                       ..... 
                        Bob2   gets:                               ..... 

Time 

These attacks work in practice. The obvious defenses 
are expensive (like high-latency), useless, or both.  

match! 

match! 



Adversary observing all traffic entering 
and leaving network breaks onion routing 
●  “Towards an Analysis of Onion Routing Security” Syverson et al. PETS 2000 

●  Presented and analyzed adversary model assumed in prior 
onion routing work 

–  Network of n onion routers, c compromised onion routers 
–  Security approx. c2 / n2 
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Formal analysis of onion routing 

1.  Possibilistic characterization using I/O 
automata 

2.  Probabilistic analysis abstracting I/O 
automata characterization to a black box 

3.  Representing black-box results in standard 
cryptographic models 
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Possibilistic Analysis Overview 
●  Formally model onion routing using input/

output automata 
●  Characterize the situations that provide 

anonymity 

6 
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Possibilistic Analysis Overview 
●  Formally model onion routing using input/

output automata 
–  Simplified onion-routing protocol 
–  Non-cryptographic analysis 

●  Characterize the situations that provide 
anonymity 

6 
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Possibilistic Analysis Overview 
●  Formally model onion routing using input/

output automata 
–  Simplified onion-routing protocol 
–  Non-cryptographic analysis 

●  Characterize the situations that provide 
anonymity 

–  Send a message, receive a message, communicate 
with a destination 

–  Possibilistic anonymity 

6 
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Main Theorem 
[“A Model of Onion Routing with Provable Anonymity”, Feigenbaum, Johnson, and 
Syverson, in FC07 

u 
1 2 

3 

4 
5 

d 

Main theorem: Adversary can only determine 
the parts of a circuit it controls or is next to. 

u 1 2 

8 
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Anonymous Communication 

●  Sender anonymity: Adversary can’t 
determine the sender of a given message 

●  Receiver anonymity: Adversary can’t 
determine the receiver of a given message 

●  Unlinkability: Adversary can’t determine who 
talks to whom 

9 
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Model 
●  Constructed with I/O automata 

–  Models asynchrony 
–  Relies on abstract properties of cryptosystem 

●  Simplified onion-routing protocol 
–  No key distribution 
–  No circuit teardowns 
–  No separate destinations 
–  No streams 
–  No stream cipher 
–  Each user constructs a circuit to one destination 
–  Circuit identifiers 

11 
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Input/Ouput Automata 
●  States 
●  Actions 

–  Input, ouput, internal 
–  Actions transition between states 

●  Every state has enabled actions 
●  Input actions are always enabled 
●  Alternating state/action sequence is an execution 
●  In fair executions actions enabled infinitely often 

occur infinitely often 
●  In cryptographic executions no encrypted control 

messages are sent before they are received unless 
the sender possesses the key 

16 
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I/O Automata Model 

● Automata 
– User 
– Server 
– Fully-connected network of 
FIFO Channels 
– Adversary replaces some 
servers with arbitrary automata 

● Notation 
– U is the set of users 
– R is the set of routers 
– N = U ∪ R is the set of all 
agents 
– A ⊆ N is the adversary 
– K is the keyspace 
– l is the (fixed) circuit length 
– k(u,c,i) denotes the ith key 
used by user u on circuit c 

17 
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User automaton 
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Server automaton 

86 



Anonymity 
Definition (configuration): 

A configuration is a function U→Rl mapping 
each user to his circuit. 

20 
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Anonymity 

Definition (indistinguishability): 
Executions α and β are indistinguishable to 
adversary A when his actions in β are the 
same as in α after possibly applying the 
following: 

 ξ: A permutation on the keys not held by A. 
 π: A permutation on the messages encrypted 

by 
 a key not held by A. 

Definition (configuration): 
A configuration is a function U→Rl mapping 
each user to his circuit. 

 

20 
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Anonymity 
Definition (anonymity): 

User u performs action α anonymously in 
configuration C with respect to adversary A if, for 
every execution of C in which u performs α, there 
exists an execution that is indistinguishable to A in 
which u does not perform α.  
 

21 
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Anonymity 

Definition (unlinkability): 
User u is unlinkable to d in configuration C with 
respect to adversary A if, for every fair, 
cryptographic execution of C in which u talks to d, 
there exists a fair, cryptographic execution that is 
indistinguishable to A in which u does not talk to d.  
 

