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Abstract. Multi-input functional encryption is a primitive that allows
for the evaluation of an `-ary function over multiple ciphertexts, without
learning any information about the underlying plaintexts. This type of
computation is useful in many cases where one has to compute over en-
crypted data, such as privacy-preserving cloud services, federated learn-
ing, or more generally delegation of computation from multiple clients. In
this work we propose the first secret-key multi-input quadratic functional
encryption scheme satisfying simulation security. On contrary, current
constructions supporting quadratic functionalities, proposed by Agrawal
et al. in CRYPTO ’21 and TCC ’22, only reach indistinguishibility-based
security. Our proposed construction is generic, and for a concrete in-
stantiation, we propose a new function-hiding inner-product functional
encryption scheme proven simulation secure against one challenge cipher-
text in the standard model, which is of independent interest.
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1 Introduction

Functional encryption is a generalization of public key encryption first formalized
in [14,24], allowing for more control over the access on encrypted data. In general
terms, this means that there is an authority capable to generate functional keys
related to a function f . When combined with a ciphertext cx of a plaintext x
during the decryption process, f(x) is recovered. The security guarantees that no
other information about x is leaked apart from fi(x) for all functions fi queried.

On the construction of functional encryption (FE) for some specific function-
alities, [1] gave the first instantiation for inner product (IPFE) from standard
assumptions. Soon a plethora of so called IPFE satisfying different security mod-
els or based on different assumptions appeared [8,12,15]. Another set of works,
first introduced in [11], refer to quadratic functions (QFE), for which papers in
[10,22,17] propose instantiations in the standard model. For higher degrees it is
known that succinct degree-3 functional encryption implies indistinguishability
obfuscation [23] as long as there exist pseudo-random generators of block-wise
locality 3, but there are no known schemes based on polynomial assumptions.
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The security of functional encryption has been known to be delicate to define
from its initial formalization [14,24]. This is due to the difficulty to incorporate
the inherent leakage f(x) into the security definition. There are two different ap-
proaches: indistinguishability-based security and simulation-based security. The
first one requires for the adversary to be unable to distinguish between two plain-
texts x0, x1 given a ciphertext of one of them and several functional keys skfi .
However, for this definition to make sense, it is required that fi(x0) = fi(x1) is
satisfied. This limits its applicability and makes it inadequate for some function-
alities [14]. The second one requires the scheme to be indistinguishable from a
simulator taking as inputs the inherent leakage from the scheme, in other words,
the information released to the adversary trough execution of the scheme like
the output. It is known that this definition is strictly stronger than indistin-
guishability based security. but also that there are some impossibility results
[14,24,5]. In either case, there are also two cases that could be treated. If the
adversary can only request functional keys after sending all the challenges, it is
called selective, while if the adversary has no restriction on when it can request
functional keys it is called adaptive. In this work we focus in selective simulation
security against one challenge ciphertext, and multiple functional keys, which
makes sense in many real-life applications, where several queries are asked to
one single database.

Multi-input functional encryption. Multi-input functional encryption (MIFE) is
a generalization of functional encryption first proposed by Goldwasser et al. in
[18]. The main objective is to divide the plaintext into several parts (calleds
inputs) so that they can be encrypted in independent executions of the encryp-
tion algorithm. In this case, the output of the decryption is a function taking
all inputs as variables. This models a situation where data to be encrypted may
not arrive all at the same time, while still be needed all together to obtain the
evaluation of the desired function. This primitive is useful in many real-life use
cases related to privacy-preserving cloud services, federated learning, or more
generally delegation of computation to a more powerful entity.

Multi-input functional encryption for general purpose is difficult to achieve
(as its single-input counterpart) and has strong implications, e.g., indistinguisha-
bility obfuscation [18]. However, for concrete families of functions some instan-
tiations have been found. In the case of inner-product, the first proposal was by
Abdalla et al. [4] with a secret-key multi-input scheme. It was followed by a trans-
formation from single-input IPFE to the multi-input case [3] still in the secret-key
setting that requires no other assumptions apart from the one of the single-input
scheme. For quadratic functionalities, only two proposals exist by Agrawal et al.
[6,7] in which they give specific instantiations of secret-key multi-input quadratic
functional encryption schemes based on function-hiding functional encryption.
Such constructions are proven secure in the indistinguishability setting and, as
far as we know, it does not exist any construction for a multi-input quadratic
functional encryption scheme satisfying simulation security. Our main purpose
in this paper is to fill this gap.

2



The focus on secret key constructions comes from the fact that public key
multi-input functional encryption is easily constructed from single-input func-
tional encryption [4,6] (for both linear and quadratic functionalities). However,
these instantiations cannot be trivially transformed into secret key by consider-
ing the public key as part of the master secret key due to the inherent leakage
of the functionalities. For a more detailed analysis of this issue, we refer to [4,
Section 1.1] and [6, Section 1.2, Appendix A.2].

Function-hiding functional encryption. As in [4,6], our MIQFE is based on a
function-hiding IPFE (FH-IPFE). Function-hiding is an additional security prop-
erty for functional encryption, first proposed by Shen et al. in [25]. Analogously
to the ciphertext protecting the plaintext x, the functional key is in this setting
required to protect the function f . In other words, the adversary only learns
f(x) and no other information about either x or f . Once again, given the power
the adversary has in the public-key setting to encrypt any message, public-key
function-hiding schemes are unfeasible. By giving the adversary the possibility
of encrypting any plaintext, the function “hidden” in the functional key can be
recovered.

In the case of IPFE, several function-hiding constructions exist, most of the
time based on bilinear pairings and secure in the standard model [13,16,26,21]
(especially because a recent result shows that Learning With Errors based con-
structions are impossible [27]). Security-wise, as explained above, we need simu-
lation based security for our multi-input quadratic FE. Regarding the literature
on the subject, it only remains the scheme by Kim et al. in [20] which achieves
such security in the Generic Group Model.

1.1 Contributions

Our first contribution is the transformation from any function-hiding inner-
product functional encryption to a multi-input quadratic functional encryption
achieving selective simulation security for one ciphertext in the secret key setting,
with a ciphetext size of O(n`2) where ` is the number of inputs and n the size of
these inputs. This is the first instantiation of multi-input quadratic functional
encryption scheme satisfying simulation security. To achieve this we base our-
selves on the single-input quadratic functional encryption scheme of [17, Section
3], using techniques from the multi-input inner-product functional encryption
scheme from [3, Section 3].

This transformation is based on a simulation secure function-hiding inner-
product functional encryption for which we give a new instantiation in the stan-
dard model, based on the DDH-based inner-product scheme in [1, Section 3] and
inspired by the partially function-hiding inner-product scheme in [17, Section 4].
This is the first simulation secure function-hiding inner-product scheme in the
standard model.
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1.2 State of the Art

In quadratric functional encryption, the function is generally defined by a matrix
F ∈ Zn×np with F (x) = x>Fx. Based on that, it is trivial to construct a “naive”
single-input quadratic functional encryption scheme from any single-input inner-
product functional encryption scheme, in which the functions are defined by a
vector y ∈ Znp with y(x) = x>y. For such a generic construction, we first observe
that x>Fx = (x ⊗ x)>vect(F ) where ⊗ denotes the Kronecker product and
vect(F ) is the vectorization of F . From that, such naive QFE can be constructed
as follows.

Encryption Scheme 1 (Naive QFE)

– QFE.Enc(x) : Compute cx ← IPFE.Enc(x⊗ x).
– QFE.KeyGen(F ) : Compute skF ← IPFE.KeyGen(vect(F )).
– QFE.Dec(cx, skF ) : Compute (x⊗ x)>vect(F )← IPFE.Dec(cx, skF ).

But it is obvious that this leads to quadratic ciphertext sizes. Hence, construc-
tions for single-input quadratic functional encryption are centered on achieving
linear-size ciphertexts. However, such a naive approach does not work in the
multi-input setting since we would need Enc(xi⊗xj) and xi,xj to be encrypted
independently.

There are only two proposals for multi-input quadratic functional encryption
[6,7]. In both, they adapt the single-input quadratic scheme from Lin [22] to the
multi-input setting. The high level idea is to use function-hiding inner-product
functional encryption. More specifically, during the encryption, every input is
used as an input of both encryption and key generation of the function-hiding
inner-product scheme. They achieve selective indistinguishability security for
many challenge plaintexts, based on the security of the underlying scheme. In [6]
they make use of two extra functionalities, namely predicated inner-product func-
tional encryption and mixed group inner-product functional encryption, while
in [7] the instantiation is simplified, while achieving a stronger sense of security
allowing corruption of inputs, still in the indistinguishability based setting.

Another work by Gay [17] gives a transformation from “partially” function-
hiding inner-product functional encryption to public-key single-input quadratic
functional encryption scheme. This way, it achieves semi-adaptive simulation
security for one ciphertext. Abdalla et al. in [3] gave a transformation from
standard inner-product functional encryption to secret-key multi-input inner-
product functional encryption scheme, achieving selective simulation security for
one ciphertext and adaptive indistinguishability security for many ciphertexts.
We will use elements of both these transformations to construct ours.

