
Multi-User Dynamic Searchable Encryption
for Prefix-Fixing Predicates

from Symmetric-Key Primitives

Takato Hirano1, Yutaka Kawai1, Yoshihiro Koseki1, Satoshi Yasuda1,
Yohei Watanabe2, Takumi Amada2, Mitsugu Iwamoto2, and Kazuo

Ohta2

1 Mitsubishi Electric Corporation, Kamakura, Japan
Hirano.Takato@ay.MitsubishiElectric.co.jp,

Kawai.Yutaka@da.MitsubishiElectric.co.jp,

Koseki.Yoshihiro@ak.MitsubishiElectric.co.jp,

Yasuda.Satoshi@ea.MitsubishiElectric.co.jp
2 The University of Electro-Communications, Chofu, Japan

{watanabe, mitsugu, kazuo.ohta}@uec.ac.jp

Abstract. Dynamic searchable symmetric encryption (SSE) enables clients
to update and search encrypted data stored on a server and provides
efficient search operations instead of leakages of inconsequential infor-
mation. Towards dynamic SSE for more practical situations, researchers
have tackled research on multi-user dynamic SSE (dynamic MUSE for
short), sometimes with flexible access control. However, existing schemes
assumed a trusted authority that played a crucial role during the search
protocol, used pairings/lattices for their constructions, or provided no
security proofs.

In this paper, we show the first dynamic MUSE scheme with reason-
able access control without the above limitations. Namely, our dynamic
MUSE model requires no trusted authority, and our concrete dynamic
MUSE scheme with prefix-fixing predicates, which yields a reasonable,
hierarchical access control, can be constructed from only symmetric-key
primitives and with rigorous security proof. Our experimental results
show that our dynamic MUSE scheme is reasonably efficient.

Keywords: Multi-user dynamic searchable symmetric encryption · Prefix-
fixing predicates · Access control.

1 Introduction

Searchable symmetric encryption (SSE), which enables us to provide a
way to search a large database efficiently (e.g., cloud storage) for en-
crypted data, has attracted attention over the past two decades. SSE was
originally proposed by Song et al. [36], and later formalized by Curtmola

2 T. Hirano et al.

et al. [14]. In particular, dynamic SSE, which supports file update oper-
ations, has recently become an active area of SSE research [8, 11, 12, 17,
19, 22, 23, 31, 32, 40, 46] due to its practicality.

SSE can be used to utilize private data in a privacy-preserving way.
There are, of course, various such advanced cryptographic protocols; for
instance, homomorphic encryption (HE) is another option. However, in
those cryptographic protocols, users with secret keys can access all data.
For example, SSE users can search all encrypted data, and HE users are
allowed to decrypt all ciphertexts. In a large-scale system where many
users are involved, it is often desirable to support flexible access control;
an administrator should access all data, whereas system users should have
limited access to the data depending on user’s attributes.

Multi-User (Dynamic) SSE with Flexible Access Control. Ba-
sically, update and search operations of dynamic SSE schemes are per-
formed with a single secret key, which implies that there is only one user
in dynamic SSE. Although dynamic SSE schemes can be naively extended
to a multi-user setting by sharing the single secret key among all users, the
security is easily compromised once a single user is corrupted. Taking into
account practical encrypted search systems, dynamic SSE should support
collusion resistance, i.e., dynamic SSE should guarantee security even if
(polynomially many) users are corrupted. To this end, Curtmola et al. [14,
15] introduced multi-user SSE (MUSE), which allows multiple users to
participate in the protocol with different keys, and it achieves collusion
resistance. Following the seminal work, there are various lines of research
on (dynamic) MUSE such as the multi-writer/multi-reader (MW/MR)
setting [4, 29, 30, 33, 43, 48], the multi-writer/single-reader (MW/SR) set-
ting [20, 27, 28, 42] including public-key encryption with keyword search
(PEKS) [5], and the single-writer/multi-reader (SW/MR) setting [1, 2, 13,
16, 21, 24, 39, 44, 47]. In this paper, we focus on the SW/MR setting, which
has been most researched. Meanwhile, most MUSE schemes support the
attribute-based search, which aims to provide flexible access control to
the contents of the database. However, the existing schemes still have
either of the following limitations.

(i) Access control [13, 16, 24, 39, 44]. Their MUSE schemes only support
restricted access control. Specifically, user secret keys are associated
with keywords, not attributes. Therefore, keywords users can search
for must be determined when generating their secret keys.

Multi-User Dynamic Searchable Encryption for Prefix-Fixing Predicates 3

(ii) Model [1, 2, 4, 16, 29, 30]. A trusted third-party or trusted execution
environment (TEE) is required. That is, users need to ask the trusted
authority or use the TEE to compute something for operations.

(iii) Construction [1–4, 20, 26–30, 33, 38, 42, 43, 47, 48]. The proposed schemes
are constructed from identity-based encryption (IBE) [6] and attribute-
based encryption (ABE) [18, 35], which implies rich algebraic struc-
tures such as pairings or lattices, or directly from pairings. There are
a few RSA-based and DDH-based schemes [3, 24, 39, 44], though they
still employ public-key primitives and techniques.

(iv) Security [1, 2, 16, 45]. No security proofs are provided.

In this paper, we aim to overcome all the above issues. In other words,
our aim in this paper is to realize a dynamic MUSE scheme that: (1)
supports reasonable and flexible access control; (2) does not rely on any
trusted authority and TEEs during the search operations; (3) can be con-
structed from only symmetric-key primitives; and (4) provides provable
security.

Motivating Scenario. As can be seen in the ABE research [18, 35],
there is a trade-off between the richness of access controls and efficiency.
The more we try to make access control flexible, the more difficult it is to
find an efficient solution that does not rely on public-key techniques and
structures such as lattices and pairings. Therefore, to achieve our aims
(1)–(4), we consider a reasonable access control that works well enough
for the following scenario. Suppose a search system in a certain organi-
zation with a hierarchical structure, such as companies. For instance, an
employee has a title T and is with a specific section S in a specific division
D, and it can be expressed as a vector, say, (D, S,T). We consider a search
system where a manager uploads documents to a server accessible to all
employees. We can, of course, apply standard DSSE schemes to make the
search system secure. However, it is insufficient to support the situation
where, e.g., some of them are confidential to only a particular section S⋆.
The manager wants to make the documents accessible to only all em-
ployees in S⋆. That is, the manager want to specify a hierarchical access
structure, i.e., (D, S⋆, ⋆), where ‘⋆’ indicates a ‘wildcard,’ and upload the
documents in an encrypted form so that only the employees in Section S⋆

access them. However, the standard DSSE schemes allow all employees
in the company to access the data.

Based on the above scenario, in this paper, we consider a dynamic
MUSE scheme with a hierarchical access structure.

4 T. Hirano et al.

1.1 Our Contribution

In this paper, we propose a new dynamic MUSE scheme with the above
features (1)–(4). Specifically, we introduce a new model of (attribute-
based) dynamic MUSE. There are a data owner, users, and a server;
hence, our model requires no trusted authority or TEEs during the search
protocol. We define the syntax of dynamic MUSE and formalize its secu-
rity notions.3 We then construct a dynamic MUSE scheme with prefix-
fixing predicates [7, 9, 25], which supports the hierarchical access struc-
ture, from only symmetric-key primitives. Therefore, our scheme provides
both reasonable access control and efficient operations. We show the pro-
posed construction is secure in the random oracle model and also imple-
ment our scheme to show experimental results.

1.2 Notations

For any integer a, b ∈ Z and a ≤ b, let [a, b] be an integer set {a, a +
1, . . . , b}. In particular, we simply denote [b] if a = 1. For a finite set X ,
we use x

$← X to represent processes of choosing an element x from X
uniformly at random. For a finite set X , we denote by X ← x and |X |
the addition x to X and cardinality of X , respectively. Concatenation of
a and b is denoted by a∥b. In the description of the algorithm, all arrays,
strings, and sets are initialized to empty ones. For any non-interactive
algorithm A, out ← A(in) means that A takes in as input and outputs
out. We denote by AO A allowed access to an oracle O. In this paper, we
consider two-party interactive algorithms between a client and a server,
and it is denoted by (outU; outS) ← A(inU; inS), where inU and inS are
input of client and server, respectively and outU and outS are output of
client and server, respectively. Throughout the paper, we denote by κ a
security parameter and consider probabilistic polynomial-time algorithms
(PPTAs). We say a function negl(·) is negligible if for any polynomial
poly(·), there exists some constant κ0 ∈ N such that negl(κ) < 1/poly(κ)
for all κ ≥ κ0.

2 Multi-User (Attribute-Based) Dynamic Searchable
Symmetric Encryption

We introduce a new model of multi-user dynamic searchable symmet-
ric encryption (dynamic MUSE for short), which enables a data owner

3 Note that in this paper, we only consider addition procedures as dynamic update
operations. One might consider dynamic MUSE schemes that support more flexible
update operations, such as deletion.