Definition (anonymity): 
User u performs action α anonymously in 
configuration C with respect to adversary A if, for 
every execution of C in which u performs α, there 
exists an execution that is indistinguishable to A in 
which u does not perform α.  
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Theorem: Let C and D be configurations for which 
there exists a permutation ρ: U→U such that 
Ci(u) = Di(ρ(u)) if Ci(u) or Di(ρ(u)) is compromised 
or is adjacent to a compromised router.  Then for 
every fair, cryptographic execution α of C there 
exists an indistinguishable, fair, cryptographic 
execution β of D.  The converse also holds. 
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Main Theorem 

u 
1 2 

3 

4 
5 

d 

Main theorem: Adversary can only determine 
the parts of a circuit it controls or is next to. 

u 1 2 

8 
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Unlinkability 
Corollary: A user is unlinkable to its destination when: 
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Unlinkability 

2 3 u 
4? 
5? 

The last router is 
unknown. 

Corollary: A user is unlinkable to its destination when: 
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OR 

Unlinkability 

2 3 u 
4? 
5? 

The last router is 
unknown. 

1 2 4 
The user is unknown 
and another 
unknown user has an 
unknown destination. 5 

2? 
5? 

4? 

Corollary: A user is unlinkable to its destination when: 
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OR 

OR 

1 2 4 
The user is unknown 
and another 
unknown user has a 
different destination. 5 1 2

Unlinkability 

2 3 u 
4? 
5? 

The last router is 
unknown. 

1 2 4 
The user is unknown 
and another 
unknown user has an 
unknown destination. 5 

2? 
5? 

4? 

Corollary: A user is unlinkable to its destination when: 



Probabilistic anonymity 

●  Possibilistic result is nice, but we would like to 
quantify the anonymity provided by a system 

●  And we want to use a black box model, like this 

25 
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Black-box Abstraction 

u d 

v 

w

e 

f 
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Black-box Abstraction 
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1.   Users choose a destination 
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Black-box Abstraction 
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1.   Users choose a destination 

2. Some inputs are observed 
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Black-box Abstraction 

u d 

v 

w

e 

f 

1.   Users choose a destination 

2. Some inputs are observed 

3. Some outputs are observed 
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Black-box Anonymity 

u d 

v 

w

e 

f 

•  The adversary can link observed 
inputs and outputs of the same user. 
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Black-box Anonymity 

u d 

v 

w

e 

f 

•  The adversary can link observed 
inputs and outputs of the same user. 
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Probabilistic Black-box 
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Probabilistic Black-box 
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•  Each user v selects a destination 
from distribution pv 

•  Inputs and outputs are observed 
independently with probability b 

pu 
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Anonymity Analysis Results of 
Black Box 
●  “Probabilistic Analysis of Onion Routing in a Black-box Model” Feigenbaum, 

Johnson and Syverson WPES07 

●  Can lower bound expected anonymity with 
standard approximation: b2 + (1-b2)pu

d 

●  Worst case for anonymity is when user acts 
exactly unlike or exactly like others 

●  Worst-case anonymity is typically as if √b 
routers compromised: b + (1-b)pu

d 

●  Anonymity in typical situations approaches 
lower bound 
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Formal analysis of onion routing 
●  [FJS07a] - Onion-routing I/O-automata model

       - Possibilistic anonymity analysis 
●  [FJS07b] - Onion-routing abstract model 

       - Probabilistic anonymity analysis 
●  […] - How do we apply results in standard 

cryptographic models? 
●  [CL05] - “Onion routing” formalized with Universal 

Composability (UC) 
      - No anonymity analysis 

●  [FJS12] – Onion-routing UC formalization 
     - “Free” probabilistic anonymity analysis 

●  [BGKM12] - Onion routing formalized with UC 
      - Our work will provide anonymity 

110 



Problem 
●  [FJS07a] - Onion-routing I/O-automata model

       - Possibilistic anonymity analysis 
●  [FJS07b] - Onion-routing abstract model 

       - Probabilistic anonymity analysis 
●  […] - How do we apply results in standard 

cryptographic models? 
●  [CL05] - “Onion routing” formalized with Universal 

Composability (UC) 
      - No anonymity analysis 

●  [FJS12] – Onion-routing UC formalization 
     - “Free” probabilistic anonymity analysis 

