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Abstract. The unique design of the FLIP cipher necessitated a gener-
alization of standard cryptographic criteria for Boolean functions used in
stream ciphers, prompting a focus on properties specific to subsets of Fn

2

rather than the entire set. This led to heightened interest in properties
related to fixed Hamming weight sets and the corresponding partition of
Fn
2 into n+ 1 such sets. Consequently, the concept of Weightwise Almost

Perfectly Balanced (WAPB) functions emerged, which are balanced
on each of these sets. Various studies have since proposed WAPB
constructions and examined their cryptographic parameters for use in
stream cipher filters.
In this article, we introduce a general approach to constructing WAPB
functions using the concept of total order relation, which simplifies
implementation and enhances cryptographic strength. We present two
new constructions: a recursive method employing multiple orders on
binary strings, and another utilizing just two orders. We establish
lower bounds for nonlinearity and weightwise nonlinearities within these
classes. By instantiating specific orders, we demonstrate that some
achieve minimal algebraic immunity, while others provide functions with
guaranteed optimal algebraic immunity. Experimental results in 8 and
16 variables indicate that using orders based on field representation
significantly outperforms other methods in terms of both global and
weightwise algebraic immunity and nonlinearity. Additionally, we extend
the recursive construction to create WAPB functions for any value
of n, with experiments in 10, 12, and 14 variables confirming that
these order-based functions exhibit robust cryptographic parameters.
In particular, those based on field orders display optimal degrees and
algebraic immunity, and strong weightwise nonlinearities and algebraic
immunities.

Keywords: Boolean functions, Weightwise perfectly balanced func-
tions, Cryptographic criteria.

1 Introduction

With the design of FLIP [26], established cryptographic criteria for Boolean
functions—traditionally used to assess the security of filtered Linear Feedback
Shift Register (LFSR), combined LFSR, or more complex stream cipher



designs—no longer apply. In the context of this cipher, the relevant properties of
the Boolean function used as a filter to determine security are not based on the
entire Fn

2 but only on a specific identified subset. This change has necessitated
the generalization of standard attacks and the establishment of new criteria
for subsets and specific partitions of Fn

2 , beginning with the study of restricted
criteria for Boolean functions [4].

In the case of FLIP, the input to the filtering function always has a fixed,
known Hamming weight, thus tailoring attacks to this specificity enhances
their effectiveness. This adaptation exemplifies a broader phenomenon where
additional information about a cipher’s internal values can significantly simplify
attacks, as seen in multiple contexts like (algebraic) side-channel attacks [32]
or lattice reduction with side information [5]. From the FLIP study, the focus
has been on the partition of the Boolean hypercube into n+ 1 slices, defined as
sets with elements of the same Hamming weight Ek,n = {x ∈ Fn

2 |wH(x) = k}
for k ∈ [0, n]. Notably, the Hamming weight of an intermediate value is also
commonly leveraged as leakage in side channel attacks, e.g. [8,16,35], although
a leakage with an approximate Hamming weight is considered more realistic e.g.
[1, 15,31].

A fundamental security criterion for a Boolean function is balancedness; the
function is balanced if it outputs 1 for half of the inputs and 0 for the other half,
to prevent statistical biases exploitable by various attacks. Functions that are
balanced over each slice were introduced in [4] as Weightwise (Almost) Perfectly
Balanced (WAPB) functions. The term “almost” differentiates cases where n
is a power of two—here, the function is perfectly balanced on all slices except
for those with k equal to 0 or n. For other values of n, where many slices have
an odd cardinality, the functions output 1 one more (or one less) time than 0.
Since 2017, multiple studies have focused on developing new constructions of
W(A)PB functions with improved parameters for use as filter functions. These
efforts include enhancing globally recognized cryptographic parameters such as
algebraic degree, Algebraic Immunity (AI), and nonlinearity, as well as important
criteria on the slices, like weightwise nonlinearities and weightwise algebraic
immunity.

We provide a concise overview of the main families of WAPB functions
showcased in previous studies, noting that most of them focus primarily on
WPB functions. Initially, a recursive approach for both WPB and WAPB was
introduced in [4], followed by a secondary construction. In 2019, the work
in [21] (and later [29]) utilized field representations to develop WPB functions
that are 2-rotation symmetric and achieve high weightwise nonlinearities. The
construction in [37] (and an adaptation with better weightwise nonlinearities
in [28]) compare the weight of inputs split into two halves, resulting in
constructions affine equivalent to the majority function, thus reaching optimal
algebraic immunity. The construction in [27] start from a linear or quadratic
function near WPB status, and modify their algebraic normal form to achieve
balancedness over all slices. This methodology was later expanded to generate
WAPB functions from functions of low degrees, as detailed in [14,18,40,41,42].



Additional methods for constructing WAPB functions have been introduced,
utilizing direct sums [43] or Sieghentaler’s construction and addition of sym-
metric function [10]. Furthermore, various families have been developed by
slightly altering the support of non-WPB functions, as reported in studies
focusing on the distribution of cryptographic parameters of WPB functions,
particularly on weightwise nonlinearity [9], nonlinearity [13], and algebraic
immunity [11]. Recent efforts have also employed evolutionary algorithms
to enhance the parameters of WPB functions, concentrating on weightwise
nonlinearities [24, 38], and on nonlinearity [23]. Additional constructions and
properties of restricted criteria have been explored in a range of works (a non-
exhaustive list includes [6, 7, 12,30]).

In this article, we explore a novel general approach for WAPB, where the
input is split in two halves, and the function value is determined by an ordering
on binary vectors of length n/2. This method simplifies the implementation of
WPB functions and offers superior parameters compared to previously exhibited
functions.

Firstly, we introduce two novel constructions of WPB functions: a recursive
construction employing multiple orders for binary vectors (one for each power
of 2 between 2 and n/2 for an n-variable WPB function) and a second, simpler
construction involving just two orders. We quantify the number of functions
within these categories and examine their nonlinearities. We establish a lower
bound for the nonlinearity of any function from these families—at least half that
of a bent function—and we derive lower bounds for the weightwise nonlinearities
across the full classes.