Efficiency-wise, let us consider an input plaintext of size n`, either by ` inputs
of size n or a single input of size n`. The previous naive construction of a single-
input quadratic functional encryption scheme achieves simulation-security with
O(n2`2)-bit size ciphertexts. On the other hand, Gay [17] proposes a simulation
secure single-input quadratic functional encryption with ciphertext of size O(n`).
The ciphertext size of the multi-input inner product functional encryption from
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Table 1. Relevant functional encryption schemes, where ` refers to the number of
inputs and n to the size of each input. For a fair comparison we consider the single-
input schemes as one input of size n`. PFH stands for partially function-hiding.

Proposal Starting building block Functionality Simulation security Size of the ciphertext
Naive (1) IPFE QFE 3 O(n2`2)

[17] PFH-IPFE QFE 3 O(n`)
[3] IPFE MIPFE 3 O(n`)
[7] FH-IPFE MIQFE 7 O(n`)

Our work FH-IPFE MIQFE 3 O(n`2)

[3] is also O(n`). In this work, we show that upgrading a single-input quadratic
functional encryption to multi-input in simulation based security can be done
at a cost linear in `, leading to a ciphertext size of O(n`2). With indistinguisha-
bility based security, the scheme in [7] achieves a ciphertext of size O(n`). For a
summary, see Table 1.

Concerning simulation secure function-hiding inner-product FE, there only
exists by Kim et al.’s protocol in [20], where they achieve adaptive simulation
security against many challenge ciphertexts by constraining themselves to the
generic group model (GGM). Since this is an oracle-based model, the impos-
sibility results for adaptive simulation security [14,24,5] no longer hold. There
is also [28] which claims a function-hiding inner-product functional encryption
scheme simulation secure against many challenge ciphertexts in the standard
model, which is known to be impossible even in the non function-hiding setting.

1.3 Technical Overview

Multi-input Quadratic Functional Encryption Scheme. Our objective
is to construct a simulation sound multi-input quadratic functional encryption
scheme. One approach could have been to prove that the schemes [6,7] are sim-
ulation sound. However, the way both these schemes are constructed from the
single-input quadratic functional encryption scheme by Lin [22] makes it impos-
sible. Indeed, during the encryption of input xi they run both the encryption
and key generation algorithms of a function-hiding inner-product. Then during
decryption, they multiply all the results of the decryptions of all the cross terms
i, j by the coefficients of the matrix Fi,j to obtain the desired result. Because
there are several inputs to be encrypted independently, using both the encryp-
tion and key generation algorithms, the selective simulation soundness for one
challenge ciphertext in the multi-input scheme would require adaptive simulation
soundness for several challenge ciphertexts. But adaptive simulation soundness
is hard to achieve for non function-hiding functional encryption in the standard
model [14], and even more in the case of function-hiding functional encryption.

Our idea is hence to start from the single-input quadratic functional en-
cryption scheme in [17] based on partially function-hiding inner-product func-
tional encryption. Function-hiding is said to be partial when decryption keys
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partially hide their underlying function (see [17] for details). Such a construc-
tion is sketched below, in the secret key setting to simplify the reading.

Encryption Scheme 2 (Simplified Figure 4, [17])

– QFE.SetUp(1κ) : Sample a ∈ Z2
p, B ∈ Z3×2

p , U ∈ Zn×2p and V ∈ Zm×3p .
Define

M :=

(
a⊗ (Idm|V B) | 0

0 | Idn ⊗B

)
,

and run (IPFE.pk, IPFE.msk) ← IPFE.SetUp(1κ, [M ]1). Output QFE.msk =
(a,B,U ,V , IPFE.pk, IPFE.msk)

– QFE.Enc(x) : Sample r $←− Zp and s
$←− Z2

p and compute

[c1x]1 := [x+Uar]1, [c2x]2 := [x+ V Bs]2,

IPFE.c← IPFE.Enc

IPFE.pk,

r ⊗ (xs
)

x⊗ s

 .

Output cx = ([c1x]1, [c
2
x]2, IPFE.c).

– QFE.KeyGen(F ) : Compute

IPFE.sk ← IPFE.KeyGen

(
IPFE.msk,

(
vect(U>F )
vect(FV )

))
.

Output skF = (F , IPFE.sk).
– QFE.Dec(cx, skF ) : Compute

[d]T ← IPFE.Dec(IPFE.c, IPFE.sk), [v]T := e([c1x]1,F [c2x]2)− [d]T

Output log([v]T ) if v ∈ [0, n2 ·B3] and ⊥ otherwise.

At a high level, there are two one-time pads c1x, c2x which are combined as
c1x
>Fc2x to give the desired value x>Fx plus some extra terms. The inner-

product functional encryption scheme is used to compute these extra terms so
they can be subtracted in the end. Eventually, the partially function-hiding prop-
erty is used to ensure that the functional key does not leak too much information
about U and V (in concrete, [cix]i remain indistinguishable from random).

The first idea that comes to mind to extend this scheme from single-input
to multi-input would be to encrypt each input and substitute the (partially
function-hiding) inner-product functional encryption scheme for a (partially func-
tion-hiding) multi-input one. However, the decryption phase necessitates to elim-
inate the extra terms coming from e([c1xi

]1,Fi,j [c
2
xj
]2):

e([c1xi
]1,Fi,j [c

2
xj
]2) = [x>i Fi,jxj ]T + [x>i Fi,jV Bsi]T

+ [Uar>i Fi, jxj ]T + [Uar>i Fi, jV Bsi]T .
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This elimination could be done using the IPFE encryption. In this case, we
would need the ciphertext and functional key to be

IPFE.c̃i,j ← IPFE.Enc

IPFE.pk,

ri ⊗ (xjsj
)

xi ⊗ sj

 ,

IPFE.s̃ki,j ← IPFE.KeyGen

(
IPFE.msk,

(
vect(U>Fi,j)
vect(Fi,jV )

))
.

However, xi and xj should be encrypted in different independent instances of
the encryption algorithm and therefore such ciphertext cannot be created. To cir-
cumvent this issue we use two main properties of the multi-input scheme. Firstly,
we use the fact that during decryption, all partial decryptions (for i, j ∈ [`]) will
be added altogether, and in particular IPFE.ci,j and IPFE.cj,i. This allows us to
“interweave” the ciphertexts, where in input i we compute half of what is needed
for e([ctxi

]1,Fi,j [ctxj
]2) and half of what is needed for e([ctxj

]1,Fj,i[ctxi
]2),

while the other two halves are computed on input j. Therefore, combining the
decryptions of IPFE.ci,j and IPFE.cj,i we obtain all the extra terms resulting from
e([ctxi ]1,Fi,j [ctxj ]2) and e([ctxj ]1,Fj,i[ctxi ]2). More specifically, by computing
the following where the changes are squared

IPFE.ci,j ← IPFE.Enc

IPFE.pk,

rj ⊗ ( xi
si

)
xi ⊗ sj

 ,

IPFE.ski,j ← IPFE.KeyGen

(
IPFE.msk,

(
vect(U> Fj,i )

vect(Fi,jV )

))
,

which given the linearity of inner product, during decryption we get for any
i, j ∈ [`],

IPFE.Dec(IPFE.ci,j , IPFE.ski,j) + IPFE.Dec(IPFE.cj,i, IPFE.skj,i)
=

IPFE.Dec(IPFE.c̃i,j , IPFE.s̃ki,j) + IPFE.Dec(IPFE.c̃j,i, IPFE.s̃kj,i)

which is what we need to eliminate the extra terms appearing in both crossed
terms i, j and j, i.

Secondly, we use the fact that we are in the secret-key setting. As such we
can presample the random values we will use in the encryption algorithm during
the set up. From the encryption of a specific input, this gives us access to the
values of all the rest of the inputs.

Furthermore, this use of secret-key cryptography allows us to directly base
ourselves in function-hiding inner-product functional encryption, without the
need to use its “partial” version (the scheme from [17] cannot do so since public-
key function-hiding functional encryption is impossible). We also simplify the
scheme to require less security assumptions. Eventually, the security of our
scheme depends solely on the security of the underlying function-hiding inner-
product functional encryption scheme.
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The final step of our transformation is to use the argument in [3] to make sure
that the correct result can only be obtained when all the inputs are taken into
account. More precisely, they encrypt a one-time pad w + x and then compute
an extra zky = w>y during key generation, which one is finally substracted
during decryption to obtain the real value. This holds as long as there are less
functional key queries than the size of the vector since w will still have enough
entropy to make zkF indistinguishable from random.