Multi-User Dynamic Searchable Encryption for Prefix-Fixing Predicates 5

to handle attribute-based access control. Let U be the universe of at-
tributes. Roughly speaking, the data owner who has a master secret key
msk can encrypt a document file f and its corresponding keywords under
an attribute set A ⊂ U , and stores them to a server. The data owner can
create a secret key skP for a predicate P. A user who has a secret key skP
searches for a keyword q and obtains a search result from the server in
a privacy-preserving way. The user only obtains search results if an at-
tribute set A associated with each entry (id, q) satisfies P(A) = 1, where
id is an identifier of a document file fid. In other words, the file identifier
id is not included in the search result for q if the corresponding attribute
set A satisfies P(A) = 0.

Notations for Database. Let λ and ℓ be polynomials in κ. Let Λ :=
{0, 1}λ be a set of possible keywords (sometimes called a dictionary), and
F be a set of possible document files. We assume that each file fid ∈ F
has the corresponding identifier id ∈ {0, 1}ℓ, which is irrelevant to the
content of fid (e.g., document numbers). The data owner adds a pair of
a file identifier and keyword with an attribute set A to the database (in
an encrypted form). Therefore, a database DB is represented as a set of
((id, w),A), and we denote its encrypted version by EDB. For any w ∈ Λ,
and P ∈ P , let IDw,P be a set of identifiers that contains w and satisfies
the predicate P (i.e., IDw,P := {id | ((id, w),A) ∈ DB} ∧ P(A) = 1), which
corresponds to a search result for w under P.

2.1 Syntax

We give a formal definition of dynamic MUSE, which is introduced in
this paper. Our definition is based on ABE (e.g., [18, 35]) and dynamic
SSE (e.g., [11, 22, 23]), and requires no trusted third party or TEEs as in
previous works [1, 2, 4, 16, 29, 30].

Definition 1 (Dynamic MUSE). A multi-user dynamic searchable
symmetric encryption (dynamic MUSE) scheme Σ over Λ consists of
five-tuple algorithms Σ := (Setup,KeyGen,Enc,Add, Search,Dec), which
are defined as follows:

– (msk,EDB)← Setup(1κ,P,U): It is a non-interactive probabilistic al-
gorithm that takes a security parameter κ, a predicate set P, and an
attribute universe U as input and outputs a master secret key msk and
initial encrypted database EDB.

– skP ← KeyGen(msk,P): It is a non-interactive algorithm that takes
msk and a predicate P ∈ P as input, and outputs a secret key skP for
P.

6 T. Hirano et al.

– ct← Enc(msk, fid,A): It is a non-interactive algorithm that takes msk,
a file fid ∈ F , and an attribute set A as input, and outputs a ciphertext
ct.

– (ack;EDB′) ← Add(msk, (id, w),A;EDB): It is an interactive algo-
rithm that consists of Addo and Adds. Addo takes msk, (id, w), and an
attribute set A as input, and outputs acknowledgement ack. Similarly,
Adds takes EDB as input and outputs EDB′.

– (Xq,P;EDB
′)← Search(skP, q;EDB): It is an interactive algorithm that

consists of Searchu and Searchs. Searchu takes skP and a keyword q to
be searched as input, and outputs a search result Xq,P. Searchs updates
EDB to EDB′.

– fid/⊥ ← Dec(skP, ct): It is a non-interactive algorithm that takes skP
and ct as input, and outputs a file fid or ⊥, which indicates decryption
failure.

A dynamic MUSE scheme Σ satisfies the correctness if the following
two conditions hold with overwhelming probability: (1) for any file f ∈ F ,
any attribute set A ⊂ U , and any predicate P ∈ P , a ciphertext of f
encrypted with A is correctly decrypted by skP; and (2) for any keyword
q ∈ Λ and any predicate P ∈ P , Search with skP outputs Xq,P satisfying
Xq,P = IDq,P. The formal definition is given in Appendix A.

2.2 Security Definition

Following most SSE works, we provide the simulation-based security def-
inition for dynamic MUSE. As in SSE, we consider an honest-but-curious
server as an adversary, and allow the server to corrupt users to get their
secret keys. We allow some leakage during operations to make the protocol
efficient. Such information leakage is characterized as a leakage function
L := (LSetup,LKG,LEnc,LAdd,LSrch). To put it briefly, LSetup, LKG, LEnc,
LAdd, and LSrch are information leaked during the setup, key generation,
encryption, addition, and search operations, respectively.

(L,P)-Adaptive Security. We consider a security notion for dynamic
MUSE based on adaptive security of dynamic SSE [37]. The notion, called
(L,P)-adaptive security, is parameterized by a leakage function L and
a predicate class P. Intuitively, L-adaptive security guarantees that no
information is leaked other than L even if an adversary, i.e., the honest-
but-curious server, adaptively corrupts users and performs update and
search operations. Formally, we consider the following two experiments: a
real experiment ExpRealD,P between a PPT algorithm D and the client, who

Multi-User Dynamic Searchable Encryption for Prefix-Fixing Predicates 7

plays the role of both the data owner and users; and an ideal experiment
ExpIdealD,S,L,P between D and a simulator S.

Definition 2 ((L,P)-adaptive security). Let Σ be a dynamic MUSE
scheme. Σ is said to be (L,P)-adaptively secure if for any PPT algorithm
D, there exists a PPT algorithm S and it holds |Pr[ExpRealD,P (κ) = 1] −
Pr[ExpIdealD,S,L,P(κ) = 1]| < negl(κ), where ExpRealD,P and ExpIdealD,S,L,P are defined
as follows.

ExpRealD,P (κ): D sends the client a setup message together with the attribute
universe U . The client runs Setup(1κ,P,U) to obtain msk and EDB,
and returns EDB to D. D then adaptively issues kg, enc, add, and
srch queries as follows.
– For kg, D gives the client a predicate P ∈ P, and the client returns

skP ← KeyGen(msk,P) to D and adds skP to SKList[P].

– For enc, D gives the client a file fid ∈ F and an attribute set
A ⊂ U , and the client returns Enc(msk, fid,A) to D.

– For add, D gives the client an entry (id, w) ∈ {0, 1}ℓ × Λ and an
attribute set A ⊂ U , and the client runs Add(msk, (id, w),A;EDB)
with D. D obtains the output, i.e., EDB′, and the transcript trans
during the protocol.

– For srch, D gives the client a predicate P ∈ P and a keyword
q ∈ Λ, and the client runs Search(SKList[P], q;EDB) with D. The
client returns the search result Xq,P to D, and D obtains the output,
i.e., EDB′, and the transcript trans during the protocol.

Finally, D outputs a bit b as the output of the experiment.

ExpIdealD,S,L,P(κ): D sends the client a setup message together with the at-
tribute universe U . The client forwards the message to S. S creates
EDB from LSetup(1κ,U ,P) and returns it to D (via the client). D then
adaptively issues kg, enc, add, and srch queries as follows.
– For kg, D gives the client a predicate P ∈ P, and the client for-

wards it to S. S creates and returns skP from LKG(P) to D, and
adds skP to SKList[P].

– For enc, D gives the client a file fid ∈ F and an attribute set A ⊂
U , and the client forwards them to S. S creates ct from LEnc(fid,A)
and returns it to D.

– For add, D gives the client an entry (id, w) ∈ {0, 1}ℓ × Λ and an
attribute set A ⊂ U , and the client forwards them to S. S communi-
cates with D and simulates the Add algorithm using LAdd((id, w),A).

8 T. Hirano et al.

D obtains the output, i.e., EDB′, and the transcript trans during
the protocol.

– For srch, D gives the client a predicate P ∈ P and a keyword
q ∈ Λ, and the client forwards them to S. S communicates with
D and simulates the Search algorithm using LSrch(P, q). S returns
the search result Xq,P to D, and D obtains the output, i.e., EDB′,
and the transcript trans during the protocol.

Finally, D outputs a bit b as the output of the experiment.

3 Our Construction

3.1 Prefix-Fixing Predicates

We employ attribute vectors (a1, a2, . . . , aℓ) that realize a hierarchical ac-
cess structure described in the introduction and consider a set of them
as an attribute set A for our construction. Let U := {(a1, a2, . . . , aℓ) ∈
{0, 1}ℓ} for some ℓ = poly(κ). We consider prefix-fixing predicates [7, 9,
25]. We say a vector p ∈ {0, 1, ⋆}ℓ is a prefix-fixing vector if there ex-
ists j ∈ [ℓ] such that p ∈ {0, 1}j × {⋆}ℓ−j , where ‘⋆’ indicates ‘wild-
card’. For a prefix-fixing vector p = (p1, p2, . . . , pℓ) ∈ {0, 1, ⋆}ℓ and
A = {(ai,1, ai,2, . . . , ai,ℓ)}ni=1 ⊂ U (n = poly(κ)), the prefix-fixing pred-

icate P
(pf)
p : 2U → {0, 1} is defined as

P
(pf)
p (A) = 1 ⇐⇒ ∃i ∈ [n] s.t. (pj = ai,j or pj = ⋆) for ∀j ∈ [ℓ].

