
Basic Course on Onion Routing

Paul Syverson a
U.S. Naval Research Laboratory f
paul.syverson@nrl.navy.mil p

SAC Summer School
Mount Allison University Aug 10, 2015

Course Outline
●  Lecture 1: Basics and Formalization

•  Usage examples, basic notions of traffic-secure
communications, mixes and onion routers

•  Onion routing design basics: circuit construction protocols,
network discovery

•  Formalization and analysis, possibilistic and probabilistic
definitions of anonymity

●  Lecture 2: Security for the real world
•  Simple demo of obtaining/using Tor
•  Security of obtain/using Tor
•  Adding network link awareness
•  Importance of modeling users
•  Importance of realistic and practical

•  Adversary models  Security definitions

2

“Our motivation here is not to
provide anonymous
communication, but to separate
identification from routing.”

●  “Proxies for anonymous routing”. Reed,
Syverson, and Goldschlag. ACSAC 1996

A Motivational Use Case Example

●  Navy Petty Officer Alice is on temporary duty
out of the U.S.

Motivational Use Case Example

●  Safe back in her hotel, PO Alice wants to
read and/or post to sealiftcommand.com

1.  The site is blocked where she is deployed
2.  The Internet is monitored where she is deployed

6

7

Use Case Example

●  Safe back in her hotel, PO Alice wants to
read and/or post to sealiftcommand.com

1.  The site is blocked where she is deployed
2.  The Internet is monitored where she is deployed

8

Connecting when overseas

Navy PO Alice
in her hotel

9

Connecting when overseas

Navy PO Alice
in her hotel Contacted:

sealiftcommand.com
08/09/2015, 9PM,
20 min, encrypted

10

Connecting when overseas

Navy PO Alice
in her hotel Contacted:

sealiftcommand.com
08/09/2015, 9PM,
20 min, encrypted
Rm: 216
Ckout on:
08/14/2015
 11

Security of operations concern as
well as personnel security concern

Navy PO Alice
in her hotel Contacted:

nrl.navy.mil
08/09/2015, 9PM,
20 min, encrypted
Rm: 216
Ckout on:
08/14/2015
 12

Some more government uses

●  Open source intelligence gathering
●  Sensitive communications with untrusted/

untrusting parties
●  Encouraging open communications with citizens
●  Reduce risk/liability from data breaches, DNS

hijacks,…
●  Location protected servers for defense in depth
●  Protecting the public infrastructure

–  Interacting with network sensors

13

Officer Alice

●  Setting up a sting operation:
–  as a collaborator
–  as a service provider

●  Monitoring criminal activity online
●  Encouraging anonymous tips

14

Corporation Alice

●  Checking out the competition
●  Exploration of collaborations and

partnerships
●  Patent searches
●  Protecting her customers

15

Researcher/Reporter/Rights Worker
Alice
●  Gathering information while protecting

sources
●  Accessing information that is locally

censored or monitored
●  Reporting information that is locally censored

or monitored

16

Ordinary citizen Alice

●  Protecting her behavior from:
●  Cyberstalking abusive ex-spouse
●  Behavior tracking, DNS shenanigans by her ISP
●  Misunderstanding from her employer when she

investigates disease info for an ailing friend
●  Harassment for blogging her views
●  Spear phishers watching her log into her bank

17

Recent U.N. Human Rights Commission
Report Conclusion

“States should promote strong encryption and
anonymity.”

●  Also specifically mentions the importance of

protecting IP address, and Tor as an
important technology protecting freedom to
hold and express opinions.

18

First Anonymous Comms Design
(Chaum Mix)
●  Untraceable Electronic Mail, Return addresses, and

Digital Pseudonyms – David Chaum, CACM 1981

19

message 2

Key property: Adversary can’t tell which ciphertext corresponds
to a given message

?

What does a mix network do?

Mixes

  Invented by Chaum 1981 (not counting ancient
Athens)

  As long as one mix is honest, network hides
anonymity up to capacity of the mix

  Sort of
-  Flooding
-  Trickling

  Many variants
-  Timed
-  Pool
-  ...

Athenian Jury Ballots (4th C BCE)

26

Also had cool randomized jury selection
mechanism (kleroterion)

Mixes

  Invented by Chaum 1981 (not counting ancient
Athens)

  As long as one mix is honest, network hides
anonymity up to capacity of the mix

  Sort of
-  Flooding
-  Trickling

  Many variants
-  Timed
-  Pool
-  ...