Function-hiding Inner-product Functional Encryption Scheme. Simi-
larly to the construction of partially function-hiding functional encryption from
[17, Section 4], we construct our function-hiding inner product functional en-
cryption scheme by layering two instances of a non function-hiding scheme (one
in and one out) as follows: EncFH(x) = Encout(KeyGenin(x)) and KeyGenFH(y) =
KeyGenout(Encin(y)). Then, decryption is done through the use of a bilinear pair-
ing. This allows us to protect both the plaintext in the ciphertext and the func-
tion in the functional key.

The instantiation in [17, Section 4] is based on the non function-hiding scheme
from [8, Section 3], since it intends to achieve simulation security in the public
key setting and as such it needs an extra slot to handle this. In our case, given
that we are in the secret key setting, basing ourselves in the scheme from [1,
Section 3] is enough. As such we use a different approach than [17] to simulate
the functional keys, where we use the Q-fold DDH assumption instead of the “1”-
fold DDH one. This allows us to have slightly smaller ciphertexts and functional
keys (one less slot) than the construction in [17].

This layering approach is very similar to the function-hiding inner prod-
uct functional encryption scheme given in [22, Section 6.3]. Indeed, the cru-
cial difference is the order in which the layers are set. In their case they have
EncFH(x) = KeyGenout(Encin(x)) and KeyGenFH(y) = Encout(KeyGenin(y)). How-
ever, this set up does not work for proving simulation security. As evidence, let us
denote keyout, keyin the keys for each layer of non function-hiding inner-product
functional encryption. When simulating the function-hiding ciphertext by simu-
lating the encryption in the inner layer, the simulated ciphertext will still depend
on (non-simulated) keyout. Then, when simulating the function-hiding functional
key by simulating the encryption in the outer layer, the key we need to simulate
is both in the ciphertext and functional key, which are in two different groups. As
such, trying to use the DDH assumption (in which [1] is based) to simulate this
functional key will not work since there will be one element in G1 and another
in G2: the bilinear pairing trivially breaks the scheme.

In our case, when simulating the function-hiding ciphertext by simulating
the encryption in the outer layer, the ciphertext no longer depends on keyin and
as such we are free to use the DDH assumption to simulate the function-hiding
functional key, simulating the encryption in the inner layer.
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2 Preliminaries

One-dimensional elements will be noted as lower-case letters (x, y, . . .), while
vectors will use bold lower-case letters (x,y, . . .) and matrices will use bold
upper-case letters (M ,U ,V , . . .). Let D be a probability distribution, x ← D
means the element x is sampled from the distribution D, while for any set Y,
y

$←− Y means that y is sampled uniformly at random from Y. Finally, a function
f is said to be negligible over n (f = negl(n)) if for all k ∈ N>0, there exists
n0 ∈ N>0 such that for any n > n0 then |f(n)| < 1/nk.

2.1 Pairing Groups

This work makes use of asymmetric pairing groups, inherited from function-
hiding functional encryption. Let G1,G2,GT be three additive cyclic groups of
order a prime p. Let P1, P2 be generators of G1 and G2 respectively and let
e : G1 × G2 → GT be an efficiently computable (non-degenerate) bilinear map.
This means that e(αP1, βP2) = α · βPT for any α, β ∈ Zp where we define
PT := e(P1, P2).

For s ∈ {1, 2, T} and a matrix A = (aij) ∈ Zn×mp for any n,m ≥ 1 we
define [A]s as the representation of A in the group Gs. In other words, [A]s =
(aijPs) ∈ Gn×ms .For any two matrices A,B ∈ Zn×mp , e([A]1, [B]2) := [AB]T
and for s ∈ {1, 2, T} we have [A]s + [B]s := [A+B]s.

Finally, we define the PPT algorithm PGGen that, on input a security pa-
rameter κ, outputs a set (G1,G2,GT , p, P1, P2, e) where p is a 2κ-bit prime.

2.2 Functional Encryption

Functional encryption is a generalization of encryption first formalized by Boneh
et al. [14] and O’Neill [24], in which the decryption algorithm no longer outputs
necessarily the plaintext, but a function applied to this plaintext. This is achieved
through the generation of functional keys related to the specific function wanted
to be applied. Such schemes are defined as follows in the secret-key setting.

Definition 1 (Functional Encryption Scheme). Let κ ∈ N>0 be a security
parameter and F be a family of functions. A function f ∈ F is defined as
f : X → S. We define a secret-key functional encryption scheme the following
tuple of PPT algorithms:

– FE.SetUp(1κ,F) : given the security parameter κ and the family of functions
F as input, it outputs some public parameters FE.param and a master secret
key FE.msk. We will assume the public parameters as inputs in all other
algorithms.

– FE.Enc(FE.msk, x) : given the master secret key FE.msk and a plaintext x ∈ X
as inputs, it outputs a ciphertext cx.

– FE.KeyGen(FE.msk, f) : given the master secret key FE.msk and a function
f ∈ F as inputs, it outputs a functional key skf .
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– FE.Dec(cx, skf ) : given a ciphertext cx and a functional key skf as inputs, it
outputs a value in S or ⊥ if it fails.

The correctness notion for such schemes is as follows.

Definition 2 (Correctness of Functional Encryption). Let κ ∈ N>0 be a
security parameter and FE = (FE.SetUp,FE.Enc, FE.KeyGen,FE.Dec) be a secret-
key functional encryption scheme. We say it is correct if for any x ∈ X and
f ∈ F we have

Pr [FE.Dec(cx, skf ) 6= f(x)] = negl(κ)

where the distribution is taken over FE.msk ← FE.SetUp(1κ,F), cx ← FE.Enc
(FE.msk, x) and skf ← FE.KeyGen(FE.msk, f).

Multi-input Functional Encryption As mentioned in Section 1, multi-input
functional encryption is a generalisation of functional encryption which divides
the plaintext into ` inputs to be encrypted independently. The standard defini-
tions for this are case as follows.

Definition 3 (Multi-input Functional Encryption Scheme). Let κ ∈ N>0

be a security parameter, ` ∈ N>0 be the number of inputs and F be a family of
`-ary functions. A function f ∈ F is defined as f : X1× . . .×X` → S. We define
a secret-key multi-input quadratic functional encryption scheme as the following
tuple of PPT algorithms:

– MIFE.SetUp(1κ,F): given the security parameter 1κ and a family of `-ary
functions F , it outputs some public parameters MIFE.param a master secret
key MIFE.msk. We will assume the public parameters as inputs in all other
algorithms.

– MIFE.Enc(MIFE.msk, i, xi): given the master secret key MIFE.msk, an input
number i ∈ [`] and xi ∈ Xi, it outputs a ciphertext cxi

.
– MIFE.KeyGen(MIFE.msk, f): given the master secret key MIFE.msk and a

function f ∈ F as inputs, it outputs a functional decryption key skf .
– MIFE.Dec(cx1

, . . . , cx`
, skf ): a deterministic algorithm that given ciphertexts

cx1
, . . . , cx`

and a functional key skf as inputs, it outputs a value in S, or
⊥ if it fails.

The correctness notion for these schemes goes as follows.

Definition 4 (Correctness of Multi-input Functional Encryption). Let
κ ∈ N>0 be a security parameter, ` ∈ N>0 be the number of inputs and MIFE =
(MIFE.SetUp,MIFE.Enc,MIFE.KeyGen,MIFE.Dec) be a secret-key multi-input func-
tional encryption scheme. We say it is correct if for any x1 ∈ X1, . . . , x` ∈ X`
and f ∈ F we have

Pr [MIFE.Dec(cx1
, . . . , cx`

, skf ) 6= f(x1, . . . , x`)] = negl(κ)

where the distribution is taken over MIFE.msk ← MIFE.SetUp(1κ,F), cxi
←

MIFE.Enc(MIFE.msk, i, xi) for all i ∈ [`] and skf ← MIFE.KeyGen(MIFE.msk, f).
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Table 2. Real and ideal experiments in SEL-SIM security for MIQFE.

ExprealA (1κ):
1: MIFE.msk← MIQFE.SetUp(1κ,F)
2: ({xi}i∈[`], st1)← A1(1

κ) where xi ∈ Xi
3: For all i ∈ [`], cxi ← MIFE.Enc(MIFE.msk, i,xi)

4: γ ← AOMIFE.KeyGen(msk,·)
2 ({cxi}i∈`, st1)

ExpidealA,S (1κ):
1: MIFE.m̃sk← MIFE.SetUpSim(1κ,F)
2: ({xi}i∈[`], st1)← A1(1

κ) where xi ∈ Xi
3: For all i ∈ [`], c̃xi ← MIFE.EncSim(MIFE.m̃sk, i)

4: γ ← AÕMIFE.KeyGen(MIFE.m̃sk,{xi}i∈[`],·)
2 ({c̃xi}i∈[`], st1)

text

As explained in Section 1, there are two main ways to classify security defi-
nitions for functional encryption: indistinguishability based or simulation based
and selective or adaptive. In this work we are interested in selective simulation
security for one challenge ciphertext, for which we give the definition below.