Then, we instantiate the constructions with specific orders. We implement
prevalent orders—lexicographic and cool—alongside orders that respect the
Hamming weight (termed weightwise order) and others based on the field
representation of F2t . We examine the algebraic immunity of these constructions,
proving that those based on the lexicographic order achieve the minimal AI for
WPB functions, whereas weightwise orders result in optimal AI. We provide
experimental results detailing the relevant parameters of WPB functions in
8 and 16 variables for these different orders, where we observe that the new
constructions using the field representation outperform the other ones in both
algebraic immunity and nonlinearity, both globally and weightwise.

Finally, we extend the recursive construction to furnish WAPB functions
for all n. We report outcomes for global parameters—such as resilience order,
nonlinearity, degree, and algebraic immunity—as well as weightwise parameters,
specifically weightwise nonlinearities and algebraic immunities. Experimentally,
we determine these parameters for functions in 10, 12, and 14 variables. Similar
to WPB functions, this study underscores that order-based WAPB functions can
exhibit robust cryptographic parameters. Notably, those based on field orders
showcase optimal degrees, optimal algebraic immunity, and strong weightwise
algebraic immunities and nonlinearities.



2 Preliminaries

For readability, we use the notation + instead of ⊕ to denote the addition in
F2, and

∑
instead of

⊕
. In addition to classic notations, we denote by [a, b] the

subset of all integers between a and b: {a, a+ 1, . . . , b}. For a vector v ∈ Fn
2 we

use wH(v) to denote its Hamming weight wH(v) = |{i ∈ [1, n] | vi = 1}|. For two
vectors v and w in Fn

2 we denote by dH(v, w) the Hamming distance between v
and w, that is, dH(v, w) = wH(v + w). For two functions f and g we denote by
dH(f, g) the Hamming distance between their vectors of values.

2.1 Boolean functions, cryptographic criteria, and weightwise
properties

In this section, we recall fundamental concepts concerning Boolean functions
and their weightwise properties, which are utilized throughout this article. For a
more comprehensive introduction to Boolean functions and their cryptographic
parameters, we recommend consulting the book by Carlet [2], and for insights
into weightwise properties—also known as properties on the slices—the article
by [4]. We denote by Ek,n the set {x ∈ Fn

2 |wH(x) = k} for k ∈ [0, n], referring
to it as a slice of the Boolean hypercube (of dimension n). Consequently, the
Boolean hypercube is divided into n + 1 slices, where the elements share the
same Hamming weight.

Definition 1 (Boolean Function). A Boolean function f in n variables is a
function from Fn

2 to F2. The set of all Boolean functions in n variables is denoted
by Bn.

When a property or a definition is restricted to a slice, we denote it by using
the subscript k. For example, for an n-variable Boolean function f we denote its
support supp(f) = {x ∈ Fn

2 | f(x) = 1}. Furthermore, we denote by suppk(f) the
support of f restricted to a slice, which is defined as supp(f) ∩ Ek,n.

Definition 2 (Balancedness). A Boolean function f ∈ Bn is called balanced
if |supp(f)| = 2n−1 = |supp(f + 1)|.

For k ∈ [0, n] the function is said almost balanced on the slice k if
||suppk(f)| − |suppk(f + 1)|| ≤ 1. In particular when |Ek,n| is even the function
is balanced on the slide: |suppk(f)| = |suppk(f + 1)| = |Ek,n|/2.

Using the notion of restricted balancedness we can define the weightwise
(almost) perfectly balanced functions, the focus of our work.

Definition 3 (Weightwise (Almost) Perfectly Balanced Function (WPB
and WAPB)). Let m ∈ N∗ and f be a Boolean function in n = 2m variables.
It will be called weightwise perfectly balanced (WPB) if, for every k ∈ [1, n− 1],
f is balanced on the slice k, that is ∀k ∈ [1, n− 1], |suppk(f)| =

(
n
k

)
/2, and:

f(0, · · · , 0) = 0, and f(1, · · · , 1) = 1.



The set of WPB functions in 2m variables is denoted WPBm.
When n is not a power of 2, other weights than k = 0 and n can lead to slices

of odd cardinality, we call f ∈ Bn weightwise almost perfectly balanced (WAPB)
if:

|suppk(f)| =
{
|Ek,n|/2 if |Ek,n| is even,
(|Ek,n| ± 1)/2 if |Ek,n| is odd.

The set of WAPB functions in n variables is denoted WAPBn.

We define additional crucial concepts for studying Boolean functions, namely
the algebraic normal form and the Walsh transform. Subsequently, we introduce
key cryptographic criteria for these functions, including algebraic immunity
(both general and weightwise) and nonlinearity (both general and weightwise).

Definition 4 (Algebraic Normal Form (ANF) and degree). We call
Algebraic Normal Form of a Boolean function f its n-variable polynomial
representation over F2 (i.e. belonging to F2[x1, . . . , xn]/(x21 + x1, . . . , x

2
n + xn)):

f(x1, . . . , xn) =
∑

I⊆[1,n]

aI

(∏
i∈I

xi

)

where aI ∈ F2. The (algebraic) degree of f , denoted deg(f) is:

deg(f) = max
I⊆[1,n]

{|I| | aI = 1} if f is not null, 0 otherwise.

Definition 5 (Algebraic immunity and restricted algebraic immunity).
The algebraic immunity of a Boolean function f ∈ Bn, denoted as AI(f), is
defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator
of f (or f + 1).

The restricted algebraic immunity of a Boolean function f ∈ Bn on the set
S ⊂ Fn

2 , denoted as AIS(f), is defined as:

AIS(f) = min
g 6=0 over S

{deg(g) | fg = 0 or (f + 1)g = 0}.