Chaum ‘81: First Adversary Model
1.  “No one can determine anything about the

correspondences between a set of sealed items and the
corresponding set of unsealed items, or create forgeries
without the appropriate random string or private key.”

Crypto is black-box secure (Dolev-Yao Model)

2.  “Anyone may learn the origin, destination(s), and
representation of all messages in the underlying
telecommunication system and anyone may inject,
remove, or modify messages.”

Active and Global Adversary

28

David Chaum: Way
Ahead of His Time
In 1981
●  SMTP was one year in the future
●  IRC was seven years in the future
●  The Web (Mosaic) was twelve years in the future
●  (Dolev-Yao Model was two years in the future)

29

●  Explicitly recognized and
countered replay attacks

1993: The Web takes off

A useful adversary model must fit usage environment
–  Application protocols must function
–  Usability is a security property

Both interactivity and low-latency break Chaum’s
assumptions

–  Web comms mostly based on bidirection TCP connections
–  Web comms are low latency

30

Low-latency systems are vulnerable
to correlation by a global adversary

Low-latency: Alice1 sends:    
 Bob2 gets:    $

 Alice2 sends:    
 Bob1 gets:     

High-latency: Alice1 sends:   
 Alice2 sends:     $

 Bob1 gets:  .....
 Bob2 gets:   

Time

These attacks work in practice. The obvious defenses
are expensive (like high-latency), useless, or both.

match!

match!

Connecting when overseas

Navy PO Alice
in her hotel

32

Practical Secure
Solutions Navy PO Alice

in her hotel

Solution
System

Solution must
•  Carry traffic bidirectionally with low latency
•  But that is broken against our adversary model?!

33

Practical Secure
Solutions Navy PO Alice

in her hotel

Solution
System

Solution must
•  Carry traffic bidirectionally with low latency
•  But that is broken against our adversary model?!
•  So need a design making global adversary unlikely

 - very large and diversely managed network

•  Carry traffic for a diverse user population
-  not just Navy or U.S. govt.
-  cannot have single point of failure/trust for any type of user

•  Diversely managed infrastructure
•  Open source

34

Network of diversely managed relays so
that no single one can betray Alice.

R1

R4
R2

R5

R3

Bob
Alice

35

A corrupt first hop can tell that Alice is
talking, but not to whom.

R4
R2

R5

R3

Bob
Alice

36

A corrupt last hop can tell someone is
talking to Bob, but not who.

R1

R4
R2

R3

Bob
Alice

37

Onion Routing: Circuit construction

R1

R4
R2

R5

R3

Bob
Alice

38

Onion Routing: Circuit construction

R1

R4
R2

R5

R3

Bob
Alice

39

Onion Routing: Circuit construction

R1

R4
R2

R5

R3

Bob
Alice

40

Onion Routing: Connection creation

R1

R4
R2

R5

R3

Bob
Alice

41

Onion Routing: Data Exchange

R1

R4
R2

R5

R3

Bob
Alice

42

Onion Routing: Data Exchange

R1

R4
R2

R5

R3

Bobs
Alice

43

That's onion routing in a nutshell

44

What onion routing is NOT: Mixes

●  Entirely different threat model
•  mixes are based on an adversary not being able to

correlate inputs and outputs he sees
•  onion routing is based on an adversary not being able to

see both inputs and outputs to correlate
●  Entirely different communications paradigm:

Circuit based encryption vs. per message
•  onion routing supports bidirectional communication
•  onion routing supports low-latency communication

●  Can be combined to make mixing onion routers,
but not typically done or desired

45

What onion routing is

●  Uses expensive crypto (public-key) to lay a
cryptographic circuit over which data is
passed

●  Typically uses free-route circuit building to
make location of circuit endpoints
unpredictable

46

Why call it “onion routing”?
Answer: Because of the original key
distribution data structure

47

R1

R4
R2

R5

R3

Bob
Alice

Why is it called onion routing?