Definition 5 (Simulation Security for Multi-input Functional Encryp-
tion). Let κ ∈ N>0 be a security parameter, ` ∈ N>0 be the number of in-
puts and MIFE = (MIFE.SetUp,MIFE.Enc, MIFE.KeyGen,MIFE.Dec) be a secret-
key multi-input functional encryption scheme. For any PPT simulator S :=
(MIFE.SetUpSim,MIFE.EncSim,MIFE.KeyGenSim) and any PPT adversary A we
define the experiments in Table 2 where the oracles are described as follows.

1. Real Experiment: OMIFE.KeyGen(MIFE.msk, ·) takes as input a function f ∈
F and outputs skf ← MIFE.KeyGen(MIFE.msk, f).

2. Ideal Experiment: ÕMIFE.KeyGen(MIFE.m̃sk, x1, . . . , x`, ·) takes as input a
function f ∈ F , computes v = f(x1, . . . , x`) and outputs s̃kf ← MIFE.KeyGen

Sim(MIFE.m̃sk, v, f).

We say MIFE is one selective multi-input simulation secure if there exists a
PPT simulator S := (MIFE.SetUpSim,MIFE.EncSim,MIFE.KeyGenSim) such that
for all PPT adversary A the following inequality holds.

AdvMI-SIM
MIFE (A) = |Pr[1← ExprealA (1κ)]− Pr[1← ExpidealA (1κ)]| ≤ negl(κ)

Function-hiding Functional Encryption As mentioned in Section 1, function-
hiding functional encryption is a restriction of functional encryption which guar-
antees privacy for the function from the functional key, as well as the standard
privacy for the message from the ciphertext. The security definition in the sim-
ulation security setting is then as follows.

Definition 6 (Simulation Security of Function-hiding Functional En-
cryption). Let κ ∈ N>0 be a security parameter, n ∈ N>0 be the dimension, and
FE = (FE.SetUp,FE.Enc,FE.KeyGen,FE.Dec) be a secret-key functional encryp-
tion scheme. For any PPT simulator S := (FE.SetUpSim,FE.EncSim,FE.KeyGen
Sim) and any PPT adversary A we define the experiments in Table 3 where the
oracles are described as follows.
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Table 3. Real and ideal experiments in function-hiding SEL-SIM security for FE.

ExprealA (1κ):
1: FE.msk← FE.SetUp(1κ,F)
2: (x, st1)← A1(1

κ) where x ∈ X
3: cx ← FE.Enc(FE.msk, x)

4: γ ← AOFE.KeyGen(FE.msk,·)
2 (cx, st1)

ExpidealA,S (1κ):
1: FE.m̃sk← FE.SetUpSim(1κ,F)
2: (x, st1)← A1(1

κ) where x ∈ X
3: c̃x ← FE.EncSim(FE.m̃sk)

4: γ ← AÕFE.KeyGen(FE.m̃sk,x,·)
2 (c̃x, st1)

text

1. Real Experiment: OFE.KeyGen(FE.msk, ·) takes as input a function f ∈ F
and outputs skf ← FE.KeyGen(FE.msk, f).

2. Ideal Experiment: ÕFE.KeyGen(FE.m̃sk, x, ·) takes as input a function f ∈ F ,
computes v = f(x) and outputs s̃kf ← FE.KeyGenSim(FE.m̃sk, v).

We say FE is one selective function-hiding simulation secure if there exists a
PPT simulator S := (FE.SetUpSim,FE.EncSim,FE.KeyGenSim) such that for all
PPT adversary A the following inequality holds.

AdvFH-SIM
FE (A) = |Pr[1← ExprealA (1κ)]− Pr[1← ExpidealA (1κ)]| ≤ negl(κ)

The reason why this security definition captures function-hiding is the fact
that FE.KeyGenSim takes as inputs only the simulated keys and the output of the
function applied to the challenge. If this is satisfied, then the only information
leaked from the ciphertext and functional key is the output of the function, since
they both can be simulated only knowing this information.

3 Multi-input Quadratic Functional Encryption Scheme

In this section we describe our multi-input quadratic functional encryption scheme
for bounded-norm quadratic functionalities. We first describe the family of func-
tions we want to cover. Let Fn,`Q,B : (J0, BKn)` → J0, (n`)2 · B3K be the family
of `-ary functions such that a function F ∈ Fn,`Q,B is defined by a matrix in
J0, BKn`×n` which we note as

F =

F1,1 · · · F1,`

...
. . .

...
F`,1 · · · F`,`


with Fi,j ∈ J0, BKn×n, and applied to (x1, . . . ,x`) ∈ (J0, BKn)` gives F (x1, . . . ,
x`) :=

∑
x>i Fi,jxj for i, j ∈ [`].

To construct our MIQFE scheme we use a function-hiding inner-product func-
tional encryption whose family of functions is F̃2n

IP : Z2n
p → GT (for some

PG = (G1,G2,GT , p, P1, P2, e)← PGGen(1κ)). A function y ∈ F̃2n
IP is defined by

a vector in Z2n
p and applied to z gives y(z) :=

[
z>y

]
T
.
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3.1 Description of the Scheme

Let IPFE = (IPFE.SetUp, IPFE.Enc, IPFE.KeyGen, IPFE.Dec) be a function-hiding
inner-product functional encryption scheme for the family of functions F̃2n

IP . Be-
low is a description of our MIQFE scheme for the family of functions Fn,`Q,B .

Encryption Scheme 3 (MIQFE Scheme)

– MIQFE.SetUp(1κ,Fn,`Q,B) : Sample PG = (G1,G2,GT , p, P1, P2, e)← PGGen

(1κ), ui
$←− Znp and ci

$←− Zp for i ∈ [`] and sample wi,j
$←− Z2n

p for i, j ∈ [`].
Run IPFE.mski,j ← IPFE.SetUp(1κ, F̃2n

IP ,PG) for i, j ∈ [`]. Output

MIQFE.param = PG and
MIQFE.msk = ({ui, ci}i∈[`], {wi,j , IPFE.mski,j}i,j∈[`]).

– MIQFE.Enc(MIQFE.msk, i,xi) : Compute

ctxi
:= xi + ciui ∈ Znp ,

IPFE.ci,j ← IPFE.Enc

(
IPFE.mski,j ,wi,j + cj

(
ctxi

xi

))
for j ∈ [`].

Output MIQFE.ci = (ctxi
, {IPFE.ci,j}j∈[`]).

– MIQFE.KeyGen(MIQFE.msk,F ) : Compute

IPFE.ski,j ← IPFE.KeyGen

(
IPFE.mski,j ,

(
u>j Fj,i
Fi,juj

))
for i, j ∈ [`],

zkF ←
∑
i,j∈[`]

w>i,j

(
u>j Fj,i
Fi,juj

)
.

Output MIQFE.skF = (F , {IPFE.ski,j}i,j∈[`], zkF ).
– MIQFE.Dec(MIQFE.c1, . . . ,MIQFE.c`,MIQFE.skF ) : Compute

[di,j ]T ← IPFE.Dec(IPFE.ci,j , IPFE.ski,j)

[v]T :=

 ∑
i,j∈[`]

[ct>xi
Fi,jctxj

]T − [di,j ]T

+ [zkF ]T

Output log([v]T ) if v ∈ [0, (n`)2 ·B3] and ⊥ otherwise.

Remark 1. We define the output of the functions y to be in GT to be compatible
with existing function-hiding IPFE and only for that. Designing such a scheme
without pairings is a hard open problem. This means that all schemes require
bounded inputs to have a bounded output from which the discrete logarithm
can be computed. Therefore, this requires us to perform the operations for the

decryption algorithm in the exponent, since the input wi,j + cj

(
ctxi

xi

)
is not

bounded by definition thus making it unfeasible to compute di,j in plain.
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This means then that we add no extra pairing operations on top of those
needed for the function-hiding scheme. As such, were there to be a scheme with-
out pairings or allowing non-bounded inputs this property would immediately
translate to our construction.

3.2 Correctness and Security

Proposition 1. The MIQFE scheme defined in Section 3.1 is a correct multi-
input functional encryption scheme for Fn,`Q,B as long as IPFE is a correct scheme
for F̃2n

IP .

For the proof we refer to Appendix B.

Theorem 1. The MIQFE scheme described in 3 is one selective multi-input sim-
ulation secure, if the underlying inner-product functional encryption scheme is
one selective function-hiding simulation secure. In other words, for any PPT
adversary A there exist PPT adversaries B such that

AdvMI−SIM
MIQFE (A) ≤ `2 · AdvFH-SIM

IPFE (B) + `

p
.