Let P(pf) :=
⋃ℓ

j=1{P
(pf)
p | p ∈ {0, 1}j × {⋆}ℓ−j}.

3.2 Our Dynamic MUSE Scheme with Prefix-Fixing
Predicates

Construction Idea. Our aim is to realize a dynamic MUSE scheme
that supports the above access control from only symmetric-key prim-
itives. To this end, we employ a hash chain to achieve access control
with prefix-fixing predicates. First, a secret key sk

P
(pf)
p

for a predicate

p = (p1, . . . , pj , ⋆, . . . , ⋆) generated frommsk can be computed as sk
P
(pf)
p

:=

Hκ(msk∥p1∥ · · · ∥pj∥ ⋆ ∥ · · · ∥⋆). For simplicity, we now consider a simple
attribute A = (a1, a2, . . . , aℓ) such that its first j elements are the same
as the first j elements of the predicate p, i.e., (a1, . . . , aj) = (p1, . . . , pj).

Since it holds P
(pf)
p (A) = 1, a ciphertext ct of a file fid under the attribute

A should be decrypted by sk
P
(pf)
p

. Therefore, we prepare the following ℓ

Multi-User Dynamic Searchable Encryption for Prefix-Fixing Predicates 9

session keys for (a1, . . . , ai, ⋆, . . . , ⋆) for all i ∈ [ℓ] to handle any level of
wildcards: ki := Hκ(Hκ(msk∥a1∥ · · · ∥ai∥ ⋆ ∥ · · · ∥⋆)∥s), where s is nonce to
randomize the session keys per ciphertext. All the session keys are used
to mask a single randomness r as ci := ki ⊕ r for all i ∈ [ℓ]. The ran-
domness r is also used to produce a file ciphertext cf := fid ⊕ H|fid|(r∥0)
and a verification ciphertext cv := Hκ(r∥1), and the entire ciphertext is
ct := (cfd, s, {ci}ℓi=1, cv). The user with sk

P
(pf)
p

can retrieve rj from cj

(with the validity check cv = Hκ(rj∥1)), and hence decrypt the file ci-
phertext fid = cf ⊕H|fid|(rj∥0). Trapdoors to search a keyword q and tags
for a newly-added entry (id, q) can be constructed in the same manner.

Construction. For any k ∈ N, let Hk : {0, 1}∗ → {0, 1}k be a hash
function that maps a variable-length string to a k-bit one.

– Setup(1κ,P,U (= {0, 1}ℓ)): It outputs msk
$← {0, 1}κ and an empty

array EDB.

– KeyGen(msk,P
(pf)
p ∈ P(pf)): Parse p as (p1, p2, . . . , pℓ). It outputs

skp := Hκ(msk∥p1∥ · · · ∥pℓ), where we write skp as sk
P
(pf)
p

for simple

and compact notations.

– Enc(msk, fid,A): ParseA as {(ai,1, ai,2, . . . , ai,ℓ)}ni=1. It randomly chooses

s, r
$← {0, 1}κ. For every j ∈ [ℓ], it computes

ci,j := Hκ(Hκ(msk∥ai,1∥ai,2∥ · · · ∥ai,j∥ ⋆∥ · · · ∥⋆︸ ︷︷ ︸
ℓ−j symbols

)∥s)⊕ r,

for every i ∈ [n], and sets CA,j := {c1,j , . . . , cn,j} with deduplication.4

It then computes cf := fid ⊕ H|fid|(r∥0) and cv := Hκ(r∥1). It outputs
ct := (cf , s, {CA,j}ℓj=1, cv).

– Add(msk, (id, w),A;EDB): ParseA as {(ai,1, ai,2, . . . , ai,ℓ)}ni=1. The owner-

side algorithm Addo randomly chooses t, γ
$← {0, 1}κ. For every j ∈ [ℓ],

it computes

tagi,j := Hκ(Hκ(Hκ(msk∥ai,1∥ai,2∥ · · · ∥ai,j∥ ⋆∥ · · · ∥⋆︸ ︷︷ ︸
ℓ−j symbols

)∥w)∥t)⊕ γ,

4 There might exist two attributes (ai1,1, ai1,2, . . . , ai1,ℓ) and (ai2,1, ai2,2, . . . , ai2,ℓ)
whose prefixes are common, i.e., ∃j ∈ [ℓ] such that (ai1,1, ai1,2, . . . , ai1,j) = (ai2,1,
ai2,2, . . . , ai2,j). Then, ci1,j = ci2,j clearly holds. ‘Deduplication’ means that such
duplicate ciphertexts are deduplicated, and hence |CA,j | ≤ n holds.

10 T. Hirano et al.

for every i ∈ [n], and sets TA,j := {tag1,j , . . . , tagn,j} with dedupli-
cation. It computes tagv := Hκ(γ), sends trans1 := (id, t, TA, tagv) to
the server, and outputs ack. The server-side algorithm Adds adds (id,
t, {TA,j}ℓj=1, tagv) to EDB, and outputs EDB′ := EDB.

– Search(skp, q;EDB): Suppose p = (p1, . . . , pj , ⋆, . . . , ⋆). The user-side
algorithm Searchu computes trpdr := Hκ(skp∥q), and sends trans1 :=
(j, trpdr) to the server. The server-side algorithm Searchs does the
following for every (id, t, {TA,j}ℓj=1, tagv) ∈ EDB.

1. For every tag ∈ TA,j , it computes γ = Hκ(trpdr∥t)⊕ tag.

2. If Hκ(γ) = tagv holds, it adds id to Xq,p.

It then sends the user trans2 := Xq,p and outputs EDB′ := EDB.
Searchu outputs Xq,p.

– Dec(skP, ct): Suppose p = (p1, . . . , pj , ⋆, . . . , ⋆). For every c ∈ CA,j ,
it computes r = Hκ(skp∥s) ⊕ c. If Hκ(r∥1) = cv holds, it outputs
f := cf ⊕ H|cf |(r∥0). If there is no such c ∈ CA,j , it outputs ⊥.

Theorem 1. Let {Hk}k∈[poly(κ)] be random oracles. Then, the proposed
dynamic MUSE scheme Σ is correct in the random oracle model.

Due to the page limitation, we give a proof in Appendix B.

3.3 Security

Adversary Model. We consider the following adversary model formally
defined by Def. 2: the server corrupts a lot of users, who are expressed
as kg queries in Def. 2. Using various information expressed as enc, add,
and srch queries, they attempt to obtain some information on searched
keywords or files such that their attributes do not satisfy the corrupted

users’ predicates, i.e., P
(pf)
p (A) = 0.

Specific Leakage Functions. We consider the following leakage func-
tions as the specific leakages in our scheme. Let ctr be a global counter,
which is initially set to zero and incremented as each query, to describe a
timeline of operations, and let Qkg, Qenc, Qadd, and Qsrch are sets of the
kg, enc, add, and srch queries (with the counters when issued).

– LSetup(ctr := 0, κ,P(pf),U) = (Λ,P(pf),U). Namely, the Setup algo-
rithm leaks nothing secret since a dictionary Λ, a predicate set P(pf),
and an attribute universe U are publicly available.

Multi-User Dynamic Searchable Encryption for Prefix-Fixing Predicates 11

– LKG(ctr,p) = (p,TimeFp,TimeWp). This leakage captures what in-
formation a user who has a secret key skp obtains. We suppose skp con-
tains the information about the corresponding predicate p; this follows
(ordinary) ABE research [18, 35]. Specifically, the user can decrypt all

ciphertexts for A such that P
(pf)
p (A) = 1 by using skp and execute the

Search algorithm with skp to get search results Xw,p for any keyword
w. Note that these leakages are unavoidable ones. Formally, the de-
cryption results TimeFp and the search results TimeWp are defined as

follows. TimeFp := {(ctr′, fid) | (ctr′, fid,A) ∈ Qenc ∧ P
(pf)
p (A) = 1}

is a set of document files fid that have been issued as the enc queries

(fid,A) at ctr′ and satisfies P
(pf)
p (A) = 1. Similarly, TimeWp :=

{(ctr′, w) | (ctr′, (id, w),A) ∈ Qadd ∧ P
(pf)
p (A) = 1} is a set of key-

words w that have been issued as the add queries ((id, w),A) at ctr′

and satisfies P
(pf)
p (A) = 1.

– LEnc(ctr, fid,A) =

{
(fid,A) if ∃(·,p) ∈ Qkg s.t. P

(pf)
p (A) = 1,

(|fid|,A) otherwise.
Namely, although the server and corrupted users who have secret keys

skp can decrypt ciphertexts for A if P
(pf)
p (A) = 1, they cannot obtain

any information about other files (other than their lengths). The leak-
age of fid is necessary since D can decrypt the ciphertext if D already

obtained skp such that P
(pf)
p (A) = 1 (via the kg query). Note that, in

this work, we do not hide attributes A from adversaries as in ordinary
ABE [18, 35].