●  Onion: Just layers of public-key crypto
•  Nothing in the center, just another layer

Bob Alice
R1

R2

R5

R4 R3

KA,R1 R2

KA,R2 R5

KA,R5 ⊥ $

48

Circuit setup

●  NRL v0 and v1 onion routing and also ZKS
Freedom network used onions to build circuits

•  Lacked Forward Secrecy
•  Required storing record of onions against replay

●  Tor (NRL v2) uses one layer “onion skins”
•  ephemeral Diffie-Hellman yields forward secrecy
•  No need to record processed onions against replay
•  From suggestion out of Zack Brown’s Cebolla

KA,R1 R2

KA,R2 R5

KA,R5 ⊥ $

49

Aside: Why is it called ‘Tor’ and
what does ‘Tor’ mean?
●  Frequent question to Roger c. 2001-2: Oh

you’re working on onion routing... which one?
●  Roger: THE onion routing. The original onion

routing project from NRL.
●  Rachel: That’s a good acronym.
●  Roger: And it’s a good recursive acronym.
●  Plus, as a word, it has a good meaning in

German (door/gate/portal) and Turkish (fine-
meshed net)

50

Aside: Why is it called ‘Tor’ and
what does ‘Tor’ mean?
●  We foolishly called the first Tor paper “Tor:

the second generation onion router”
●  But this was very confusing

•  ‘Tor’ stands for “The onion routing” or “Tor’s onion
routing”. It does not stand for “the onion router”

•  The paper is about the whole system, not just the
onion routers

•  Tor is not the second generation

51

Onion routing origins: Generation 0

●  Fixed-length five-node circuits
●  Integrated configuration
●  Static topology
●  Loose-source routing
  Partial active adversary
●  Rendezvous servers and reply onions

52

Onion routing, the next generation
  Running a client separated from running an OR
●  Variable length circuits (up to 11 hops per

onion---or tunnel for more)
●  Application independent proxies (SOCKS) plus

redirector
  Entry policies and exit policies
●  Dynamic network state, flat distribution of state

info
●  Multiplexing of multiple application connections

in single onion routing circuit
●  Mixing of cells from different circuits
●  Padding and bandwidth limiting

53

Third-generation onion routing
(Tor)
  Onion skins, not onions: Diffie-Hellman based

circuit building
●  Fixed-length three-hop circuits
●  Rendezvous circuits and hidden servers
●  Directory servers, caching (evolved w/in Tor)
●  Most application specific proxies no longer

needed (still need e.g. for DNS)
●  Congestion control
●  End-to-end integrity checking
●  No mixing and no padding

54

Circuit setup

●  NRL v0 and v1 onion routing and also ZKS
Freedom network used onions to build circuits

•  Lacked Forward Secrecy
•  Required storing record of onions against replay

●  Tor (NRL v2) uses one layer “onion skins”
•  ephemeral Diffie-Hellman yields forward secrecy
•  No need to record processed onions against replay
•  From suggestion out of Zack Brown’s Cebolla

KA,R1 R2

KA,R2 R5

KA,R5 ⊥ $

55

Client	

Initiator	

Original Tor Circuit Setup (Create)

, Hash()	

Onion Router	

Client chooses first node, establishes session key over TLS connection
 "

TLS connection

56

Client chooses first node, establishes session key over TLS connection
 "

Client	

Initiator	

Original Tor Circuit Setup (Create)

, Hash()	

Onion Router	

57

Client chooses first node, establishes session key over TLS connection
 "

Original Tor Circuit Setup (Extend)

Client
Initiator

, Hash ()
OR2 OR1	

, Hash ()

OR2,

58

Slight simplification of actual protocol
 "

Original Tor Circuit Setup (Begin)
and Data Flow

Client
Initiator

OR1

Web server

Reply

OR2

Connect

Reply

59

Why a Tor authenticated key
establishment protocol
●  Designing your own authentication protocol is error prone.

Why not use an established protocol in the first place?
●  Answer 1: We require only one-way authentication. Two way

wastes expensive computation.
●  Answer 2: To fit whole messages inside Tor cells. A public

key and a signature don’t both fit in one 512-byte cell.
●  Protocol was verified using the NRL protocol analyzer in the

Dolev-Yao model.
●  In 2005 Ian Goldberg found flaw in the way Tor implemented

this protocol (checking that a public value was not based on
a weak key).

●  In 2006 Ian proved the (properly implemented) protocol
secure in the random oracle model.