Proof. Let A be a PPT adversary playing the 1-SEL-SIM security game for
MIQFE, and let κ ∈ N be a security parameter. We will prove the result through
a series of games Game i for i ∈ {0, 1, 2, 3, 4}, defined in Figure 1 with changes
in Game i + 1 being over Game i. We show that ExprealA (1κ) = Game 0 ≈s
Game 1 ≈s Game 2 ≈s Game 3 ≈c Game 4 = ExpidealA,S (1κ). Let also IPFE.Sim =
(IPFE.SetUpSim, IPFE.EncSim, IPFE.KeyGenSim) be the simulator for function-
hiding 1-SEL-SIM for the IPFE scheme.

Let C′ be a challenger that chooses b ∈ {0, 1} uniformly at random. If b = 0
it interacts with a PPT adversary A′ as in Game i, otherwise it interacts as in
Game i+ 1. At the end of the interaction, A′ will make its guess b̃ ∈ {0, 1}. We
define (for i = 0, 1, 2, 3) Advi(i+1)(A′) :=

∣∣∣Pr [b̃ = 1|b = 0
]
− Pr

[
b̃ = 1|b = 1

]∣∣∣ .
Game 0. This is the real experiment for 1-SEL-SIM security for MIQFE.

Game 1. In this Game we are changing the ciphertext ctxi to ciui which is
random, and then change ui to ũi := ui − c−1i xi in the rest of algorithms to
maintain coherence. Also, since we need ci 6= 0, we will abort SetUp whenever
this is not satisfied. Then, distinguishing Games is distinguishing between ui
and ũi.

First we show that coherence is kept. Indeed,
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Game 0, Game 1 , Game 2 Game 3 Game 4

MIQFE.SetUpi(1κ,Fn
B,`) :

PG ← PGGen(1κ),ui
$←− Znp for i ∈ [`],wi,j

$←− Z2n
p for i, j ∈ [`]

ci
$←− Zp for i ∈ [`]. If any ci = 0 abort.

IPFE.mski,j ← IPFE.SetUp(1κ, F̃2n
IP ,PG), IPFE.msk′i,j = IPFE.mski,j for i, j ∈ [`],

IPFE.m̃ski,j ← IPFE.SetUpSim(1κ, F̃2n
IP ,PG), IPFE.msk′i,j = IPFE.m̃ski,j for i, j ∈ [`]

MIQFE.param = PG, MIQFE.msk =
(
{ui, ci}i∈[`], {wi,j , IPFE.msk′i,j}i,j∈[`]

)
MIQFE.Enci(MIQFE.msk, i, xi) :

ũi = ui, ũi = ui − c−1
i xi

c̃txi = xi + ciũi,
(
note that c̃txi = ciui

)
IPFE.ci,j ← IPFE.Enc

(
IPFE.mski,j ,wi,j + cj

(
c̃txi

xi

))
, IPFE.c′i,j = IPFE.ci,j for j ∈ `

IPFE.c̃i,j ← IPFE.EncSim(IPFE.m̃ski,j) , IPFE.c
′
i,j = IPFE.c̃i,j for i, j ∈ [`]

sti = 0, sti = ũi , sti = 0

MIQFE.ci = (c̃txi , {IPFE.c′i,j}j∈[`])

MIQFE.KeyGeni(MIQFE.msk,{sti}i∈[`], v, F ) : For i, j ∈ [`], w̃i,j
$←− Zp

di,j = 0, di,j =

(
wi,j + cj

(
c̃txi

ci(ui − ũi)

))>(
ũ>j Fj,i
Fi,jũj

)

di,j = w̃i,j + cj

(
c̃txi

ci(ui − ũi)

)>(
ũ>j Fj,i
Fi,jũj

)
if Fi,j 6= 0 or Fj,i 6= 0, else di,j = w̃i,j = 0

di,j = w̃i,j + c̃t
>
xj
Fj,ic̃txi if Fi,j 6= 0 or Fj,i 6= 0, else di,j = w̃i,j = 0

IPFE.ski,j ← IPFE.KeyGen

(
IPFE.mski,j ,

(
ũ>j Fj,i
Fi,jũj

))
, IPFE.sk′i,j = IPFE.ski,j

IPFE.s̃ki,j ← IPFE.KeyGenSim(IPFE.m̃ski,j , di,j), IPFE.sk
′
i,j = IPFE.s̃ki,j

zkF =
∑
i,j∈[`]

w>i,j

(
ũ>j Fj,i
Fi,jũj

)
, z̃kF =

∑
i,j∈[`]

w̃i,j , z̃kF = v +
∑
i,j∈[`]

w̃i,j

MIQFE.skF = (F , {IPFE.sk′i,j}i,j∈[`], zkF )

Fig. 1. Games for the security proof of the MIQFE scheme from Encryption Scheme 3.

[ṽ]T =

 ∑
i,j∈[`]

[c̃txiFi,j c̃txj ]T − [di,j ]T

+ [zkF ]T

=

 ∑
i,j∈[`]

[
ciu
>
i Fi,jcjuj

]
T
−
[(
wi,j + cj

(
c̃txi

xi
))>(ũ>j Fj,i

Fi,jũj

)]
T


+

 ∑
i,j∈[`]

w>i,j

(
ũ>j Fj,i
Fi,jũj

)
T

=
∑
i,j∈[`]

[
ciu
>
i Fi,jcjuj

]
T
− [cjciu

>
i (uj − c−1j xj)

>Fj,i]T

− [cjx
>
i Fi,j(uj − c−1j xj)]T
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=
∑
i,j∈[`]

[
ciu
>
i Fi,jcjuj

]
T
− [cju

>
j Fj,iciui]T + [x>j Fj,iciui]T

− [x>i Fi,jcjuj ]T + [x>i Fi,jxj ]T

=

 ∑
i,j∈[`]

x>i Fi,jxj


T

.

Then, for the change in ci, the probability to abort during SetUp is 1/p for
all i ∈ [`] independently. Then, as long as ui and ũi are indistinguishable, so
will be Game 0 and Game 1. Now, ũi will exist as long as ci has an inverse,
which it will since ci 6= 0, and given that ui is sampled uniformly at random
in Znp and used only once (we are proving one selective security), then ui and
ũi are computationally indistinguishable. Therefore, for any PPT adversary A′,
Adv01(A′) ≤ `/p.

Game 2. In this Game we are substituting the IPFE algorithms (IPFE.SetUp,
IPFE.Enc, IPFE.KeyGen) used to compute di,j which we do not modify, by their
corresponding simulators (IPFE.SetUpSim, IPFE.EncSim, IPFE.KeyGenSim), so dis-
tinguishing between games would imply an adversary breaking 1-SEL-SIM secu-
rity for IPFE.

More formally, we prove in Lemma 2 that for any PPT adversary A′, there
exists a PPT adversary B such that Adv12(A′) ≤ `2 ·AdvFH-SIM

IPFE (B). The intuition
is that through the use of a Hybrid argument, we swap in the simulators for
every di,j with i, j ∈ [`].

Game 3. In this Game we change the construction of di,j , more specifically we

swap w>i,j

(
ũ>j Fj,i
Fi,jũj

)
for a random value w̃i,j , as long as Fj,i 6= 0 or Fi,j 6= 0.

Otherwise we keep the value at 0. First we show that coherence is held. Indeed,

[zkF ]T −
∑
i,j∈[`]

[di,j ]T =

=

 ∑
i,j∈[`]

w>i,j

(
ũ>j Fj,i
Fi,jũj

)
−
∑
i,j∈[`]

(
wi,j + cj

(
c̃txi

ci(ui − ũi)

))>(
ũ>j Fj,i
Fi,jũj

)
T

=

 ∑
i,j∈[`]

cj

(
c̃txi

ci(ui − ũi)

)>(
ũ>j Fj,i
Fi,jũj

)
T

,

[z̃kF ]T −
∑
i,j∈[`]

[d̃i,j ]T =

 ∑
i,j∈[`]

w̃i,j −
∑
i,j∈[`]

w̃i,j + cj

(
c̃txi

ci(ui − ũi)

)>(
ũ>j Fj,i
Fi,jũj

)
T

=

 ∑
i,j∈[`]

cj

(
c̃txi

ci(ui − ũi)

)>(
ũ>j Fj,i
Fi,jũj

)
T

.
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Then, since each wi,j is sampled uniformly at random in Z2n
p , as long as the

adversary has access to less than 2n different samples of w>i,j

(
ũ>j Fj,i
Fi,jũj

)
, it is

still indistinguishable from random due to the remaining entropy of wi,j . This
is an argument used in [2] to show that their multi-input inner-product scheme
is simulation sound. Therefore, for any PPT adversary A′, Adv23(A′) = 0.

Game 4. In this Game we finish the simulation by changing one last time the con-

struction of di,j . More specifically we change di,j from w̃i,j + cj

(
c̃txi

ci(ui − ũi)

)>
(
ũ>j Fj,i
Fi,jũj

)
to w̃i,j + c̃t

>
xj
Fj,ic̃txi

and modify zkF from
∑
i,j∈[`] w̃i,j to v +∑

i,j∈[`] w̃i,j to maintain coherence. Notably, it is in this step where the function-
hiding property of the underlying IPFE scheme is relevant since we can run the
key generation simulator only knowing the desired output, and no other informa-
tion about the linear function. It is also in this change where the “interweaving”
of the IPFE ciphertexts commented in the technical overview can be seen.