For S = Ek,n we denote AIEk,n
(f) by AIk(f) and call it weightwise algebraic

immunity.

Definition 6 (Walsh transform and restricted Walsh transform). Let
f ∈ Bn be a Boolean function, its Walsh transform Wf at a ∈ Fn

2 is defined as:

Wf (a) =
∑
x∈Fn

2

(−1)f(x)+a·x.

Let f ∈ Bn, S ⊂ Fn
2 , its Walsh transform restricted to S at a ∈ Fn

2 is defined as:

Wf,S(a) =
∑
x∈S

(−1)f(x)+a·x.

For S = Ek,n we denote Wf,Ek,n
(a) by Wf,k(a).



For ease of notation, we will denote the inner product a · x =
∑n

i=1 aixi by
ax.

Property 1 (WAPB functions and restricted Walsh transform). Let n ∈ N∗,
f ∈ Bn is WAPB if and only if: ∀k ∈ [0, n], Wf,k(0n) = 0 if |Ek,n| is even, ±
1 otherwise. If n = 2m with m ∈ N∗, f ∈ Bn is WPB if and only if:

Wf,0(0n) = 1, Wf,n(0n) = −1, and ∀k ∈ [1, n− 1], Wf,k(0n) = 0.

Definition 7 (Nonlinearity and weightwise nonlinearity). The nonlin-
earity NL(f) of a Boolean function f ∈ Bn, where n is a positive integer, is the
minimum Hamming distance between f and all the affine functions in Bn:

NL(f) = min
g, deg(g)≤1

{dH(f, g)},

where g(x) = a · x+ ε, a ∈ Fn
2 , ε ∈ F2. The nonlinearity can also be defined from

the Walsh transform:

NL(f) = 2n−1 − 1

2
max
a∈Fn

2

|Wf (a)|.

For k ∈ [0, n] we denote NLk the nonlinearity on the slice k, the minimum
Hamming distance between f restricted to Ek,n and the restrictions to Ek,n of
affine functions over Fn

2 . Accordingly:

NLk(f) = min
g, deg(g)≤1

|suppk(f + g)|.

Property 2 (Nonlinearity on the slice, adapted from [4], Proposition 6). Let
n ∈ N∗, k ∈ [0, n], for every n-variable Boolean function f over Ek,n:

NLk(f) =
|Ek,n|

2
−

maxa∈Fn
2
|Wf,k(a)|
2

.

2.2 Orders

In this part we recall the notion of order. This notion is the key concept for the
new constructions of WPB and WAPB functions we present in the article.

Definition 8 (Order). A binary relation � on a set X is called partial order
if � is reflexive, transitive and antisymmetric. Moreover, � is a total order if
for all a, b ∈ X it holds a � b or b � a.

We give two examples of orders on n-length binary strings, more examples
can be found in e.g. [36] that also considers order on sets of fixed Hamming
weight:

– Lexicographic, given a, b ∈ Fn
2 as a = a1, . . . , an and b = b1, . . . , bn, a � b if

and only if ai < bi on the first index i ∈ [1, n] such that ai 6= bi, or a = b.
– Cool [34], a first element of Fn

2 is chosen and a successor rule is used to
determine the following element, allowing to generate the 2n elements with
no repetition. The successor rule for a1, a2, . . . , an is: Let i be the minimum
value such that (ai, ai+1) = (1, 0) and i > 1. If i exists, then rotate i bits,
otherwise flip a1 (that is, replace a1 by a1 ⊕ 1) and then rotate n− 1 bits.



2.3 Krawtchouk polynomials

We use Krawtchouk polynomials and some of their properties to prove one of
our results, we give necessary preliminaries here and refer to e.g. [22] for more
details.

Definition 9 (Krawtchouk Polynomials). The Krawtchouk polynomial of

degree k, with 0 ≤ k ≤ n is given by: Kk(`, n) =

k∑
j=0

(−1)j
(
`

j

)(
n− `
k − j

)
.

Property 3 (Krawtchouk polynomials relation). Let n ∈ N∗ and k ∈ [0, n], the
following hold: Kk(`, n) is the value of the restricted Walsh transform on Ek,n in
0n of any n-variable linear function a · x such that wH(a) = `.

Proof. Let a such that wH(a) = `, the linear function a · x has the following
restricted Walsh transform on Ek,n by Definition 6:

Wa·x,k(0n) =
∑

x∈Ek,n

(−1)a·x =
∑̀
j=0

∑
x∈Ek,n

|supp(a)∩supp(x)|=j

(−1)a·x

=
∑̀
j=0

(−1)j
∑

x∈Ek,n
|supp(a)∩supp(x)|=j

1 =
∑̀
j=0

(−1)j
(
`

j

)(
n− `
k − j

)
= Kk(`, n)

2.4 Tang-Liu WPB functions

We recall the construction of WPB functions from Tang and Liu [37] and one on
its properties. We use these results to prove the algebraic immunity of special
cases of our main constructions.

Definition 10 (TL WPB construction (adapted from [37], Construc-
tion 1)). Let m ∈ N∗ and n = 2m ≥ 4, a TL WPB Boolean function h on n
variables is such that:

– h(0n) = 0 and h(1n) = 1,
– h(x, y) = 0 if wH(x) < wH(y),
– h(x, y) = 1 if wH(x) > wH(y),

– the cardinality of Uj = supp(h)∩
{

(x, y) ∈ F2m−1

2 × F2m−1

2 : wH(x) = wH(y) = j
}

is exactly
(
2m−1

j

)2
/2 for all j such that 0 < j < 2m−1.

Remark 1. While Definition 10 may appear quite different from the original
paper, it is equivalent when considering the restriction that n be a power of two,
and the values in 0n and 1n imposed by Definition 3.

Property 4 (TL WPB functions properties [37]). Let m ∈ N∗ and n = 2m, a
n-variable TL function hn has optimal algebraic immunity AI(hn) = n

2 .