60

Circuit establishment efficiency
●  Original Tor Authentication Protocol (TAP) uses RSA to encrypt the

Diffie-Hellman public key

●  New/Old idea (1st considered in 1996): Let the nodes use published
public DH keys

●  Clients create ephemeral DH keys to combine with published node
DH keys (ElGamal key exchange aka half-certified Diffie-Hellman
exchange)

●  Saves one exponentiation at client and one at node for each node in
circuit (about half current load)

●  Significantly reduces Tor overhead for running a volunteer node

61

Brief history of using Diffie-Hellman in
Tor Circuit Establishment
1996: We (Goldschlag, Reed, me) considered including DH keys in layers of

circuit-establishment onion
–  For computational efficiency (not considering Forward Secrecy then)

2004: TAP replaces onions, includes DH for Forward Sec. (Dingledine,
Mathewson, me)

–  Verified using NRL Protocol Analyzer in Dolev-Yao Model

2005: Goldberg verifies TAP in Random Oracle Model

2007: We (Øverlier and me) propose “fourth protocol”, DH-based
authentication and key-establisment (with informal security argument)

2012: Goldberg, Stebila, and Ostaoglu break fourth protocol, introduce ntor

2013: ECDH (curve 25519) version of ntor included in Tor stable release

62

Network and Route Discovery
●  Alice has to know a set of nodes and pick a

route from them
–  Must know how to find R1
–  Must learn more network nodes to pick a route
–  Cannot trust R1 to tell about the rest of the

network

Bob Alice
R1

R2

R5

R4 R3
63

Network and Route Discovery
●  Alice has to know a set of nodes and pick a

route from them
–  Must know how to find R1
–  Must learn more network nodes to pick a route
–  Cannot trust R1 to tell about the rest of the

network

Bob Alice
R1

R1’

R1’’

R4 R3
64

How do we know where to build a
circuit? Network discovery.
●  Important for all clients to get same picture of

network to avoid epistemic partitioning
●  Initial onion routing design had trivial/brittle

solution
–  network and identity keys simply hard coded in

prototypes
●  Next generation had a design for flat flooding of

network state to all relays
–  complex, tricky, scales in principal but ?
–  not ever deployed in practice

●  Tor has a directory system: See next slides
●  Bridge distribution: Should have gone to FOCI.

65

Tor Directory Version 1

●  Directory authorities serve
–  Relay descriptors containing e.g. identity keys & IP

addresses
–  Network status: whether relays are up or down

●  Network caches added to prevent DirAuths
from being comms bottleneck

66

Tor Directory Version 2

Issue 1:
●  As Tor network grew so did size of directory

–  large downloads a problem
●  Most descriptor info relatively persistent
Solution:
●  Directory authorities serve

–  Network status summary: Hashes of each relay’s
current descriptor

–  Clients retrieve full descriptors only for relays they
don’t know or that have changed

67

Tor Directory Version 2

Issue 2:
●  Version 1 DirAuths function independently

–  trust bottleneck
–  Risk grows with number of DirAuths

Solution:
●  Clients trust statements about relays made

by majority of DirAuths

68

Tor Directory Version 3

Issue 1: Descriptors contain much useful info
not needed for basic contact

Solution: Microdescriptors go into consensus
–  Identity key, address, exit ports

–  Good for about a week typically

69

Tor Directory Version 3

Issue 2: Update and synch. Issues can lead to
clients having different network views

Solution: Collective DirAuth vote on network
consensus

Issue 3: Identity keys for DirAuths most sensitive
data

Solution: Create DirAuth network info signing keys
and keep identity keys offline

70

Onion routing started from a
practical motivation
●  How do we know the whole enterprise is not

fundamentally broken on an abstract level?
●  Where’s the underlying theory to back this up?

●  Note: OK not to have a rigorous notion of
security at first

–  Analyses based on state of the art would have been
misleading

–  Global Passive Adversary both too strong and too weak
●  Cf. “Why I’m not an Entropist” and “Sleeping Dogs Lie in a Bed

of Onions but Wake when Mixed”

71

Anonymous Communication c. 2000

Mix Networks
Dining cryptographers
Onion routing
Crowds

Deployed Analyzed

4
72

Adversary observing all traffic entering
and leaving network breaks onion routing

73 R4
R2

R3

Alice

Bob

Low-latency systems are vulnerable
to correlation by a global adversary

Low-latency: Alice1 sends:    
 Bob2 gets:    $

 Alice2 sends:    
 Bob1 gets:     

High-latency: Alice1 sends:   
 Alice2 sends:     $

 Bob1 gets:  .....
 Bob2 gets:   

Time

These attacks work in practice. The obvious defenses
are expensive (like high-latency), useless, or both.

match!

match!