– LAdd(ctr, (id, w),A) =

 ((id, w),A) if ∃(·,p) ∈ Qkg s.t. P
(pf)
p (A) = 1

∨ ∃(·, ·, w) ∈ Qsrch,
(id,A) otherwise.

The Add algorithm leaks no information on a newly added keyword w

unless the corresponding attribute A satisfies P
(pf)
p (A) = 1 for some

corrupted user’s key skp or the keyword has ever been searched for.

– LSrch(ctr,p, q) =

{
(p, q, SPq,p,APq,p) if ∃(ctr′,P(pf)

p) ∈ Qkg,
(p, SPq,p,APq,p) otherwise,

where SPq,p and APq,p are defined as follows.

• A search pattern SPq,p indicates a search history for a keyword
q under a predicate p. Specifically, SPq,p := {ctr′ | (ctr′,p, q) ∈
Qsrch} is a set of counters when D has searched for the same
keyword under the same predicate.

12 T. Hirano et al.

• An access pattern APq,p indicates a search result for a keyword
q under a predicate p. Specifically, APq,p := {(ctr′, id) | (ctr′,
(id, q),A) ∈ Qadd ∧ P

(pf)
p (A) = 1} is a set of identifiers such that

the corresponding keyword is q and the corresponding attribute

A satisfies P
(pf)
p (A) = 1. Namely, the identifiers in APq,p form a

correct search result for q under skp, i.e., IDq,P
(pf)
p

.

A pair of search and access patterns is called the L1 leakage [10], which
is considered as the standard search leakage profile in (ordinary) SSE
schemes. Note that the leakage of q is necessary since D has skp and
hence can run the Search algorithm with it and any keyword by itself.

We are now ready to prove the security of our scheme.

Theorem 2. Let {Hk}k∈[poly(κ)] be random oracles. Then, the proposed

dynamic MUSE scheme Σ is (L,P(pf))-adaptively secure in the random
oracle model, where L = (LSetup,LKG,LEnc,LAdd,LSrch) are defined above.

Proof. Let HListsk, HListct, HListtag, and HListtrpdr be multi-dimensional
arrays for random oracles, and we sometimes regard them as sets for
convenience; we may write a ∈ HListx for any x ∈ {sk, ct, tag, trpdr} if a
is stored in somewhere in the list HListx. We show that S can simulate
all transcripts during the execution of all algorithms (except for Dec; it
does not need to be simulated since we do not consider chosen ciphertext
attacks) and all responses to random oracle queries. First, S can clearly
simulate an initial database EDB from LSetup(ctr := 0, κ,P(pf),U) since
EDB is an empty list.

For kg query p at ctr: In ExpReal
D,P(pf)(κ), the client computes and re-

turns skp := Hκ(msk∥p1∥ · · · ∥pℓ) to D, where p = (p1, p2, . . . , pℓ). In
ExpIdeal

D,S,L,P(pf)(κ), S knows p, TimeFp, and TimeWp from LKG(ctr,p).
The latter two will be used to respond to random oracle queries and
sets F̂ := F̂ ∪ TimeFp and Ŵ := Ŵ ∪ TimeWp, where F̂ and Ŵ are
sets of leaked files and keywords, respectively. The secret key skp might
be already generated (but not returned) via the enc or add queries. If
so, S retrieves skp from HListsk[p] and returns it; otherwise, S randomly
chooses and returns skp ← {0, 1}κ to D, and stores it in HListsk[p]. S

adds (ctr,p) to Q̂kg, which is a set of the kg queries that S maintains.
Since skp is uniformly distributed in the real and ideal environments, it
is obvious that both environments are indistinguishable.

For enc query (fid,A) at ctr: Let A = {(ai,1, ai,2, . . . , ai,ℓ)}ni=1 . In

ExpReal
D,P(pf)(κ), the client computes and returns ct := (cf , s, {CA,j}ℓj=1, cv)

Multi-User Dynamic Searchable Encryption for Prefix-Fixing Predicates 13

to D, where s, r
$← {0, 1}κ, ci,j := Hκ(Hκ(msk∥ai,1∥ · · · ∥ai,j∥ ⋆ ∥ · · · ∥

⋆)∥s) ⊕ r ∈ CA,j for i ∈ [n] and j ∈ [ℓ], cf := fid ⊕ H|fid|(r∥0), and cv :=

Hκ(r∥1). We list important observations to simulate it in ExpIdeal
D,S,L,P(pf)(κ)

as follows.

– A seed ki,j := Hκ(msk∥ai,1∥ · · · ∥ai,j∥ ⋆ ∥ · · · ∥⋆) of ci,j = Hκ(ki,j∥s)⊕ r
is indeed equivalent to skp for p = (ai,1∥ · · · ∥ai,j∥ ⋆ ∥ · · · ∥⋆). Hence, S
has to consistently maintain ki,j (with the list HListsk).

– Each of s and r is unique to each ciphertext ct except for negligible
probability. Therefore, all hash values Hκ(ki,j∥s) for all i ∈ [n] and
j ∈ [ℓ] are uniquely determined to each ciphertext ct and uniformly
distributed. Moreover, cf (= fid ⊕H|fid|(r∥0)) and cv (= Hκ(r∥1)) are
also unique to each ct and they are uniformly distributed. They are
maintained with HListct.

– S has to consistently relate ci,j ∈ CA,j to skp so that D can correctly

decrypt ct with the secret key (if P
(pf)
p (A) = 1), since p of skp and A

of ct are public information (as in ordinary ABE [18, 35]), and hence
D knows there is a single sub-ciphertext ci,j decryptable by skp in
CA,j . (This property is properly handled with random oracle queries.)

Based on the above observations, S simulates ct in ExpIdeal
D,S,L,P(pf)(κ) as

follows. Specifically, we consider two cases depending on whether D has

made at least one kg query p such that P
(pf)
p (A) = 1.

First, we consider the case where D has never made such a query,

i.e., P
(pf)
p (A) = 0 holds for all (ctr′,p) ∈ Q̂kg. S then knows |fid| and

A from LEnc(ctr, fid,A). S simulates ct so that it is decryptable by se-

cret keys skp such that P
(pf)
p (A) = 1 holds. To this end, S randomly

chooses r, cv
$← {0, 1}κ and cf

$← {0, 1}|fid|, and sets HListct[r][0] := cf and

HListct[r][1] := cv. S then samples s
$← {0, 1}κ, and simulates ci,j ∈ CA,j

for every i ∈ [n] and j ∈ [ℓ] as follows. A seed ki,j is stored in HListsk[(ai,1,
. . . , ai,j , ⋆, . . . , ⋆)] if S has already generated skp such that p = (ai,1, . . . ,
ai,j , ⋆, . . . , ⋆) (via the kg query), or previously received the enc query
(f ′id,A′) such that A′ contains (ai,1, . . . , ai,j , a

′
i,j+1, . . . , a

′
i,ℓ). In such a

case, S retrieves ki,j from HListsk[(ai,1, . . . , ai,j , ⋆, . . . , ⋆)]. Otherwise, S

randomly chooses ki,j
$← {0, 1}κ and stores it in HListsk[(ai,1, . . . , ai,j ,

⋆, . . . , ⋆)]. Then, S retrieves ηi,j from HListct[s][ki,j] if it exists;5 other-

wise, S randomly chooses ηi,j
$← {0, 1}κ and stores it in HListct[s][ki,j]. S

5 This occurs if A contains another attribute (aϕ,1, aϕ,2, . . . , aϕ,ℓ) such that it holds
(ai,1, ai,2, . . . , ai,j) = (aϕ,1, aϕ,2, . . . , aϕ,j).

14 T. Hirano et al.

sets ci,j := ηi,j ⊕ r and adds ci,j to CA,j . Finally, S returns ct := (cf , s,
{CA,j}ℓj=1, cv). It is obvious that s, r, cf , cv, and ηi,j are uniquely deter-
mined and uniformly distributed. In particular, we have ηi1,j = ηi2,j for
any i1, i2 ∈ [n] and j ∈ [ℓ] if it holds (ai1,1, . . . , ai1,j) = (ai2,1, . . . , ai2,j).
This is consistent with the real environment.

Second, we consider the case where D has made at least one kg query

p such that P
(pf)
p (A) = 1. Indeed, the simulation can be done in almost

the same way as above. The only difference is that S adds (ctr, fid) to F̂
since S knows fid and A from LEnc(ctr, fid,A).

Thus, the real and ideal environments are indistinguishable.

For add query ((id, w),A) at ctr: The simulation is done in a similar

way to the enc query. Let A = {(ai,1, ai,2, . . . , ai,ℓ)}ni=1 . In ExpReal
D,P(pf)(κ),

the clients computes trans1 := (id, t, {TA,j}ℓj=1, tagv) and sends D it. D
stores it in EDB. We list important observations to simulate the transcript
in ExpIdeal

D,S,L,P(pf)(κ) as follows.