Firstly, we show that coherence is held. Indeed, in Game 3 we have

z̃k
(3)

F =
∑
i,j∈[`]

d̃
(3)
i,j − cj

(
c̃txi

xi

)>(
ũ>j Fj,i
Fi,jũj

)
since ci(ui − ũi) = xi by definition of ũi. and in Game 4 we get

∑
i,j∈[`]

d̃
(4)
i,j − cj

(
c̃txi

xi

)>(
ũ>j Fj,i
Fi,jũj

)
=

=
∑
i,j∈[`]

d̃
(4)
i,j −

(
(cjciui)

>(uj − c−1j xj)
>Fi,j + cjxiFi,j(uj − c−1j xj)

)
=
∑
i,j∈[`]

d̃
(4)
i,j −

(
cju
>
j Fj,iciui − x>j Fj,iciui + x>i Fi,jcjuj − x>i Fi,jxj

)
=
∑
i,j∈[`]

w̃i,j + c̃t
>
xj
Fj,ic̃txi

−
(
c̃t
>
xj
Fj,ic̃txi

− x>i Fi,jxj

)
= v +

∑
i,j∈[`]

w̃i,j

= z̃k
(4)

F .

It is in this equality that we see the “interweaving” at work, since x>j Fj,iciui
and x>i Fi,jcjuj get canceled only because we are adding for all i, j ∈ [`]. Then,

as long as d̃(3)i,j and d̃
(4)
i,j are indistinguishable, then z̃k

(3)

F and z̃k
(4)

F are also
indistinguishable. To complete the argument, we note that since w̃i,j is sampled
uniformly at random, then d̃

(3)
i,j is indistinguishable from w̃i,j which in turn is

indistinguishable from d̃
(4)
i,j . All in all, for any PPT adversary A′, Adv34(A′) = 0.
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Finally, adding it all up, and considering that Game 0 is the real experiment
and Game 4 is the ideal experiment, we get

AdvMI−SIM
MIQFE (A) = Adv01(A) + Adv12(A) + Adv23(A) + Adv34(A)

≤ `2 · AdvFH-SIM
IPFE (B) + `

p
.

4 Function-Hiding Inner-Product Functional Encryption
Instantiation

In the previous section we give an instantiation of a one selective multi-input
simulation secure MIQFE based on a one selective function-hiding simulation
secure IPFE scheme. As said in Section 1.2, such a scheme does not exist in
the standard model, so in this section we give a function-hiding inner-product
functional encryption scheme for bounded-norm inner-product functionalities
and prove it to be one selective function-hiding simulation secure. As explained
in Section 1.3, we will construct the scheme by layering tow instances of the
scheme [1, Section 3].

We will first describe the family of functions we want to cover. Let FnIP :
J0, BKn → J0, n · B2K be the family of functions such that a function y ∈ FnIP is
defined by a vector in J0, BK and applied to z gives y(z) := z>y.

4.1 Description of the Scheme

We define our scheme for the family of functions FnIP as defined above as follows.

Encryption Scheme 4 (Function-hiding IPFE Scheme)
– IPFE.SetUp(1κ,Fn

IP) : Sample PG = (G1,G2,GT , p, P1, P2, e) ← PGGen

(1κ), u $←− Zn+1
p and v

$←− Znp . Output IPFE.param = PG and IPFE.msk =
(u,v).

– IPFE.Enc(IPFE.msk, x) : Sample c $←− Zp. Compute

ct1 := [c]1 ∈ G1; ct2 :=

[(
−v>x

x

)
+ c · u

]
1

∈ Gn+1
1

Output IPFE.cx := (ct1, ct2).
– IPFE.KeyGen(IPFE.msk, y) : Sample t $←− Zp. Compute

sk1 :=

[
−u>

(
t

y + t · v

)]
2

∈ G2; sk2 :=

[(
t

y + t · v

)]
2

∈ Gn+1
2

Output IPFE.sky := (sk1, sk2).
– IPFE.Dec(IPFE.cx, IPFE.sky) : Compute [v]T := e(ct1, sk1) + e(ct2, sk2).

Output log([v]T ) if v ∈ J0, n ·B2K and ⊥ otherwise.

Remark 2. Note that this scheme is easily transformable into a scheme for the
family of functions F̃nIP by eliminating the discrete logarithm at the end of de-
cryption and not bounding x and y.
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Game 0, Game 1 , Game 2
IPFE.SetUpi(1κ,Fn

IP) :

PG ← PGGen(1κ),u
$←− Zn+1

p ,v
$←− Znp , c

$←− Zp, if c = 0 abort
IPFE.param = PG, IPFE.msk = (u,v, c )

IPFE.Enci(IPFE.msk, x) :

c
$←− Zp

ct1 = [c]1, ct2 =

[(
−v>x

x

)
+ c · u

]
1

, [ct2] = [c · u]1

IPFE.cx = (ct1, ct2)

IPFE.KeyGeni(IPFE.msk, x>y, y) : t
$←− Zp

sk1 =

[
−u>

(
t

y + t · v

)]
2

, sk1 =

[
−u>

(
t

y + t · v

)
+ c−1 · x>y

]
2

, sk1 =

[
−u>

(
t

t · v

)
+ c−1 · x>y

]
2

sk2 =

[(
t

y + t · v

)]
2

, sk2 =

[(
t

t · v

)]
2

IPFE.sky = (sk1, sk2)

Fig. 2. Games for the security proof of the IPFE from Encryption Scheme 4.

4.2 Correctness and Security

Proposition 2. The IPFE scheme defined in Encryption Scheme 4 is a correct
functional encryption scheme for FnIP.

For the proof we refer to Appendix B

Theorem 2. The IPFE scheme described in 4 is one selective function-hiding
simulation secure, if the DDH assumption holds in group G2. In other words, for
any PPT adversary A there exists a PPT adversary B such that

AdvFH-SIM
IPFE (A) ≤ 2Qsk · AdvDDH

G2
(B) + 1

p
+

2Qsk
p− 1

.

where Qsk denotes the number of queries performed to KeyGen.

Proof. Let A be a PPT adversary playing the function-hiding 1-SEL-SIM security
game for IPFE, and let κ ∈ N be a security parameter. We will prove the result
through a series of games Game i for i ∈ {0, 1, 2}, defined in Figure 2 with
changes in Game i+ 1 being over Game i. We show that ExprealA (1κ) = Game 0
≈s Game 1 ≈c Game 2 = ExpidealA,S (1κ).

Let C′ be a challenger that chooses b ∈ {0, 1} uniformly at random. If b = 0
it interacts with a PPT adversary A′ as in Game i, otherwise it interacts as in
Game i+ 1. At the end of the interaction, A′ will make its guess b̃ ∈ {0, 1}. For
i = 0, 1, we define Advi(i+1)(A′) :=

∣∣∣Pr [b̃ = 1|b = 0
]
− Pr

[
b̃ = 1|b = 1

]∣∣∣ .
Game 0. This is the real experiment for FH 1-SEL-SIM security for IPFE.

Game 1. In this Game we change the construction of ct2 from
[(
−v>x

x

)
+ c · u

]
1

to [c · u] and to keep coherence we must change sk1 from we must change
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sk1 =

[
−u>

(
t

y + V t

)]
2

to
[
−u>

(
t

y + V t

)
+ c−1 · x>y

]
2

. To be able to

make this change we move the sampling of c to the SetUp and abort if c = 0.

This change can also be seen as swapping u for ũ := u − c−1 ·
(
−v>x

x

)
,

since[(
−v>x

x

)
+ c · ũ

]
1

=

[(
−v>x

x

)
+ c ·

(
u− c−1 ·

(
−v>x

x

))]
1

= [c · u]1,[
−ũ>

(
t

y + t · v

)]
2

=

[
−
(
u− c−1 ·

(
−v>x

x

))>(
t

y + t · v

)]
2

=

[
− u>

(
t

y + t · v

)
− t · c−1 · (v>x) + c−1 · x>y

+ t · c−1 · x>v

]
2

=

[
−u>

(
t

y + t · v

)
+ c−1 · x>y

]
2

,

and coherence is indeed held given that

e(c̃t1, sk1) =

[
−c · u>

(
t

y + t · v

)
+ x>y

]
T

,

e(c̃t2, sk2) =

[
c · u>

(
t

y + t · v

)]
T

which gives [v]T = [x>y]T during decryption.
First, for the change in c, since we are proving one selective simulation its

sampling can be moved to SetUp, and the protocol will abort with probability
1/p. Then, as long as u and ũ are indistinguishable, so will be Game 0 and Game
1. Now, ũ will exist as long as c has an inverse, which it will since c 6= 0, and
given that u is sampled uniformly at random in Zn+1

p and used only once (we are
proving one selective security), then u and ũ are indistinguishable. Therefore,
for any PPT adversary A′, Adv01(A′) ≤ 1/p.