Adversary observing all traffic entering
and leaving network breaks onion routing
●  “Towards an Analysis of Onion Routing Security” Syverson et al. PETS 2000

●  Presented and analyzed adversary model assumed in prior
onion routing work

–  Network of n onion routers, c compromised onion routers
–  Security approx. c2 / n2

75 R4
R2

R3

Alice

Bob

Formal analysis of onion routing

1.  Possibilistic characterization using I/O
automata

2.  Probabilistic analysis abstracting I/O
automata characterization to a black box

3.  Representing black-box results in standard
cryptographic models

76

Possibilistic Analysis Overview
●  Formally model onion routing using input/

output automata
●  Characterize the situations that provide

anonymity

6
77

Possibilistic Analysis Overview
●  Formally model onion routing using input/

output automata
–  Simplified onion-routing protocol
–  Non-cryptographic analysis

●  Characterize the situations that provide
anonymity

6
78

Possibilistic Analysis Overview
●  Formally model onion routing using input/

output automata
–  Simplified onion-routing protocol
–  Non-cryptographic analysis

●  Characterize the situations that provide
anonymity

–  Send a message, receive a message, communicate
with a destination

–  Possibilistic anonymity

6
79

Main Theorem
[“A Model of Onion Routing with Provable Anonymity”, Feigenbaum, Johnson, and
Syverson, in FC07

u
1 2

3

4
5

d

Main theorem: Adversary can only determine
the parts of a circuit it controls or is next to.

u 1 2

8
80

Anonymous Communication

●  Sender anonymity: Adversary can’t
determine the sender of a given message

●  Receiver anonymity: Adversary can’t
determine the receiver of a given message

●  Unlinkability: Adversary can’t determine who
talks to whom

9
81

Model
●  Constructed with I/O automata

–  Models asynchrony
–  Relies on abstract properties of cryptosystem

●  Simplified onion-routing protocol
–  No key distribution
–  No circuit teardowns
–  No separate destinations
–  No streams
–  No stream cipher
–  Each user constructs a circuit to one destination
–  Circuit identifiers

11
82

Input/Ouput Automata
●  States
●  Actions

–  Input, ouput, internal
–  Actions transition between states

●  Every state has enabled actions
●  Input actions are always enabled
●  Alternating state/action sequence is an execution
●  In fair executions actions enabled infinitely often

occur infinitely often
●  In cryptographic executions no encrypted control

messages are sent before they are received unless
the sender possesses the key

16

83

I/O Automata Model

● Automata
– User
– Server
– Fully-connected network of
FIFO Channels
– Adversary replaces some
servers with arbitrary automata

● Notation
– U is the set of users
– R is the set of routers
– N = U ∪ R is the set of all
agents
– A ⊆ N is the adversary
– K is the keyspace
– l is the (fixed) circuit length
– k(u,c,i) denotes the ith key
used by user u on circuit c

17
84

User automaton

85

Server automaton

86

Anonymity
Definition (configuration):

A configuration is a function U→Rl mapping
each user to his circuit.

20
87

Anonymity

Definition (indistinguishability):
Executions α and β are indistinguishable to
adversary A when his actions in β are the
same as in α after possibly applying the
following:

 ξ: A permutation on the keys not held by A.
 π: A permutation on the messages encrypted

by
 a key not held by A.

Definition (configuration):
A configuration is a function U→Rl mapping
each user to his circuit.

20
88

Anonymity
Definition (anonymity):

User u performs action α anonymously in
configuration C with respect to adversary A if, for
every execution of C in which u performs α, there
exists an execution that is indistinguishable to A in
which u does not perform α.

21
89

Anonymity

Definition (unlinkability):
User u is unlinkable to d in configuration C with
respect to adversary A if, for every fair,
cryptographic execution of C in which u talks to d,
there exists a fair, cryptographic execution that is
indistinguishable to A in which u does not talk to d.