– As in the enc query, a seed ki,j := Hκ(msk∥ai,1∥ · · · ∥ai,j∥ ⋆ ∥ · · · ∥⋆)
of tagi,j = Hκ(Hκ(ki,j∥w)∥t) ⊕ γ is indeed equivalent to skp for p =
(ai,1∥ · · · ∥ai,j∥ ⋆ ∥ · · · ∥⋆). Hence, S has to consistently maintain ki,j
(with the list HListsk).

– A trapdoor trpdri,j := Hκ(ki,j∥w) of tagi,j = Hκ(trpdri,j∥t) ⊕ γ is re-
peatedly used when searching for w with skp such that skp = ki,j .
That is, the corresponding tag tagi,j has to be computed by the same
trapdoor trpdri,j used for the previous search for w with skp = ki,j .
Although it makes the simulation complicated, fortunately, the trap-
door trpdri,j is not disclosed to D at this point. Therefore, to handle
this, S creates tagi,j by random sampling from {0, 1}κ but does not
create trpdri,j at this point, and computes and associates it with the
tag later, depending on other queries. S properly handles the above
with the list HListtag.

– Each of t and γ is unique to each entry (id, w) except for negligible
probability. Therefore, all hash values Hκ(trpdri,j∥t) for all i ∈ [n]
and j ∈ [ℓ] are uniquely determined to each entry (id, w)) and uni-
formly distributed. Moreover, tagv (= Hκ(γ)) is also unique to each
added entry (id, w) and uniformly distributed. They are handled with
HListtag.

– S has to consistently relate tagi,j ∈ TA,j to skp so that D can correctly
obtain a search result for w with the secret key since D knows which

Multi-User Dynamic Searchable Encryption for Prefix-Fixing Predicates 15

tag tagi,j should satisfy the relation p = (ai,1, . . . , ai,j , ⋆, . . . , ⋆). (This
property is handled with random oracle queries.)

Based on the above observations, S simulates trans1 in ExpIdeal
D,S,L,P(pf)(κ)

as follows. First, we consider the case where P
(pf)
p (A) = 0 for all (·,p) ∈

Q̂kg and all (·, ·, w) /∈ Qsrch, i.e., D has no secret key skp for P
(pf)
p (A) = 1

and has not been made any srch query (p, w). S knows id and A from
LAdd(ctr, (id, w),A). S simulates trans1 so that D will be able to obtain

a correct search result for w under secret keys skp such that P
(pf)
p (A) =

1 holds. To this end, S randomly chooses t, γ, tagv
$← {0, 1}κ and sets

HListtag[t] := γ and HListtag[γ] := tagv. For all i ∈ [n] and j ∈ [ℓ], S

randomly chooses ψi,j
$← {0, 1}κ. If HListtag[t][(ai,1, . . . , ai,j , ⋆, . . . , ⋆)] is

empty, S stores ψi,j in it and adds ψi,j ⊕ γ to TA,j ; otherwise, i.e., if a
collision between (ai,1, . . . , ai,j , ai,j+1, . . . , ai,ℓ) and (aϕ,1, . . . , aϕ,j , a

′
ϕ,j+1,

. . . , a′ϕ,ℓ) in A occurs, S discards ψi,j (a single ψϕ,j is sufficient to construct

TA,j). Finally, S sends trans1 := (id, t, {TA,j}ℓj=1, tagv) to D (via the client),

and adds (ctr, id,A) to Q̂add, which is a set of the add queries that S
maintains.6 D stores it in EDB. It is obvious that t, γ, tagv, and ψi,j are
uniquely determined and uniformly distributed. In particular, we have
ψi1,j = ψi2,j for any i1, i2 ∈ [n] and j ∈ ℓ if it holds (ai1,1, . . . , ai1,j) =
(ai2,1, . . . , ai2,j). This is consistent with the real environment.

For the case where there exists (·,p) ∈ Q̂kg such that P
(pf)
p (A) = 1,

i.e., D already has a secret key skp for P
(pf)
p (A) = 1, or the case where

there exists (·, ·, w) ∈ Qsrch, the simulation can be done in the same way

as the above. Besides, S adds (ctr, w) to Ŵ since S knows (id, w) and A
from LAdd(ctr, (id, w),A).

Therefore, the real and ideal environments are indistinguishable.

For srch query (p, q) at ctr: In ExpReal
D,P(pf)(κ), the clients computes and

sends trans1 := (j, trpdr) to D. D fixes j ∈ [ℓ], and does the following
for every (id, t, {TA,i}ℓi=1, tagv) ∈ EDB: for every tag ∈ TA,j , D com-
putes γ = Hκ(trpdr∥t) ⊕ tag and adds id to Xq,p if Hκ(γ) = tagv. D sets
trans2 := Xq,p. We list important observations to simulate (trans1, trans2)
in ExpIdeal

D,S,L,P(pf)(κ) as follows.

– If q was previously searched under skp, S has to use trpdr used at the
previous search again. S can handle this issue with the search pattern
SPw,p.

6 Q̂add is not equivalent to Qadd = {(ctri, (idi, wi),Ai)}i∈[|Qadd|].

16 T. Hirano et al.

– If we have id ∈ Xq,p, there exist (id, t, {TA,i}ℓi=1, tagv) ∈ EDB and a
single tag tag ∈ TA,j satisfying Hκ(tag ⊕ Hκ(trpdr∥t)) = tagv.

– If we have id /∈ Xq,p for (id, t, {TA,i}ℓi=1, tagv) ∈ EDB, there are no tags
tag ∈ TA,j satisfying Hκ(tag ⊕ Hκ(trpdr∥t)) = tagv.

Based on the above observations, S simulates the transcripts (trans1,
trans2) in ExpIdeal

D,S,L,P(pf)(κ) as follows. Here, there are two cases depending
on whether D has a secret key skp for p. First, we consider the case where
D does not have skp. S then knows p, SPq,p, and APq,p from LSrch(ctr,
p, q). If SPq,p = ∅, the corresponding trapdoor trpdr appear for the first
time from D’s point of view. Therefore, S randomly chooses trpdr ←
{0, 1}κ, and stores it to HListtrpdr[p][ctr]. Otherwise, i.e., if SPq,p ̸= ∅,
the trapdoor trpdr should be already generated when the previous search
for q under p. Therefore, S retrieves trpdr from HListtrpdr[p][ctr

′], where
some ctr′ ∈ SPw,A, and adds trpdr to HListtrpdr[p][ctr] (for the record).
Since an appropriate index j ∈ [ℓ] can be identified from p, S can set
trans1 := (j, trpdr). Receiving trans1, for every (id, t, {TA,i}ℓi=1, tagv) ∈
EDB, D does the following procedures. D makes random oracle queries
trpdr∥t, and S returns ψ := tagp⊕γ to D, where S changes how to choose
tagp depending on APq,p below.

– If (ctr′, id) ∈ APq,p, S retrieves tagp from HListtag[t][p].

– If (ctr′, id) /∈ APq,p, S retrieves a dummy tagp from HListtag[t][p][trpdr].

If it is empty, S randomly chooses tagp
$← {0, 1}κ and stores it to

HListtag[t][p][trpdr].

For every tagi ∈ TA,j , D makes a random oracle query γi, where γi :=
tagi⊕ψ. If HListtag[γi] is not empty, S retrieves ξi; otherwise, S randomly
chooses ξi and sets HListtag[γi] := ξi. S returns ξi to D.

We explain why the above simulation is perfect with the following
four conditions of an arbitrarily fixed entry (id, t, {TA,i}ℓi=1, tagv) ∈ EDB,
where A = {(ai,1, . . . , ai,ℓ)}ni=1.

(1) (ctr′, id) ∈ APq,p and P
(pf)
p (A) = 1. In this case, id should be added

to Xq,p. Recall that each tag tagi,j ∈ TA,j was stored in HListtag[t][(ai,1,
. . . , ai,j , ⋆, . . . , ⋆)] at ctr

′. As described above, S retrieved ψ⊕ γ from

HListtag[t][p] and returned ψ to D. Since P
(pf)
p (A) = 1 holds, there ex-

ists some (ak,1, . . . , ak,j , ⋆, . . . , ⋆) such that p = (ak,1, . . . , ak,j , ⋆, . . . ,
⋆), and hence, we have HListtag[t][p] = HListtag[t][(ak,1, . . . , ak,j , ⋆, . . . , ⋆)].
Therefore, S receives γ (= tagk,j ⊕ ψ) and returns tagv = HListtag[γ]
to D. Thus, D adds id to Xq,p.