Game 2. In this Game we finish the simulation by changing in both sk1 and sk2

the vector
(

t
y + t · v

)
to
(

t
t · v

)
. This means that the encryption simulation

can be performed without knowledge of x and the key generation simulation
can be performed only knowing the output x>y.

More formally, we prove in Lemma 3 that for any PPT adversary A′ there
exists a PPT adversary B such that Adv12(A′) ≤ 2Qsk · AdvDDH

G2
+ 2Qsk/p− 1.

The intuition is that using a Hybrid argument through the queries asked we use
the n-fold DDH assumption (see Appendix A) to swap t · v for a value sampled
uniformly at random so we can remove y.
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Table 4. Efficiency estimates for our MIQFE and IPFE constructions.

Secret key Ciphertext Functional key
Generic MIQFE `2 · IPFE2n

msk + `(1 + n)|p|+ `22n|p| ` · IPFE2n
cx + n|p| `2 · IPFE2n

sky + |p|
IPFE (2n+ 1)|p| (n+ 2)|G1| (n+ 2)|G2|

Concrete MIQFE `2(4n+ 1)|p|+ `(1 + n)|p|+ `22n|p| `(2n+ 2)|G1|+ n|p| `2 · (2n+ 2)|G2|+ |p|

Finally, adding it all up, and considering that Game 0 is the real experiment
and Game 2 is the ideal experiment, we get

AdvFH-SIM
IPFE (A) = Adv01(A) + Adv12(A) ≤ 2Qsk · AdvDDH

G2
(B) + 1

p
+

2Qsk
p− 1

.

5 Efficiency Considerations

For any generic function-hiding simulation secure IPFE, our MIQFE scheme sup-
porting ` inputs of n coefficient each, needs for `2 instances of IPFE, ` for each
input to handle the noise generated with combining with each of the other inputs.
A part from that, the master secret key needs for {ui}i∈[`] ∈ Znp , {ci}i∈[`] ∈ Zp
and {wi,j∈[`]} ∈ Z2n

p ; the ciphertexts need for ctxi
∈ Znp ; and the functional keys

need for zkF ∈ Zp.
Our function-hiding IPFE scheme supporting n coefficients, needs in the mas-

ter secret key for u ∈ Zn+1
p and v ∈ Znp ; the ciphertext for ct1 ∈ G1 and

ct2 ∈ Gn+1
1 ; and the functional keys need for sk1 ∈ G2 and sk2 ∈ Gn+1

2 ,
which also gives us concrete efficiency estimates of a concrete instantiation of
our MIQFE scheme. All this is shown in Table 4, where IPFEks denotes the size
of the element referred by s of the base IPFE scheme for k coefficients.

6 Conclusion

These results may inspire further work in the subject. An interesting direction to
follow would be to improve the ciphertext efficiency of the scheme, to see if O(n`)
is possible while satisfying simulation security. Another noteworthy direction to
explore is to look for a transformation directly from single input QFE to MIQFE,
so as to try to avoid pairing based schemes, which seem inevitable when using
function-hiding IPFE.

Finally, our results can be of use for applications where a simulation secure
MIQFE is needed. As an example, recently a simulation secure MIPFE was used
to instantiate an efficient randomized functional encryption scheme able to re-
spond differentially private linear queries [9]. As such, a randomized functional
encryption scheme able to respond differentially private quadratic queries is a
potential future application.
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A The DDH Assumption

Let p be a prime number, we define the following distribution, using the frame-
work from [19]. The DDH distribution over Z2

p samples t $←− Zp and outputs
t := (1, t)>.

Definition 7. Let κ ∈ N>0 be a security parameter and s ∈ {1, 2, T}. For any
PPT adversary A we define the following advantage

AdvDDH
Gs

(A) := |Pr[1← A(1κ,PG, [t]s, [tr]s)]− Pr[1← A(1κ,PG, [t]s, [w]s)]|,

where the probability is taken over PG ← PGGen(1κ), t ← DDH, r $←− Zp and

w
$←− Z2

p. We say that the Decisional Diffie-Hellman (DDH) assumption holds if
for all PPT adversaries A AdvDDH

Gs
(A) ≤ neq(κ).

We are also interested in the case where Q independent queries are asked,
with same t but different ri, and its relationship to the base DDH.

Definition 8. Let κ ∈ N>0 be a security parameter and s ∈ {1, 2, T}. For any
PPT adversary A we define the following advantage

AdvQ-DDH
Gs

(A) := |Pr[1← A(1κ,PG, [t]s, [tr>]s)]− Pr[1← A(1κ,PG, [t]s, [W ]s)]|,

where the probability is taken over PG ← PGGen(1κ), t ← DDH, r
$←− ZQp

and W
$←− Z2×Q

p . We say that the Q-fold Decisional Diffie-Hellman (Q-DDH)
assumption holds if for all PPT adversaries A AdvQ-DDH

Gs
(A) ≤ neq(κ).

More concretely we will use the random self-reducibility of the Q-fold DDH
assumption.
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Lemma 1 (Lemma 1,[19]). Let Q > 1, and s ∈ {1, 2, T}. Then, for any PPT
adversary A there exists a PPT adversary B such that

AdvQ-DDH
Gs

(A) ≤ AdvDDH
Gs

(B) + 1

p− 1
,

where the probability is taken over PG ← PGGen(1κ), t ← DDH, r $←− ZQp and

W
$←− Z2×Q

p .

B Proofs of Correctness

B.1 MIQFE scheme

Proposition 3. The MIQFE scheme defined in Section 3.1 is a correct multi-
input functional encryption scheme for Fn,`Q,B as long as IPFE is a correct scheme
for F̃2n

IP .

Proof. For ease of notation and reading we will leave out the [.]T . First we have

ct>xi
Fi,jctxj

= x>i Fi,jxj + ciu
>
i Fi,jxj + x>i Fi,jcjuj + ciu

>
i Fi,jcjuj

from which we want to cancel out everything but x>i Fi,jxj .
Let us take a look at di,j . Given that IPFE is a correct scheme for FnIP we

have that

di,j =

(
wi,j +

(
cjctxi

cjxi

))>(
u>j Fj,i
Fi,juj

)
= w>i,j

(
u>j Fj,i
Fi,juj

)
+ cjx

>
i (u

>
j Fj,i) + cjciu

>
i (u

>
j Fj,i) + cjx

>
i Fi,juj

= w>i,j

(
u>j Fj,i
Fi,juj

)
+ cju

>
j Fj,ixi + cju

>
j Fj,iciui + x>i Fi,jcjuj .

Note that only the third term of ctxi
Fi,jctxj

will cancel out, but at the same
time the second and fourth terms of ctxj

Fj,ictxi
appear. This means that by

adding over all i, j ∈ [`] all cancels out and we get

∑
i,j∈[`]

ct>xi
Fi,jctxj

− di,j =
∑
i,j∈[`]

x>i Fi,jxj +
∑
i,j∈`

w>i,j

(
u>j Fj,i
Fi,juj

)

which by construction of zkF means that

v =
∑
i,j∈[`]

x>i Fi,jxj .
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B.2 IPFE scheme

Proposition 4. The IPFE scheme defined in Encryption Scheme 4 is a correct
functional encryption scheme for FnIP.

Proof. The first pairing operation gives us

e(ct1, sk1) =

[
c · (−u)>

(
t

y + t · v

)]
T

,

and the second pairing operation gives us

e(ct2, sk2) =

[((
−v>x

x

)
+ c · u

)>(
t

y + t · v

)]
T

=

[
−t · v>x+ x>y + t · x>v + c · u>

(
t

y + t · v

)]
T

=

[
x>y + c · u>

(
t

y + t · v

)]
T

.

This in turn gives us [v]T =
[
x>y

]
T
.

C Proofs of Auxiliary Lemma

C.1 Proof of Lemma in Section 3

Lemma 2. For any PPT adversary A′, there exists a PPT adversary B such
that

Adv12(A′) ≤ `2 · AdvFH-SIM
IPFE (B).

Proof. We will prove the result through a series of Hybrid Games Hιη for ι ∈ [`]
and η ∈ [`], defined in Figure 3. For ease of notation we define the lexicographical
order (N2, <L) where (a, b) <L (c, d) if and only if a < c or a = c and b < d,
analogously, (a, b) >L (c, d) if and only if a > c or a = c and b > d. We show
that Game 1 ≈c H1

1 ≈c . . . ≈c H`1 ≈c H1
2 ≈c . . . ≈c H`` = Game 2.