Definition (anonymity):
User u performs action α anonymously in
configuration C with respect to adversary A if, for
every execution of C in which u performs α, there
exists an execution that is indistinguishable to A in
which u does not perform α.

21
90

Theorem: Let C and D be configurations for which
there exists a permutation ρ: U→U such that
Ci(u) = Di(ρ(u)) if Ci(u) or Di(ρ(u)) is compromised
or is adjacent to a compromised router. Then for
every fair, cryptographic execution α of C there
exists an indistinguishable, fair, cryptographic
execution β of D. The converse also holds.

22
91

Main Theorem

u
1 2

3

4
5

d

Main theorem: Adversary can only determine
the parts of a circuit it controls or is next to.

u 1 2

8
92

Unlinkability
Corollary: A user is unlinkable to its destination when:

93

Unlinkability

2 3 u
4?
5?

The last router is
unknown.

Corollary: A user is unlinkable to its destination when:

94

OR

Unlinkability

2 3 u
4?
5?

The last router is
unknown.

1 2 4
The user is unknown
and another
unknown user has an
unknown destination. 5

2?
5?

4?

Corollary: A user is unlinkable to its destination when:

95

OR

OR

1 2 4
The user is unknown
and another
unknown user has a
different destination. 5 1 2

Unlinkability

2 3 u
4?
5?

The last router is
unknown.

1 2 4
The user is unknown
and another
unknown user has an
unknown destination. 5

2?
5?

4?

Corollary: A user is unlinkable to its destination when:

Probabilistic anonymity

●  Possibilistic result is nice, but we would like to
quantify the anonymity provided by a system

●  And we want to use a black box model, like this

25
97

Black-box Abstraction

u d

v

w

e

f

98

Black-box Abstraction

u d

v

w

e

f

1.  Users choose a destination

99

Black-box Abstraction

u d

v

w

e

f

1.  Users choose a destination

2. Some inputs are observed

100

Black-box Abstraction

u d

v

w

e

f

1.  Users choose a destination

2. Some inputs are observed

3. Some outputs are observed

101

Black-box Anonymity

u d

v

w

e

f

•  The adversary can link observed
inputs and outputs of the same user.

102

Black-box Anonymity

u d

v

w

e

f

•  The adversary can link observed
inputs and outputs of the same user.

•  Any configuration consistent with
these observations is
indistinguishable to the adversary.

103

Black-box Anonymity

u d

v

w

e

f

•  The adversary can link observed
inputs and outputs of the same user.

•  Any configuration consistent with
these observations is
indistinguishable to the adversary.

104

Black-box Anonymity

u d

v

w

e

f

•  The adversary can link observed
inputs and outputs of the same user.

•  Any configuration consistent with
these observations is
indistinguishable to the adversary.

105

Probabilistic Black-box

u d

v

w

e

f

106

Probabilistic Black-box

u d

v

w

e

f

•  Each user v selects a destination
from distribution pv

pu

107

Probabilistic Black-box

u d

v

w

e

f

•  Each user v selects a destination
from distribution pv

•  Inputs and outputs are observed
independently with probability b

pu

108

Anonymity Analysis Results of
Black Box
●  “Probabilistic Analysis of Onion Routing in a Black-box Model” Feigenbaum,

Johnson and Syverson WPES07

●  Can lower bound expected anonymity with
standard approximation: b2 + (1-b2)pu

d

●  Worst case for anonymity is when user acts
exactly unlike or exactly like others

●  Worst-case anonymity is typically as if √b
routers compromised: b + (1-b)pu

d

●  Anonymity in typical situations approaches
lower bound

109

Formal analysis of onion routing
●  [FJS07a] - Onion-routing I/O-automata model

 - Possibilistic anonymity analysis
●  [FJS07b] - Onion-routing abstract model

 - Probabilistic anonymity analysis
●  […] - How do we apply results in standard

cryptographic models?
●  [CL05] - “Onion routing” formalized with Universal

Composability (UC)
 - No anonymity analysis

●  [FJS12] – Onion-routing UC formalization
 - “Free” probabilistic anonymity analysis

●  [BGKM12] - Onion routing formalized with UC
 - Our work will provide anonymity