Multi-User Dynamic Searchable Encryption for Prefix-Fixing Predicates 17

(2) (ctr′, id) ∈ APq,p and P
(pf)
p (A) = 0. In this case, id should be added

to Xq,p, but the operation should not be done with this entry (id, t,
{TA,i}ℓi=1, tagv). There must be another entry (id, t′, {T ′

A′,i}ℓi=1, tag
′
v) ∈

EDB satisfying the condition (1). Indeed, since P
(pf)
p (A) = 0 holds, we

have p ̸= (ai,1, . . . , ai,j , ⋆, . . . , ⋆) for any i ∈ [n]. Therefore, we also
have HListtag[t][p] ̸= HListtag[t][(ai,1, . . . , ai,j , ⋆, . . . , ⋆)] for any i ∈ [n].
Then, for any i ∈ [n], it holds γ ̸= tagi,j ⊕ ψ, and hence, D receives
ξi = HListtag[tagi,j ⊕ψ] such that tagv ≠ ξi. D does not add id to Xq,p

(at this point).

(3) (ctr′, id) /∈ APq,p and P
(pf)
p (A) = 1. In this case, id should not be

added to Xq,p, though it holds p = (ak,1, . . . , ak,j , ⋆, . . . , ⋆) for some
(ak,1, . . . , ak,j , ⋆, . . . , ⋆). This means that the entry (id, t, {TA,i}ℓi=1, tagv)
was added by a add query (id, q′) such that q′ ̸= q. Note that S does
not know the keywords q and q′ themselves but gets to know that they
are different. As described above, even if it holds p = (ak,1, . . . , ak,j , ⋆,
. . . , ⋆), S retrieves the dummy tag′p from HListtag[t][p][trpdr] and sent
D ψ′ := tag′p ⊕ γ, not ψ := tagp ⊕ γ.7 Thus, for any i ∈ [n], it holds
γ ̸= tagi,j ⊕ ψ′, and hence, D receives ξi = HListtag[tagi,j ⊕ ψ′] such
that tagv ̸= ξi. D does not add id to Xq,p.

(4) (ctr′, id) /∈ APq,p and P
(pf)
p (A) = 0. We omit the details since it is

straightforward from the above discussion.

The same simulation works well for the case where D has skp. The
difference from the case where D does not have skp is whether or not S
obtains the searched keyword q. If D has skp, then D may make a random
oracle query skp∥q, and S has to send the corresponding trapdoor trpdr
to D. The leakage of q allows S to correctly respond to the query skp∥q.
Suppose two leakage functions LSrch(ctr,p, q) = (p, SPq,p,APq,p) and
LSrch(ctr′,p, q′) = (p, SPq′,p,APq′,p). Therefore, two trapdoors trpdr and
trpdr′ are used in the simulation of each Search algorithm. Without the
knowledge of q, S cannot determine the appropriate trapdoor.

Thus, the real and ideal environments are indistinguishable.

7 This captures the following situation: In ExpReal
D,P(pf)(κ), D receives trpdr =

Hκ(Hκ(msk∥p)∥q). On the other hand, for the entry (id, t, {TA,i}ℓi=1, tagv), its ap-
propriate trapdoor trpdr′ should satisfy trpdr′ = Hκ(Hκ(msk∥p)∥q′). Since it holds
Hκ(trpdr∥t) ̸= Hκ(trpdr

′∥t), S has to use the dummy tag′p to make the value of
tag′p ⊕ γ different from that of tagp ⊕ γ.

18 T. Hirano et al.

Random oracle queries from D: In addition to the above simulations,
D may issue the following random oracle queries.8 Note that S has to
correctly respond to the following queries if and only if D already has skp
(via the kg query), since D cannot correctly guess skp except for negligible
probability.

– S simulates D’s queries to decrypt ct = (cf , s, CA, cv) as follows.
• On receiving a query skp∥s to compute r = Hκ(skp∥s) ⊕ c, S re-
trieves η from HListct[s][skp] and returns it to D.

• On receiving a query r∥1 to check Hκ(r∥1) = cv, S retrieves cv
from HListct[r][1] and returns it to D.

• On receiving a query r∥0 to compute H|fid|(r∥0), S retrieves cf
from HListct[r][0] and returns kf := cf ⊕ fid to D. Note that S

knows ctr′ when r is chosen and hence can find (ctr′, fid) ∈ F̂
since D has made the kg query p.

– S simulates D’s queries to run the server-side search algorithm Searchs
as follows.
• On receiving a query skp∥q to compute trpdr = Hκ(skp∥q), S re-
trieves the appropriate trapdoor trpdr by using LSrch(ctr,p, q) =
(p, q, SPq,p, SPq,p) and returns it to D. Specifically, S knows when

entries related to q and p are added from Ŵ. Let {ctr′i}ki=1 be

counters when the add queries {((⋆, q),Ai)}ki=1 such that P
(pf)
p (A) =

1 are made. If there exists a previous access pattern APq,p =
{(ctr′′j , idj)}, S finds ctr′′i⋆ such that ctr′′i⋆ ∈ {ctr′1, . . . , ctr′k},
which means that an entry (idi⋆ , q) with Ai⋆ was added at ctr′′i⋆ .
In other words, the trapdoor for q and p was made and used in the
search. Therefore, S retrieves the latest counter ctr⋆ from SPq,p,
and returns trpdr = HListtrpdr[p][ctr

⋆].

• On receiving a query trpdr∥t to compute Hκ(trpdr∥t), S finds the
corresponding predicate p and randomness γ. S then retrieves tag
and returns ψ := tag ⊕ γ as in the above simulation of the Search
algorithm.

• On receiving a query γ to check Hκ(γ) = tagv, S retrieves and
returns ξi from HListtag[γi] as in the simulation of the Search algo-
rithm.

It completes the proof. ⊓⊔
8 We implicitly assume S can identify what kind of random oracle queries are issued.
This can be easily done by appending a label lab to the prefix of the input of the
random oracle, e.g., tagv := Hκ(lab∥γ).

Multi-User Dynamic Searchable Encryption for Prefix-Fixing Predicates 19

Table 1: Statistical information about datasets used in our experiments

#files #keywords #entries

300 10,117 49,764

600 14,670 102,940

1,000 18,238 163,772

4 Experiments

4.1 Experimental Settings

Implementation. We give a performance evaluation of the proposed
scheme by Python software implementation. These experiments were done
in an MacBook Air (M1, 2020) with 8-core CPU, 16GB RAM. We used
SHA-256 implemented with Python’s library hashlib as the hash function.
Note that both the client and server run locally, and communication costs
are not taken into account.

Dataset. We used a part of the Enron Email dataset [41] (May 7, 2015
version), commonly and widely used for SSE experiments. As a prepro-
cessing, after removing header information, symbols, and URL informa-
tion from the dataset, we applied the Porter stemming algorithm [34] from
the NLTK (Natural Language ToolKit) library to them. Table 1 shows
the statistics about the number of files, the number of unique keywords,
and the number of entries (i.e., (w, id) pairs).

Parameter Setting. We used an integer list to implement the pred-
icates and attributes. In order to compare the performance of different
attributes, we experimented with the following two attributes (ℓ = 3).

– Attr1: A1 = (a1, a2, a3). It has only one attribute, and the corre-
sponding predicates (i.e., tags) are (a1, a2, a3), (a1, a2, ⋆), (a1, ⋆, ⋆),
and (⋆, ⋆, ⋆).

– Attr2: A2 = ((a1, a2, a3), (a1, a4, a5), (a1, a6, a7), (a1, a6, a8)). It has
four attributes, and the corresponding predicates (i.e., tags) are nine:
there are (a1, a4, a5), (a1, a4, ⋆), (a1, a6, a7), (a1, a6, a8), and (a1, a6, ⋆)
in addition to the above four predicates.

Also, the predicate of the user who runs Search and Dec is p = (a1, a2, ⋆).
That is, Search (or Dec) can be run on documents added (or encrypted)
with either attribute Attr1 or Attr2.

20 T. Hirano et al.

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

ti
m

e
 (

s
)

Number of inserted file

Attr1
Attr2

Fig. 1: Addition cost.

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300

ti
m

e
 (

s
)

Number of files containing a query keyword

Attr1
Attr2

Fig. 2: Search cost.

4.2 Experimental Results

Addition Cost. The Add algorithm computes O(n · ℓ · d) elements for
n attribute vectors whose degree is at most ℓ and a file that contains d
distinct keywords. We give the addition costs in Fig. 1. In both attributes
Attr1 and Attr2, the addition cost increases linearly with number of
inserted files. Specifically, Attr1 and Attr2 take less than 0.9 s and 2.0 s,
respectively, to add 1,000 files.

Search Cost. The Search algorithm requires a kind of exhaustive search,
so it seems inefficient in the asymptotic sense. Fig. 2 shows the experi-
mental results on search costs for the proposed scheme, which provides
reasonably efficient search costs. Specifically, in the case where queried
keywords are contained in more than 200 files, both the Search algorithm
for Attr1 or Attr2 requires less than a second. The reason why the
search time decreases as the size of the search result is due to the search
procedure; if the algorithm finds an entry about the queried keyword q
and a file fid, it adds id to the search result and steps into the search for
the next file fid′ . Therefore, the more files contain the queried keyword,
the less search time we have.