3 Constructions based on total orders

We present our two main constructions of weightwise perfectly balanced
functions based on the notion of order. First, we introduce Construction 1, which
utilizes an order for each length of bit strings ranging from 2 to 2m−1 and is
constructed recursively. Then, we present Construction 2, which is defined using
only two orders. Finally, we analyze the nonlinearities of the WPB functions
generated by these constructions. We provide a lower bound on the nonlinearity
and the weightwise nonlinearities of all functions within these families.

3.1 Recursive construction

Definition 11 (Construction 1). Let m ∈ N∗, and for i ∈ [0,m− 1] �i be a
total order on the set of 2i-length binary strings.

Let fm be the 2m-variable function defined as:

– fm(02m) = 0, fm(12m) = 1,
–

fm(x, y) =

fm−1(x) if x = y,
0 if x ≺m−1 y,
1 if y ≺m−1 x,

where x, y ∈ Fm−1
2 .

Theorem 1. Let fm defined as in Definition 11, fm is weightwise perfectly
balanced.

Proof. We prove it by recursion. First, f1(x, y) takes the value 0 in (0, 0) and 1
in (1, 1) since by definition fm(02m) = 0 and fm(12m) = 1. For the two elements
(x, y) ∈ Fm

2 such that x 6= y, that is E1,n, it holds 0 ≺0 1 or 1 ≺0 0, hence f1
takes the value 1 on exactly one of them. Consequently f1 is WPB, which proves
the basis of the recursion.

Then, if for j ∈ [1,m − 1] fj is WPB we show that fj+1 is also WPB. We
denote n = 2j+1, fj+1(x, y) takes the value 0 in (0n) and 1 in (1n) by definition.
Then, for any weight k ∈ [1, n − 1] the set Ek,n can be split in the two sets
A = {(x, y) ∈ Ek,n |x = y} and B = {(x, y) ∈ Ek,n |x 6= y}. On the set A,
which is empty when k is odd, fj+1(x, y) takes the value of fj(x), and since

{x ∈ Fn/2
2 | (x, x) ∈ A} = Ek/2,n/2, the weightwise perfect balancedness of fj

implies the balancedness of fj+1 on A. Finally, the set B can be split in pairs
(x, y) and (y, x) (since all elements of B are such that x 6= y). For each pair,
either x ≺j y or y ≺j x hence fj+1(x, y) = 1 + fj+1(y, x). Accordingly, fj+1 is
balanced on each of these pairs, hence on B, and therefore on the full slice Ek,n.
It allows to conclude the proof by recursion, fm is WPB.

Proposition 1. Let m ∈ N∗ and, the number Cm of 2m-variable WPB functions
from the family of Definition 11 is:

Cm =

m−1∏
i=0

22
i

!.



Proof. First, we note that if two functions f and g from the family are defined
with a different order for i in [0,m− 1] there exist two elements x and y in F2i

2

such that x ≺f,i y and y ≺g,i x (where the subscript f or g indicate the order
used in the definition of f or g respectively). Then, by Definition 11 f(x, y) = 0
and g(x, y) = 1, hence f and g are different functions. Therefore, the quantity of
different WPB functions from this family is the product, with index i ranging on
the integers between 1 and m, of the number of total orders over binary strings
of length 2i−1. Since there are n! possible total orders on a set of size n, it gives
the final result:

∏m−1
i=0 22

i

!.

3.2 Construction based on two orders

Definition 12 (Construction 2). Let m ∈ N∗, and � be a total order on the
set of 2m−1-length binary strings. Let �′ be a total order on the set of 2m−1-length
binary strings such that for all k ∈ [1, 2m−1 − 1] exactly half of the elements of
Hamming weight k are in the smallest half. We denote by u the 2m−2-th element
in the order �′.

Let gm be the 2m-variable function defined as:

– gm(02m) = 0, gm(12m) = 1,

–

gm(x, y) =

0 if x ≺ y,
1 if y ≺ x,
0 if x �′ u, 1 otherwise if x = y,

where x, y ∈ Fm−1
2 .

Theorem 2. Let fm as defined in Definition 12, fm is weightwise perfectly
balanced.

Proof. We denote n = 2m. By definition gm(02m) = 0 and gm(12m) = 1, so we
focus on the balancedness of gm on the slices Ek,n for k ∈ [1, n − 1]. Each slice
Ek,n can be written as A∪B where A is the set of elements such that x = y, that

is A = {(x, x) |x ∈ Fn/2
2 } ∩ Ek,n, and B is the set of elements such that x 6= y,

that is B = {(x, y) |x, y ∈ Fn/2
2 , x 6= y} ∩ Ek,n. By construction A ∩B = ∅.

First, we show that gm is balanced over A. We remark that |A| = |Ek/2,n/2|
and more precisely {x | (x, x) ∈ A} = Ek/2,n/2. By definition of �′ we have
|{x ∈ Ek/2,n/2 |x �′ u}| = |Ek/2,n/2|/2, hence gm is balanced on A.

Then, we prove the balancedness on B. B can be partitioned into set of pairs
(x, y) and(y, x) and since x ≺ y or y ≺ x since x 6= y, gm is balanced on all the
pairs and therefore on all B. Finally, gm is balanced on A ∪ B = Ek,n for all
k ∈ [1, n− 1] which allows to conclude gm is WPB.