110

Problem
●  [FJS07a] - Onion-routing I/O-automata model

 - Possibilistic anonymity analysis
●  [FJS07b] - Onion-routing abstract model

 - Probabilistic anonymity analysis
●  […] - How do we apply results in standard

cryptographic models?
●  [CL05] - “Onion routing” formalized with Universal

Composability (UC)
 - No anonymity analysis

●  [FJS12] – Onion-routing UC formalization
 - “Free” probabilistic anonymity analysis

●  [BGKM12] - Onion routing formalized with UC
 - Our work will provide anonymity

111

Problem
●  [FJS07a] - Onion-routing I/O-automata model

 - Possibilistic anonymity analysis
●  [FJS07b] - Onion-routing abstract model

 - Probabilistic anonymity analysis
●  […] - How do we apply results in standard

cryptographic models?
●  [CL05] - “Onion routing” formalized with Universal

Composability (UC)
●  “A Formal Treatment of Onion Routing” Camenisch & Lysyanskaya, CRYPTO 05

 - No anonymity analysis, not onion routing
[FJS12] – Onion-routing UC formalization

 - “Free” probabilistic anonymity analysis
●  [BGKM12] - Onion routing formalized with UC

 - Our work will provide anonymity
112

Problem
●  [FJS07a] - Onion-routing I/O-automata model

 - Possibilistic anonymity analysis
●  [FJS07b] - Onion-routing abstract model

 - Probabilistic anonymity analysis
●  […] - How do we apply results in standard

cryptographic models?
●  [CL05] - “Onion routing” formalized with Universal

Composability (UC)
●  “A Formal Treatment of Onion Routing” Camenisch & Lysyanskaya, CRYPTO 05

 - No anonymity analysis, not onion routing
●  [FJS12] – Onion-routing UC formalization

 - “Free” probabilistic anonymity analysis
●  [BGKM12] - Onion routing formalized with UC

 - Our work will provide anonymity
113

Onion-Routing UC Ideal Functionality

 u with probability b
 ø with probability 1-b

x

y

Upon receiving destination d from user U

 d with probability b
 ø with probability 1-b

Send (x,y) to the adversary.

FOR
114

●  “Probabilistic Analysis of Onion Routing in a Black-box Model” Feigenbaum,
Johnson and Syverson ACM TISSEC 2012

Black-box Model

●  Ideal functionality FOR

●  Environment assumptions
–  Each user gets a destination
–  Destination for user u chosen from distribution pu

●  Adversary compromises a fraction b of
routers before execution

115

UC Formalization

●  Captures necessary properties of any
crytographic implementation

●  Easy to analyze resulting information leaks
●  Functionality is a composable primitive
●  Anonymity results are valid in probabilistic

version of I/O-automata model

116

Problem
●  [FJS07a] - Onion-routing I/O-automata model

 - Possibilistic anonymity analysis
●  [FJS07b] - Onion-routing abstract model

 - Probabilistic anonymity analysis
●  […] - How do we apply results in standard

cryptographic models?
●  [CL05] - “Onion routing” formalized with Universal

Composability (UC)
●  “A Formal Treatment of Onion Routing” Camenisch & Lysyanskaya, CRYPTO 05

●  [FJS12] – Onion-routing UC formalization
 - “Free” probabilistic anonymity analysis

●  [BGKM12] - Onion routing formalized with UC
 - Our work will provide anonymity

117

Ideal Functionality modeling more of reality

●  “Provably Secure and Practical Onion Routing” Backes, Goldberg, Kate, and
Mohammadi, IEEE CSF12

●  Functionality can actually send messages
●  Also presented ideal functionality covering key

exchange, circuit building
–  Needs wrapper to hide irrelevant circuit-building options

●  Shown to UC-emulate FOR

118

Course Outline
●  Lecture 1: Basics and Formalization

•  Usage examples, basic notions of traffic-secure
communications, mixes and onion routers

•  Onion routing design basics: circuit construction protocols,
network discovery

•  Formalization and analysis, possibilistic and probabilistic
definitions of anonymity

●  Lecture 2: Security for the real world
•  Simple demo of obtaining/using Tor
•  Security of obtain/using Tor
•  Adding network link awareness
•  Importance of modeling users
•  Importance of realistic and practical

•  Adversary models  Security definitions

119