Encryption/Decryption Cost. The Enc algorithm computes O(n · ℓ)
elements for n attribute vectors whose degree is at most ℓ to encrypt a
single file. The Dec algorithm needs to find a sub-ciphertext that contains
a randomness, which is used to decrypt the corresponding encrypted file.
Therefore, Dec requires O(n · ℓ) computational cost. As can be seen in
Figs. 3 and 4, the proposed scheme has reasonable encryption and de-
cryption costs. Specifically, Attr1 and Attr2 take less than 0.63 s and
0.74 s, respectively, to encryption 1,000 files. On the other hand, both
Attr1 and Attr2 take less than 0.45 s to decryption 1,000 files.

Multi-User Dynamic Searchable Encryption for Prefix-Fixing Predicates 21

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 200 400 600 800 1000

ti
m

e
 (

s
)

Number of inserted file

Attr1
Attr2

Fig. 3: Encryption cost

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000

ti
m

e
 (

s
)

Number of inserted file

Attr1
Attr2

Fig. 4: Decryption cost.

 0

 1

 2

 3

 4

 5

 6

 7

 0 200 400 600 800 1000

ti
m

e
 (

s
)

N : Number of inserted file

Attr1 (n = 0)
Attr1 (n = N)
Attr2 (n = 0)
Attr2 (n = N)

Fig. 5: Search cost with DB size.

Search Cost Associated with DB Size. We show in Fig. 5 the search
cost for scaling the number of files to be added from 100 to 1,000. We chose
keywords so that the search results are empty (i.e., worst case (n = 0))
and all files are in the search results (n = N). Surprisingly, in the case
where many files are search results (n = N), the proposed scheme is
reasonably fast, even with a large DB size. Specifically, both Attr1 and
Attr2 take less than 0.48 s to search a keyword that 1,000 files contain.

5 Concluding Remarks

We introduced a new model of dynamic multi-user symmetric search-
able encryption (MUSE) and its security notion, and showed a concrete
dynamic MUSE scheme for prefix-fixing predicates, which are employed
in the context of pseudorandom functions. Our dynamic MUSE scheme
is constructed from only symmetric-key primitives and is secure in the
random oracle model. The experimental results showed that our scheme

22 T. Hirano et al.

achieved a good trade-off among flexibility of access control, security lev-
els, and efficiency.

The proposed dynamic MUSE scheme only supports addition opera-
tions; we leave how to support deletion operations as an open problem.
It would also be interesting to define and achieve forward and backward
privacy for dynamic MUSE.

References

1. Aljabri, J., Michala, A.L., Singer, J.: ELSA: A keyword-based searchable encryp-
tion for cloud-edge assisted industrial internet of things. In: IEEE International
Symposium on Cluster, Cloud and Internet Computing (CCGrid 2022). pp. 259–
268 (2022)

2. Aljabri, J., Michala, A.L., Singer, J.: ELSA: Edge lightweight searchable attribute-
based encryption multi-keyword scalability. In: IEEE Conference on Dependable
and Secure Computing (DSC 2022). pp. 1–4 (2022)

3. Bag, A., Patranabis, S., Mukhopadhyay, D.: Tokenised multi-client provisioning
for dynamic searchable encryption with forward and backward privacy. In: ACM
Symposium on Information, Computer and Communications Security, ASIACCS
2024. p. 1691–1707. Association for Computing Machinery (2024)

4. Bakas, A., Dang, H.V., Michalas, A., Zalitko, A.: The cloud we share: Access con-
trol on symmetrically encrypted data in untrusted clouds. IEEE Access 8, 210462–
210477 (2020)

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology
– EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp. 506–522.
Springer Berlin Heidelberg (2004)

6. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) Advances in Cryptology – CRYPTO 2001. vol. 2139, pp. 213–229.
Springer Berlin Heidelberg (2001)

7. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) Advances in Cryptology – ASIACRYPT 2013,
Part II. pp. 280–300. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

8. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2017. pp. 1465–1482. ACM,
New York, NY, USA (2017)

9. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) Public Key Cryptography – PKC 2014. vol. 8383, pp.
501–519. Springer Berlin Heidelberg (2014)

10. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2015. pp. 668–679. ACM, New York, NY, USA (2015)

11. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.C., Steiner,
M.: Dynamic searchable encryption in very-large databases: Data structures and
implementation. In: Network and Distributed System Security Symposium, NDSS
2014. The Internet Society (2014)

Multi-User Dynamic Searchable Encryption for Prefix-Fixing Predicates 23

12. Chamani, J.G., Papadopoulos, D., Papamanthou, C., Jalili, R.: New construc-
tions for forward and backward private symmetric searchable encryption. In: ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018. pp.
1038–1055. ACM, New York, NY, USA (2018)

13. Chamani, J.G., Wang, Y., Papadopoulos, D., Zhang, M., Jalili, R.: Multi-user dy-
namic searchable symmetric encryption with corrupted participants. IEEE Trans-
actions on Dependable and Secure Computing 20(1), 114–130 (2023)

14. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: Improved definitions and efficient constructions. In: ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2006. pp. 79–88. ACM,
New York, NY, USA (2006)

15. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: Improved definitions and efficient constructions. Journal of Computer
Security 19(5), 895–934 (2011)

16. Dang, H.V., Ullah, A., Bakas, A., Michalas, A.: Attribute-based symmetric search-
able encryption. In: Zhou, J., Conti, M., Ahmed, C.M., Au, M.H., Batina, L., Li,
Z., Lin, J., Losiouk, E., Luo, B., Majumdar, S., Meng, W., Ochoa, M., Picek, S.,
Portokalidis, G., Wang, C., Zhang, K. (eds.) Applied Cryptography and Network
Security Workshops 2020. pp. 318–336. Springer International Publishing, Cham
(2020)

17. Demertzis, I., Chamani, J.G., Papadopoulos, D., Papamanthou, C.: Dynamic
searchable encryption with small client storage. In: Network and Distributed Sys-
tem Security Symposium, NDSS 2020. The Internet Society (2020)

18. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2006. pp. 89–98. ACM, New York, NY,
USA (2006)

19. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: ACM SIGSAC Conference on Computer and Communications Security, CCS
2014. pp. 310–320. ACM, New York, NY, USA (2014)

20. Hattori, M., Hirano, T., Ito, T., Matsuda, N., Mori, T., Sakai, Y., Ohta, K.:
Ciphertext-policy delegatable hidden vector encryption and its application to
searchable encryption in multi-user setting. In: Chen, L. (ed.) Cryptography and
Coding. pp. 190–209. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

21. Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmet-
ric private information retrieval. In: ACM SIGSAC Conference on Computer and
Communications Security, CCS 2013. p. 875–888. ACM, New York, NY, USA
(2013)

22. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.R. (ed.) Financial Cryptography and Data Security, FC 2013.
pp. 258–274. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

23. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM SIGSAC Conference on Computer and Communications Security,
CCS 2012. pp. 965–976. ACM, New York, NY, USA (2012)

24. Kermanshahi, S.K., Liu, J.K., Steinfeld, R., Nepal, S., Lai, S., Loh, R., Zuo, C.:
Multi-client cloud-based symmetric searchable encryption. IEEE Transactions on
Dependable and Secure Computing 18(5), 2419–2437 (2021)

25. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: ACM SIGSAC Conference on Computer
and Communications Security, CCS 2007. pp. 669–684. CCS ’13, ACM, New York,
NY, USA (2013)

24 T. Hirano et al.

26. Li, J., Huang, Y., Wei, Y., Lv, S., Liu, Z., Dong, C., Lou, W.: Searchable symmetric
encryption with forward search privacy. IEEE Transactions on Dependable and
Secure Computing 18(1), 460–474 (Jan 2021)

27. Meng, L., Chen, L., Tian, Y., Manulis, M., Liu, S.: FEASE: fast and expressive
asymmetric searchable encryption. In: Balzarotti, D., Xu, W. (eds.) USENIX Se-
curity 2024. USENIX Association (2024)

28. Meng, R., Zhou, Y., Ning, J., Liang, K., Han, J., Susilo, W.: An efficient key-policy
attribute-based searchable encryption in prime-order groups. In: Okamoto, T., Yu,
Y., Au, M.H., Li, Y. (eds.) Provable Security, ProvSec 2017. pp. 39–56. Springer
International Publishing, Cham (2017)

29. Michalas, A.: The lord of the shares: Combining attribute-based encryption and
searchable encryption for flexible data sharing. In: ACM/SIGAPP Symposium on
Applied Computing, SAC 2019. p. 146–155. ACM, New York, NY, USA (2019)

30. Michalas, A., Bakas, A., Dang, H.V., Zalitko, A.: MicroSCOPE: Enabling access
control in searchable encryption with the use of attribute-based encryption and
SGX. In: Askarov, A., Hansen, R.R., Rafnsson, W. (eds.) Secure IT Systems, Nord-
Sec 2019. pp. 254–270. Springer International Publishing, Cham (2019)