Proposition 2. Let m ∈ N∗, the number Dm of 2m-variable WPB functions
from the family of Definition 12 is:

Dm = 22
m−1

!×
2m−1−1∏

k=1

( (2m−1

k

)
1
2

(
2m−1

k

)).
Proof. First, using the same argument as for Proposition 1, a different order
for � gives a different function. Then, two functions f and g with only �′
different can still be the same function if and only if for each k ∈ [1, n/2 − 1]
(where n = 2m) the same half of Ek,n/2 is in the smallest half. Indeed, if for all
k ∈ [1, n/2 − 1], the sets {x ∈ Ek,n/2 |x �′f uf} and {x ∈ Ek,n/2 |x �′g ug} are

equal then f(x, x) = g(x, x) for all x ∈ Fn/2
2 . And since we assumed �f=�g, for

all (x, y) ∈ Fn
2 |x 6= y we have f(x, y) = g(x, y) therefore f = g. Conversely, if

there exists k ∈ [1, n/2 − 1] such that x ∈ Ek,n satisfies x �′f uf and x 6�′g ug
(without loss of generality) then f(x, x) = 0 and g(x, x) = 1, proving that f 6= g.

Finally, we derive the number of different functions, combining the number
of different total order on binary strings of length 2m−1 and the number of
partitions of Ek,2m−1 in two parts of same size:

Dm = 22
m−1

!×
2m−1−1∏

k=1

( (2m−1

k

)
1
2

(
2m−1

k

)).

We study the nonlinearity and algebraic immunity of these families. First,
we show a lower bound on the nonlinearity of any function from the two
constructions. Then, we give a lower bound on the weightwise nonlinearity of the
WPB constructions in terms of Krawtchouk polynomials. Finally, we address the
AI of the first construction in Section 4, exhibiting WPB functions with minimal
and maximal AI.

3.3 A nonlinearity lower bound

Theorem 3. Let m ∈ N∗, n = 2m and f be a function from the constructions
of Definition 11 or Definition 12, then: NL(f) ≥ 2n−2 − 2n/2−1.

Proof. We compute the Walsh transform of f . For all c ∈ Fn
2 :

Wf (c) =
∑
z∈Fn

2

(−1)f(z)+cz

=
∑

x∈Fn/2
2

(−1)f(x,x)+(a+b)x +
∑

x∈Fn/2
2 , y∈Fn/2

2 \{x}

(−1)f(x,y)+ax+by,

where (a, b) = c, that is a denotes the first n/2 bits of c and b denotes the second
half.



First, we can bound the absolute value of the first term: |
∑

x∈Fn/2
2

(−1)f(x,x)+(a+b)x| ≤
2n/2. Then, we rewrite the second term:

C =
∑

x∈Fn/2
2 , y∈Fn/2

2 \{x}

(−1)f(x,y)+ax+by

=
1

2

∑
x∈Fn/2

2

y∈Fn/2
2 \{x}

(−1)f(x,y)+ax+by +
1

2

∑
x∈Fn/2

2

y∈Fn/2
2 \{x}

(−1)f(x,y)+ax+by

=
1

2

∑
x∈Fn/2

2 , y∈Fn/2
2 \{x}

(
(−1)f(x,y)+ax+by + (−1)f(y,x)+ay+bx

)
=

1

2

∑
x∈Fn/2

2 , y∈Fn/2
2 \{x}

(−1)f(x,y)
(
(−1)ax+by − (−1)ay+bx

)
.

Then, to bound |C|, we determine the cardinal of the set S = {(x, y) |x ∈
Fn/2
2 , y ∈ Fn/2

2 \ {x}, (−1)ax+by − (−1)ay+bx = 0}. The condition (−1)ax+by −
(−1)ay+bx = 0 is equivalent to ax+by = ay+bx (mod 2), that is (a+b)(x+y) = 0

(mod 2). First, note that if a = b then |S| = |{(x, y) |x ∈ Fn/2
2 , y ∈ Fn/2

2 \{x}}| =
2n/2 · (2n/2 − 1). Hence we focus on the case d = a+ b 6= 0n/2.

The addition by a constant y ∈ F`
2, ψy, defined by ψy(x) = x+y (for x ∈ F`

2)
is a bijection over F`

2. Then, the image of ψy(x) for x ∈ F`
2 \ {y} is F`

2 \ {0`}.
Accordingly, the sum (x+y) such that x ∈ F`

2, y ∈ F`
2 \{x} takes each element of

F`
2 \ {0`} exactly 2` times. Since for d 6= 0` we have |{x ∈ F`

2 | d · x = 0}| = 2`−1

and d ·0` = 0 we obtain |S| = 2n/2(2n/2−1−1) = 2n−1−2n/2. It allows to bound
|C|:

|C| = |1
2

∑
x∈Fn/2

2 , y∈Fn/2
2 \{x}

(−1)f(x,y)
(
(−1)ax+by − (−1)ay+bx

)
|

=
1

2
|

∑
x∈Fn/2

2 , y∈Fn/2
2 \{x}

(x,y)6∈S

2(−1)f(x,y)+ax+by +
∑

x∈Fn/2
2 , y∈Fn/2

2 \{x}
(x,y)∈S

0|

≤ 1

2
|2
(

2n/2(2n/2 − 1)− 2n−1 + 2n/2
)
| = |2n − 2n/2 − 2n−1 + 2n/2| = 2n−1

Finally, using the relation between nonlinearity and Walsh transform (Defi-
nition 7) we obtain:

NL(f) = 2n−1 − 1

2
max
c∈Fn

2

|Wf (c)| ≥ 2n−1 − 1

2

(
2n−1 + 2n/2

)
= 2n−2 − 2n/2−1.

We remark that the bound of Theorem 3 is half of the covering radius bound,
so it cannot guarantee the nonlinearity of these functions is close to optimal.



Nevertheless, this nonlinearity bound is more than sufficient for functions used
in the context of FLIP [26] or FiLIP [25] based on their security analyses.

Theorem 4. Let m ∈ N∗, n = 2m and f be a function from the constructions
of Definition 11 or Definition 12, then, for all k ∈ [0, n]:

NLk(f) ≥ 1

4

(
n

k

)
−
(n

2
k
2

)
− 1

2
max
`∈[1,n]

|
k∑

t=0

Kt(`,
n

2
)Kk−t(`,

n

2
)|.