●  [BGKM12] - Onion routing formalized with UC 
      - Our work will provide anonymity 

111 



Problem 
●  [FJS07a] - Onion-routing I/O-automata model

       - Possibilistic anonymity analysis 
●  [FJS07b] - Onion-routing abstract model 

       - Probabilistic anonymity analysis 
●  […] - How do we apply results in standard 

cryptographic models? 
●  [CL05] - “Onion routing” formalized with Universal 

Composability (UC)  
●  “A Formal Treatment of Onion Routing”  Camenisch & Lysyanskaya, CRYPTO 05 

 

      - No anonymity analysis, not onion routing 
[FJS12] – Onion-routing UC formalization 

     - “Free” probabilistic anonymity analysis 
●  [BGKM12] - Onion routing formalized with UC 

      - Our work will provide anonymity 
112 



Problem 
●  [FJS07a] - Onion-routing I/O-automata model

       - Possibilistic anonymity analysis 
●  [FJS07b] - Onion-routing abstract model 

       - Probabilistic anonymity analysis 
●  […] - How do we apply results in standard 

cryptographic models? 
●  [CL05] - “Onion routing” formalized with Universal 

Composability (UC)  
●  “A Formal Treatment of Onion Routing”  Camenisch & Lysyanskaya, CRYPTO 05 

 

      - No anonymity analysis, not onion routing 
●  [FJS12] – Onion-routing UC formalization 

     - “Free” probabilistic anonymity analysis 
●  [BGKM12] - Onion routing formalized with UC 

      - Our work will provide anonymity 
113 



Onion-Routing UC Ideal Functionality 

  u with probability b 
  ø with probability 1-b  

x 

y 

Upon receiving destination d from user U 
 

  d with probability b 
  ø with probability 1-b  

Send (x,y) to the adversary. 

FOR 
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●  “Probabilistic Analysis of Onion Routing in a Black-box Model” Feigenbaum, 
Johnson and Syverson  ACM TISSEC 2012 



Black-box Model 

●  Ideal functionality FOR 

●  Environment assumptions 
–  Each user gets a destination 
–  Destination for user u chosen from distribution pu 

●  Adversary compromises a fraction b of 
routers before execution 
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UC Formalization 

●  Captures necessary properties of any 
crytographic implementation 

●  Easy to analyze resulting information leaks 
●  Functionality is a composable primitive 
●  Anonymity results are valid in probabilistic  

version of I/O-automata model 
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Problem 
●  [FJS07a] - Onion-routing I/O-automata model

       - Possibilistic anonymity analysis 
●  [FJS07b] - Onion-routing abstract model 

       - Probabilistic anonymity analysis 
●  […] - How do we apply results in standard 

cryptographic models? 
●  [CL05] - “Onion routing” formalized with Universal 

Composability (UC)  
●  “A Formal Treatment of Onion Routing”  Camenisch & Lysyanskaya, CRYPTO 05 

 

●  [FJS12] – Onion-routing UC formalization 
     - “Free” probabilistic anonymity analysis 

●  [BGKM12] - Onion routing formalized with UC 
      - Our work will provide anonymity 
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Ideal Functionality modeling more of reality 

●  “Provably Secure and Practical Onion Routing” Backes, Goldberg, Kate, and 
Mohammadi, IEEE CSF12 

●  Functionality can actually send messages 
●  Also presented ideal functionality covering key 

exchange, circuit building 
–  Needs wrapper to hide irrelevant circuit-building  options 

●  Shown to UC-emulate FOR  
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Course Outline 
●  Lecture 1: Basics and Formalization 

•  Usage examples, basic notions of traffic-secure 
communications, mixes and onion routers 

•  Onion routing design basics: circuit construction protocols, 
network discovery 

•  Formalization and analysis, possibilistic and probabilistic 
definitions of anonymity 

●  Lecture 2: Security for the real world 
•  Simple demo of obtaining/using Tor 
•  Security of obtain/using Tor 
•  Adding network link awareness 
•  Importance of modeling users 
•  Importance of realistic and practical 

•  Adversary models        Security definitions 

119 