Let C′ be a challenger that chooses b ∈ {0, 1} uniformly at random. If b = 0
it interacts with a PPT adversary A′ as in Hybrid Hι−1η , otherwise it interacts as
in Hybrid Hιη. At the end of the interaction, A′ will make its guess b̃ ∈ {0, 1}. We
define AdvH(ι−1)ι(A′) := |Pr[b̃ = 1|b = 0] − Pr[b̃ = 1|b = 1]| for ι ∈ [`]. We define
analogously Advρ(i−1)i(A

′) for distinguishing between Hybrid H2
i−1 and Hybrid

H0
i .
Formally speaking, going from hybrid Hι−1η to hybrid Hιη we are swapping the

IPFE algorithms by their respective simulators. First, we note that coherence is
held since the output of the decryption algorithm di,j is the same in both hybrids
given that cη(uη − ũη) = xη by definition of ũη. Furthermore, the plaintext
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Hybrid Hιη
MIQFE.SetUpi(1κ,Fn

B,`) :

PG ← PGGen(1κ),ui
$←− Znp for i ∈ [`],wi,j

$←− Z2n
p for i, j ∈ [`] ci

$←− Zp for i ∈ [`]. If any ci = 0 abort.
-if (i, j) <L (η, ι) : IPFE.msk′i,j ← IPFE.SetUpSim(1κ, F̃2n

IP ,PG),

-if (i, j) = (η, ι) : IPFE.msk′i,j ← IPFE.SetUpSim(1κ, F̃2n
IP ,PG) ,

-if (i, j) >L (η, ι) : IPFE.msk′i,j ← IPFE.SetUp(1κ, F̃2n
IP ,PG),

MIQFE.msk =
(
{ui, ci}i∈[`], {wi,j , IPFE.msk′i,j}i,j∈[`]

)
MIQFE.Enci(MIQFE.msk, i, xi) :
ũi = ui − c−1

i xi, c̃txi = ciui, sti = ũi

-if (i, j) <L (η, ι) : IPFE.c′i,j ← IPFE.EncSim(IPFE.m̃ski,j)

-if (i, j) = (η, ι) : IPFE.c′i,j ← IPFE.EncSim(IPFE.m̃ski,j)

-if (i, j) >L (η, ι) : IPFE.c′i,j ← IPFE.Enc

(
IPFE.mski,j ,wi,j +

(
cj c̃txi

cjxi

))
MIQFE.ci = (c̃txi , {IPFE.c′i,j}j∈[`])
MIQFE.KeyGeni(MIQFE.msk,{sti}i∈[`], v, F ) : For i, j ∈ [`]

di,j =

(
wi,j +

(
cj c̃txi

cjci(ui − ũi)

))>(
ũ>j Fj,i
Fi,jũj

)
, zkF =

∑
i,j∈[`]

w>i,j

(
ũ>j Fj,i
Fi,jũj

)
-if (i, j) <L (η, ι) : IPFE.sk′i,j ← IPFE.KeyGenSim(IPFE.m̃ski,j , di,j)

-if (i, j) = (η, ι) : IPFE.sk′i,j ← IPFE.KeyGenSim(IPFE.m̃ski,j , di,j)

-if (i, j) >L (η, ι) : IPFE.sk′i,j ← IPFE.KeyGen

(
IPFE.mski,j ,

(
ũ>j Fj,i
Fi,jũj

))
MIQFE.skF = (F , {IPFE.sk′i,j}i,j∈[`], zkF )

Fig. 3. Games for the hybrid argument in Lemma 2. Changes are squared.

wi,j+

(
cj c̃txi

cjxi

)
is indistinguishable from random sincewi,j is sampled uniformly

at random and used only once (we are proving one selective security).
Then, distinguishing the simulators in the context of the MIQFE or by their

own has the same advantage, so for any PPT adversary A′ trying to distinguish
Hι−1η and Hιη we can construct a PPT adversary B which distinguishes the real
experiment from the ideal experiment in the function-hiding simulation security
game for IPFE. Therefore, we get that for any PPT adversary A′ there exists a
PPT adversary B such that AdvH(ι−1)ι(A′) ≤ AdvFH-SIM

IPFE (B).
To finalize the proof we note that going from hybrid H`η−1 to hybrid H1

η and
going from Game 1 to hybrid H1

1 are analogous to going from hybrid Hι−1η to Hιη
as well as the fact that Game 2 is exactly the same as hybrid H``. Since there are
`2 relevant changes we get

Adv12(A) = `2 · AdvH(ι−1)ι(A)

≤ `2 · AdvFH-SIM
IPFE (B).

C.2 Proof of Lemma in Section 4

Lemma 3. For any PPT adversary A′ there exists a PPT adversary B such that

Adv12(A′) ≤ 2Qsk · AdvDDH
G2

+
2Qsk
p− 1

.
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H0
ρ, H1

ρ , H2
ρ

IPFE.KeyGenH
ρ,α(IPFE.msk, x>y, y) : In query i t $←− Zp

-if i < ρ: ỹ = 0 and ṽ = t · v,

-if i = ρ: ỹ = y, ỹ = 0 and ṽ = t · v, ṽ $←− Znp ,
-if i > ρ: ỹ = y and ṽ = t · v

sk1 =

[
−u>

(
t

ỹ + ṽ

)
+ c−1 · x>y

]
2

, sk2 =

[(
t

ỹ + ṽ

)]
2

IPFE.sky = (sk1, sk2)

Fig. 4. Games for the hybrid argument in Lemma 3. Changes only occur on the KeyGen
algorithm so the others are omitted and assumed the same as in Game 1 in Figure 2.

where Qsk denotes the number of queries performed to KeyGen.

Proof. We will prove this through a series of Hybrid Games Hαρ for ρ ∈ [Qsk]
and α ∈ {0, 1, 2}, defined in Figure 4. We show that Game 1 = H0

1 ≈c H1
1 ≈s

H2
1 ≈c H0

2 ≈c . . . ≈c H2
Qsk
≈c= H0

Qsk+1
Game 2.

Let C′ be a challenger that chooses b ∈ {0, 1} uniformly at random. If b = 0
it interacts with a PPT adversary A′ as in Hybrid Hi−1ρ , otherwise it interacts as
in Hybrid Hiρ. At the end of the interaction, A′ will make its guess b̃ ∈ {0, 1}. We
define Advα(i−1)i(A′) := |Pr[b̃ = 1|b = 0]− Pr[b̃ = 1|b = 1]| for i = 1, 2. We define
analogously Advρ(i−1)i(A

′) for distinguishing between Hybrid H2
i−1 and Hybrid

H0
i .

Hybrid H1
ρ . In this change we have swapped ṽ from t ·v to uniformly at random.

We show that for any PPT adversary A′ trying to distinguish these two Hybrids
we can construct a PPT adversary B against the n-fold DDH assumption in G2.

When, B receives the n-fold DDH challenge [t]2 = [(t, 1)>]2, [W ]2 := [(w1,
w2)

>]2 for some w1,w2 ∈ Znp , it runs IPFE.SetUpHρ,1 and IPFE.EncHρ,1 and in
IPFE.m̃sk it substitutes v for [w2]2. Note that only having the element in G2 is
not an issue since after Game 1 v is only used during KeyGen and as such only
the values in G2 are needed. It is in this step where using our order in layering
the schemes from [1, Section 3] instead of the order in [22, Section 6.3] comes
into play.

Then for query i ∈ [Qsk], if i 6= ρ it runs KeyGenHρ,1 normally, but if i = ρ
it sets [t]2 as the first part of the n-fold DDH challenge and ṽ = [w1]2. Once
again, only having the elements in G2 is not an issue since the operations can
be performed in the group. Finally, it outputs the same bit as adversary A′. It
is clear to see that if the DDH challenge [W ]2 is of the form [tr>]2 = [(tr, r)>]2

for some r
$←− Znp then it is the same distribution as in Hybrid H0

ρ while if [W ]2
is uniformly at random it is the same distribution as in Hybrid H1

ρ. As such we
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get

Advα01(A′) ≤ AdvQ-DDH
G2

(B)

≤ AdvDDH
G2

(B) + 1

p− 1
,

where we have applied the random self-reducibility of DDH, Lemma 1.

Hybrid H2
ρ . In this change we have swapped y from y to 0. Distinguishing

between these Hybrids is distinguishing between y + ṽ and ṽ, and since ṽ is
sampled uniformly at random and only used once they are indistinguishable.
Therefore, for any PPT adversary A′, Advα12(A′) = 0.

Hybrid H0
ρ+1 . In this change we have swapped back ṽ from sampled uniformly

at random to t ·v. As such this transition is analogous to the change from H0
ρ to

H1
ρ, so for any PPT adversary A′ there exists a PPT adversary B such that

Advρi(i+1)(A
′) ≤ AdvDDH

G2
(B) + 1

p− 1
.

Finally, adding all the transitions together and noting that H0
1 is identically

distributed to Game 1, while H0
Qsk+1 is identically distributed to Game 2, we

get

Adv12(A′) ≤ 2Qsk · AdvDDH
G2

+
2Qsk
p− 1

.

where Qsk denotes the number of queries performed to KeyGen.
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