Proof. We compute the restricted Walsh transform of f on Ek,n. For all c ∈ Fn
2 :

Wf,k(c) =
∑

z∈Ek,n

(−1)f(z)+cz

=
∑

x∈Ek/2,n/2

(−1)f(x,x)+(a+b)x +
∑

(x,y)∈Ek,n, x 6=y

(−1)f(x,y)+ax+by

=
∑

x∈E k
2
, n
2

(−1)f(x,x)+(a+b)x +

k∑
t=0

∑
x∈Et,n/2, y∈Ek−t,n/2

x6=y

(−1)f(x,y)+ax+by

=
∑

x∈E k
2
, n
2

(−1)f(x,x)+(a+b)x +
1

2

k∑
t=0

∑
x∈Et, n

2
y∈Ek−t, n

2
\{x}

(−1)f(x,y)
(
(−1)ax+by − (−1)ay+bx

)

where (a, b) = c, that is a denotes the first n/2 bits of c and b denotes the second
half. Similarly, (x, y) = z, where x denotes the first n/2 variables of z and y the
second half.

Similarly to the proof of Theorem 3, we are looking for the number of elements
(x, y) such that (−1)ax+by − (−1)ay+bx = 0. This is equivalent to the number of
elements (x, y) such that (a + b)(x + y) = 0 mod 2 where this time x ∈ Et,n/2

and y ∈ Ek−t,n/2. Denoting a + b as d we have that all elements lead to 0 if
d = 0n/2, for the other values of d we determine it in function of ` = wH(d):

|Sd| = |{x ∈ Et,n2
, y ∈ Ek−t,n2 | (x+ y)d = 0}|

= |{x ∈ Et,n2
, y ∈ Ek−t,n2 |xd = yd = 0}|+ |{x ∈ Et,n2

, y ∈ Ek−t,n2 |xd = yd = 1}|
= |{x ∈ Et,n2

|xd = 0}||{y ∈ Ek−t,n2 | yd = 0}|+ |{x ∈ Et,n2
|xd = 1}||{y ∈ Ek−t,n2 | yd = 1}|



Then, we determine |{x ∈ Et,n/2 |xd = 0}| using the definition of Krawtchouk
polynomials (Definition 9):

|{x ∈ Et,n/2 |xd = 0}| =
t∑

j=0
j even

(
`

j

)(
n/2− `
t− j

)

=
1

2

 t∑
j=0

j even

(
`

j

)(
n/2− `
t− j

)
+

t∑
j=0

(
`

j

)(
n/2− `
t− j

)
−

t∑
j=0

j odd

(
`

j

)(
n/2− `
t− j

)
=

1

2

Kt(`, n/2) +

t∑
j=0

(
`

j

)(
n/2− `
t− j

) =
1

2

(
Kt(`, n/2) +

(
n/2

t

))
,

where the last equation comes from the Vandermonde convolution. Using similar
formulas for the other sets we obtain:

|Sd| =
1

4

((n
2

t

)
+ Kt(`,

n

2
)

)(( n
2

k − t

)
+ Kk−t(`,

n

2
)

)
+

1

4

((n
2

t

)
− Kt(`,

n

2
)

)(( n
2

k − t

)
− Kk−t(`,

n

2
)

)
=

1

4

(
2

(n
2

t

)( n
2

k − t

)
+ 2Kt(`,

n

2
)Kk−t(`,

n

2
)

)
.

Using the value of |Sd| we can derive an lower bound on |Wf,k(c)|:

|Wf,k(c)| = |
∑

x∈Ek/2,n/2

(−1)f(x,x)+(a+b)x +
1

2

k∑
t=0

∑
x∈Et,n/2

y∈Ek−t,n/2\{x}

(−1)f(x,y)
(
(−1)ax+by − (−1)ay+bx

)
|

≤
(
n/2

k/2

)
+ |1

2

k∑
t=0

∑
x∈Et,n/2, y∈Ek−t,n/2

x6=y

(−1)f(x,y)
(
(−1)ax+by − (−1)ay+bx

)
|

≤
(
n/2

k/2

)
+ |1

2

k∑
t=0

 ∑
x∈Et, n

2
, y∈Ek−t, n

2
x 6=y, (x,y)∈Sd

(−1)f(x,y)(0) +
∑

x∈Et, n
2

, y∈Ek−t, n
2

x6=y, (x,y)6∈Sd

2(−1)f(x,y)+ax+by

 |
≤
(n

2
k
2

)
+ |1

2

(
k∑

t=0

2

((n
2

t

)( n
2

k − t

)
− 1

2

(n
2

t

)( n
2

k − t

)
− Kt(`,

n

2
)Kk−t(`,

n

2
)

))
|+ |1

2
2

(n
2
k
2

)
|

≤ 2

(n
2
k
2

)
+ |

k∑
t=0

(
1

2

(n
2

t

)( n
2

k − t

)
− Kt(`,

n

2
)Kk−t(`,

n

2
)

)
|

≤ 2

(n
2
k
2

)
+

1

2

(
n

k

)
+ |

k∑
t=0

Kt(`,
n

2
)Kk−t(`,

n

2
)|,



where the last equation comes from Vandermonde’s convolution.

Finally, we can give the bound on the NLk using the relation with the
restricted Walsh transform:

NLk(f) =
1

2

(
n

k

)
− 1

2
max
c∈Fn

2

|Wf,k(c)|

≥ 1

2

(
n

k

)
− 1

2
max
`∈[1,n]

(
2

(n
2
k
2

)
+

1

2

(
n

k

)
+ |

k∑
t=0

Kt(`,
n

2
)Kk−t(`,

n

2
)|

)

≥ 1

4

(
n

k

)
−
(n

2
k
2

)
− 1

2
max
`∈[1,n]

|
k∑

t=0

Kt(`,
n

2
)Kk−t(`,

n

2
)|.