31. Miers, I., Mohassel, P.: IO-DSSE: scaling dynamic searchable encryption to millions
of indexes by improving locality. In: Network and Distributed System Security
Symposium, NDSS 2017 (2017)

32. Naveed, M., Prabhakaran, M., Gunter, C.: Dynamic searchable encryption via
blind storage. In: IEEE Symposium on Security and Privacy, S&P 2014. pp. 639–
654 (May 2014)

33. Niu, S., Hu, Y., Zhou, S., Shao, H., Wang, C.: Attribute-based searchable en-
cryption in edge computing for lightweight devices. IEEE Systems Journal 17(3),
3503–3514 (2023)

34. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
35. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) Ad-

vances in Cryptology – EUROCRYPT 2005. Lecture Notes in Computer Science,
vol. 3494, pp. 457–473. Springer Berlin Heidelberg (2005)

36. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, S&P 2000. pp. 44–55 (2000)

37. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: Network and Distributed System Security Symposium,
NDSS 2014. The Internet Society (2014)

38. Sun, S.F., Liu, J.K., Sakzad, A., Steinfeld, R., Yuen, T.H.: An efficient non-
interactive multi-client searchable encryption with support for boolean queries.
In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) Computer Se-
curity – ESORICS 2016. pp. 154–172. Springer International Publishing, Cham
(2016)

39. Sun, S.F., Zuo, C., Liu, J.K., Sakzad, A., Steinfeld, R., Yuen, T.H., Yuan, X., Gu,
D.: Non-interactive multi-client searchable encryption: Realization and implemen-
tation. IEEE Transactions on Dependable and Secure Computing 19(1), 452–467
(2022)

40. Sun, S., Steinfeld, R., Lai, S., Yuan, X., Sakzad, A., Liu, J.K., Nepal, S., Gu,
D.: Practical non-interactive searchable encryption with forward and backward
privacy. In: Network and Distributed System Security Symposium, NDSS 2021.
The Internet Society (2021)

41. The CALO Project: Enron email dataset (may 7, 2015 version). https://www.cs.
cmu.edu/~enron/ (2015), https://www.cs.cmu.edu/~./enron/

Multi-User Dynamic Searchable Encryption for Prefix-Fixing Predicates 25

Experiment: ExpCorrA,P (κ)

1: (msk,EDB)← Setup(1κ,P)
2: (f⋆.A⋆, q⋆,P⋆)← AOkg(·),Oadd(·,·),Osrch(·,·)(msk,EDB(0))
3: ct⋆ ← Enc(msk, f⋆,A⋆)
4: (Xq⋆,P⋆ ;EDB′)← Search(SKList[P⋆], q⋆;EDB)
5: if (Dec(SKList[P⋆], ct⋆) ̸= f⋆) ∨ (Xq⋆,P⋆ ̸= IDq⋆,P⋆) then
6: return 1
7: else
8: return 0

Fig. 6: A correctness game. Okg takes a predicate P ∈ P as input, returns skP ←
KeyGen(msk,P) to A, and adds skP to SKList[P]. Oadd takes (id, w) ∈ {0, 1}ℓ×Λ and
A ∈ U as input, runs ⟨(ack;EDB′), trans⟩ ← Add(msk, (id, w),A;EDB), and returns
(ack, trans). Osrch takes P ∈ P and q ∈ Λ as input, runs ⟨(Xq,P;EDB

′), trans⟩ ←
Search(SKList[P], q;EDB), and returns (Xq,P, trans).

42. Wang, J., Chow, S.S.M.: Omnes pro uno: Practical multi-writer encrypted
database. In: Butler, K.R.B., Thomas, K. (eds.) USENIX Security 2022. pp. 2371–
2388. USENIX Association (2022)

43. Wang, J., Chow, S.S.M.: Unus pro omnibus: Multi-client searchable encryption via
access control. In: Network and Distributed System Security Symposium, NDSS
2024. The Internet Society (2024)

44. Xu, L., Xu, C., Liu, J.K., Zuo, C., Zhang, P.: A multi-client dynamic searchable
symmetric encryption system with physical deletion. In: Qing, S., Mitchell, C.,
Chen, L., Liu, D. (eds.) Information and Communications Security, ICICS 2018.
pp. 516–528. Springer International Publishing, Cham (2018)

45. Yang, J., Liu, F., Luo, X., Hong, J., Li, J., Xue, K.: Forward private multi-client
searchable encryption with efficient access control in cloud storage. In: GLOBE-
COM 2022. pp. 3791–3796 (2022)

46. Yavuz, A.A., Guajardo, J.: Dynamic searchable symmetric encryption with mini-
mal leakage and efficient updates on commodity hardware. In: Dunkelman, O., Ke-
liher, L. (eds.) Selected Areas in Cryptography – SAC 2015. pp. 241–259. Springer
International Publishing, Cham (2016)

47. Yin, H., Zhang, W., Deng, H., Qin, Z., Li, K.: An attribute-based searchable en-
cryption scheme for cloud-assisted iiot. IEEE Internet of Things Journal 10(12),
11014–11023 (2023)

48. Zhang, Y., Zhu, T., Guo, R., Xu, S., Cui, H., Cao, J.: Multi-keyword searchable
and verifiable attribute-based encryption over cloud data. IEEE Transactions on
Cloud Computing 11(1), 971–983 (2023)

A The Formal Definition of Correctness of Dynamic
MUSE

Formally, following Cash et al.’s work [11], we consider an experiment
in Fig. 6 and define the correctness of dynamic MUSE as follows.

26 T. Hirano et al.

Definition 3 (Correctness). A dynamic MUSE scheme Σ is said to be
correct if for any PPT algorithm A, it holds Pr

[
ExpCorrA,P (κ) = 1

]
< negl(κ).

B Proof of Theorem 1

LetA = {(ai,1, ai,2, . . . , ai,ℓ)}ni=1. First, We show that a correctly-encrypted
ciphertext ct = (cf , s, {CA,j}ℓj=1, cv) can be always decrypted with skp

correctly if P
(pf)
p (A) = 1 holds, which implies that there exists (ai,1,

. . . , ai,j , ⋆, . . . , ⋆) such that p = (ai,1, . . . , ai,j , ⋆, . . . , ⋆). Since cf = fid ⊕
H|fid|(r∥0), there exists a sub-ciphertext ci,j = r ⊕ Hκ(Hκ(msk∥(ai,1, . . . ,
ai,j , ⋆, . . . , ⋆))∥s) = r⊕Hκ(Hκ(msk∥p)∥s). It is obvious that the user who
has skp (= Hκ(msk∥p)) can obtain r by computing ci,j ⊕Hκ(skp∥s), since
the outputs of random oracles with different input never collide with each
other.

We next show that when the Search algorithm is executed with a secret

key skp for any prefix-fixing predicate P
(pf)
p ∈ P(pf) and any keyword q ∈

Λ, it always outputs a correct search result Xq,p = ID
q,P

(pf)
p

. We consider

four cases for arbitrarily fixed entry (id, s, {TA,j}ℓj=1, tagv) ∈ EDB. First,
suppose that the entry was generated by Add(msk, (id, q),A;EDB) such

that P
(pf)
p (A) = 1. In such a case, the search procedure always adds id to

Xq,p. We omit the detail since it can be proved similarly to the decryption
correctness shown above. Second, suppose that the entry was generated

by Add(msk, (id, q),A;EDB) such that P
(pf)
p (A) = 0. In this case, it clearly

holds p ̸= (ai,1, . . . , ai,j , ⋆, . . . , ⋆) for any i ∈ [n] and j ∈ [ℓ], and hence,
we have Hκ(skp∥q) ̸= Hκ(Hκ(msk∥(ai,1, . . . , ai,j , ⋆, . . . , ⋆))∥q). Therefore,
the server-side search algorithm Searchs obtains γi such that γi ̸= γ for
any i ∈ [n], where γ is randomness such that Hκ(γ) = tagv. Thus, Searchs
does not add id to Xq,p. Third, suppose that the entry was generated by

Add(msk, (id, w),A;EDB) such that P
(pf)
p (A) = 1. In this case, although

there exists (ai,1, . . . , ai,j , ⋆, . . . , ⋆) such that p = (ai,1, . . . , ai,j , ⋆, . . . , ⋆),
we have Hκ(skp∥q) ̸= Hκ(skp∥w) due to the property of random oracles.
Since it clearly holds Hκ(Hκ(skp∥q)∥t) ̸= Hκ(Hκ(skp∥w)∥t), Searchs only
obtains γi such that γi ̸= γ for any i ∈ [n], where γ is randomness
such that Hκ(γ) = tagv. Thus, Searchs does not add id to Xq,p. We omit
the proof details for the fourth case where the entry was generated by

Add(msk, (id, w),A;EDB) such that P
(pf)
p (A) = 0 since it can be proved

similarly. ⊓⊔