4 Concrete constructions and parameters

4.1 WPB from popular orders

We can take different orders to compare the properties reached in practice
by the construction of Definition 11. For example we will consider the orders
lexicographic and cool [36]. For these two cases we use the lexicographic order
(respectively cool order taking 0 as the first element) to define the orders on
the 2i-length binary strings for i ∈ [0,m − 1]. We give the properties of the
produced WPB functions in 8 and 16 variables in Table 1 and 2, (in our code,
binary strings are encoded as integers, considering the least significant bit in
position n). We observe that most of the parameters of the function given by
the cool order are better than the one given by the lexicographic order. The AI
of the construction from the lexicographic order is the minimal possible for a
WPB function in more than 2 variables (see [11], Theorem 1). In the following
proposition we show that any WPB function f built from Definition 11 or 12
with the lexicographic order as ≺m−1 has AI only 2.

Function res deg NL AI NL2 NL3 NL4 NL5 NL6 AI2 AI3 AI4 AI5 AI6
Lex 0 6 60 2 4 13 12 13 4 1 2 2 2 1
Cool 0 7 84 3 4 12 20 14 6 1 2 2 2 2

Table 1. Cryptographic parameters of Construction 1 in 8 variables instantiated with
the lexicographic order (Lex) and the cool order (Cool)



Function res NL NL2NL3NL4 NL5 NL6 NL7 NL8 NL9 NL10NL11NL12NL13NL14

Lex 0 16316 24 150 484 11831987271729802717 1987 1183 484 150 24

Cool 0 26420 24 56 526 12043057322048043222 3001 1162 652 126 26

Functiondeg AI AI2 AI3 AI4 AI5 AI6 AI7 AI8 AI9 AI10 AI11 AI12 AI13 AI14
Lex 14 2 1 2 2 2 2 2 2 2 2 2 2 2 1

Cool 15 7 1 2 3 3 4 4 4 4 4 3 3 2 2
Table 2. Cryptographic parameters of Construction 1 in 8 variables instantiated with
the lexicographic order (Lex) and the cool order (Cool)

Proposition 3. Let m ∈ N, m ≥ 2, and f be a Boolean function from
Construction 1 with the lexicographic order as �m−1 or Construction 2 with
the lexicographic order as �, then f satisfies:

AI(f) = 2, and ∀k ∈ [1, 2m − 1]AIk(f) ≤ 2.

Proof. First we show the result on the algebraic immunity. We denote each input
of F2m

2 as (x, y) = (x1, . . . , xr, y1, . . . , yr), where r = 2m−1. When x 6= y both
constructions use the lexicographic order on x and y to determine the output.
By definition of the lexicographic order (Definition 8), if x1 = 1 and y1 = 0 then
y � x and f(x, y) = 1, if x1 = 0 and y1 = 1 then x � y and f(x, y) = 0. Then,
the function g(x, y) = (x1+y1)(1+x1) = x1y1+y1 is non null and an annihilator
of f . Finally, since deg(g) = 2 and the algebraic immunity of a WPB function
in more than 2 variables is at least 2 ( [11], Theorem 1), it gives the algebraic
immunity of f .

Regarding the weightwise algebraic immunity, we show that the function
g is not constant on Ek,2m for k ∈ [1, 2m − 1], therefore it is also a non null
annihilator of f on the slice, implying AIk(f) ≤ 2. We focus on the values taken
by x1 and y1, g takes the value 1 when x1 = 1 + y1 = 0 and the value 0 when
x1 = 1+y1 = 1. Therefore, using an element (x′, y′) of Hamming weight k−1 (for
each k) to instantiate the 2m − 2 other variables, we obtain (0, x′, 1, y′) ∈ Ek,2m

and (1, x′, 0, y′) ∈ Ek,2m such that g(0, x′, 1, y′) 6= g(1, x′, 0, y′) hence g is not
constant on Ek,2m . It allows us to conclude AIk(f) ≤ 2.

Proposition 3 can be extended to other orders than the lexicographic one,
such as reverse lexicographic. Indeed, if for �m−1 or � there is one position i
such that f(x, y) = 1 + f(x + ei, y + ei) (where ei denotes the vector having a
one only in position i) when xi 6= yi then the same reasoning applies, and the
function admit a degree two annihilator. The properties of the functions given in
Table 2 are low, compared for example with h16 in [10] which has degree 14, AI
8, and better nonlinearities. In the next part we study different orders leading
to better degree and algebraic immunity.

4.2 WPB from weightwise orders

In this part we consider the notion of weightwise order, i.e. an order � that
satisfies for all x ∈ Fn

2 and y ∈ Fn
2 if w(x) < w(y) then x ≺ y. Note that the



graded lexicographic order is an example of weightwise order. First, we show
that any function built using Construction 1 with a weightwise order for �m−1
or Construction 2 with a weightwise order as � has optimal AI. Then, we show
that these WPB functions are a (strict) subset of TL functions. Finally, we give
the parameters of 2 functions in 8 and 16 variables.

Proposition 4. Let m ∈ N, m ≥ 2, and f be a Boolean function from
Construction 1 with a weightwise order as �m−1 or Construction 2 with a
weightwise order as �, then f satisfies: AI(f) = 2m−1.

Proof. The proof consists in showing that f belongs to the TL family of
WPB functions, hence Property 4 allows to conclude its algebraic immunity
is 2m−1. We use the characterization of TL functions given in Definition 10,
we use the notation n = 2m for simplicity. The first property f(0n) = 0 and
f(1n) = 1 is true since f is WPB by Theorem 1 (respectively Theorem 2 for
Construction 2). The properties f(x, y) = 0 if wH(x) < wH(y). and h(x, y) = 1
if wH(x) > wH(y) are respected since f is build with a weightwise order. The
last property to check is: ∀j ∈ [1, 2m−1 − 1], supp(f) ∩ Aj = |Aj |/2, where

Aj =
{

(x, y) ∈ F2m−1

2 × F2m−1

2 : wH(x) = wH(y) = j
}

.

If f is from Construction 1, then for all x and y such that x 6= y only one
of the two elements between (x, y) and (y, x) is in the support of f . For the
elements (x, x) such that x ∈ Fm−1

2 \ {02m−1 , 12m−1} the value of f is defined
by fm−1 which is WPB by Theorem 1 hence over all x of Hamming weight j,
half are in the support of fm−1 and therefore half of the elements (x, x) are in
the support of f . It allows to conclude supp(f) ∩ Aj = |Aj |/2, hence f is a TL
function.

If f is from Construction 2, as before we have that for all x and y such that
x 6= y only one of the two elements between (x, y) and (y, x) is in the support
of f . For the elements (x, x) such that x has Hamming weight j, by definition
of the order �′ (in Definition 12), f takes the value 0 for half of the values and
1 on the other half. It allows to conclude supp(f) ∩ Aj = |Aj |/2, therefore f is
a TL function.

Remark 2. In the proof of Proposition 4, the AI is derived from the membership
to the TL family. The functions considered in that proposition are a strict subset
of the TL family. For two different elements of Fm−1

2 with the same Hamming
weight, say x and y, only one of the two elements between (x, y) and (y, x) can
be in the support of an order-based WPB function. Conversely, there are TL
functions such that (x, y) and (y, x) are both in the support or in the co-support
since m ≥ 2 (see Definition 10).



Function res deg NL AI NL2 NL3 NL4 NL5 NL6 AI2 AI3 AI4 AI5 AI6
HWlex 0 7 74 4 4 8 14 8 4 1 2 2 2 1
HWcool 0 7 78 4 4 8 18 8 6 1 2 2 2 1

Table 3. Cryptographic parameters of Construction 1 in 8 variables instantiated with
the weightwise lexicographic order HWlex and weightwise cool order (HWcool)

Function res NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12 NL13 NL14

HWlex 0 23276 24 112 564 1120 2525 3152 3964 3152 2525 1120 564 112 24

HWcool 0 23544 24 112 578 1120 2595 3152 4042 3152 2567 1120 590 112 26

Functiondeg AI AI2 AI3 AI4 AI5 AI6 AI7 AI8 AI9 AI10 AI11 AI12 AI13 AI14
HWlex 14 8 1 2 2 3 3 4 4 4 3 3 2 2 1

HWcool 14 8 1 2 2 3 3 4 4 4 3 3 2 2 1
Table 4. Cryptographic parameters of Construction 1 in 16 variables instantiated with
the weightwise lexicographic order (HWlex) and weightwise cool order (HWcool).

Both functions with parameters displayed in Table 3 and 4 have better degree
and algebraic immunity than the one from Section 4.1. Regarding nonlinearity
and weightwise nonlinearities, the values are similar or worse.

We also remark that for k odd any WPB function produced with a weightwise
order with Construction 1 or Construction 2 will have NLk and NLn−k equal.
This comes from the fact that for these values of k the two parts x and y
cannot have the same Hamming weight, then f takes the opposite value on
(x, y) and (x, y) + 12m for all (x, y) ∈ Ek,n. Therefore, the distance between
an affine function a(x, y) + ε and f over Ek,n is the same as the one between
a((x, y)+12m)+ε+1 and f over En−k,n. Regarding the case k even, x and y can
have the same Hamming weight, and it this case the relation between f(x, y)
and f((x, y) + 12m) is not constant.

4.3 Orders from a field representation

We consider orders that come from a different representation of Fn
2 , as it has

been fruitful to build Boolean function with optimal algebraic immunity. Various
constructions using the univariate representation [3,17,33,39] (as functions from
F2n to F2) or modifications of these constructions [19, 20], give families with
optimal algebraic immunity and other good cryptographic properties such as
high algebraic degree and good nonlinearity. The Carlet-Feng construction for
example identifies Fn

2 to F2n and for α a primitive element of F2n , the function f
is defined by its support: 0 and αi for i ∈ [0, 2n−1 − 2]. Similarly, we identify Fr

2

to F2r and define the order using the consecutive powers of α, as in the following
definition:



Definition 13 (field order). Let r ∈ N∗, for s ∈ N such that s ≤ 2r− 2 and α
a primitive element of Fr

2, we call field order defined by α and s the total order
over Fr

2 given by: αs ≺ αs−1 ≺ . . . ≺ α2r−2 ≺ 0 ≺ 1 ≺ . . . ≺ αs−2 ≺ αs−1.

For WPB functions we use field orders for r powers of two only. In Table 5 we
give the parameters of some 8-variable WPB functions obtained from the field
representation. For these experiments (using Sage math) we took α the root of
X4 + X + 1 to build F16 and β the root of X2 + X + 1 to build F4. The value
t corresponds to the choice for the order used on the strings of length 2, and s
for the one of length 4.

Value t Value s res deg NL AI NL2 NL3 NL4 NL5 NL6 AI2 AI3 AI4 AI5 AI6
0 0 0 7 78 4 6 13 20 18 8 1 2 3 2 2

0 4 0 7 92 4 4 8 20 12 8 1 2 2 2 2

0 6 0 7 88 4 6 15 20 18 6 2 2 2 2 2

1 1 0 7 90 4 6 12 24 18 8 1 2 2 2 2
Table 5. Cryptographic parameters of Construction 1 with the field representation,
n = 8.

u t s res NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12 NL13 NL14

0 0 0 0 30196 26 161 634 1770 3518 5062 5822 5185 3540 1848 725 196 34

0 0 128 0 30306 40 204 765 1814 3484 5138 5875 5158 3514 1819 743 182 35

1 11 111 0 30332 38 219 758 1887 3511 5041 5699 5105 3601 1879 702 189 36

u t s deg AI AI2 AI3 AI4 AI5 AI6 AI7 AI8 AI9 AI10 AI11 AI12 AI13 AI14
0 0 0 15 8 1 2 3 4 5 6 6 6 5 4 3 2 2

0 0 128 15 8 2 3 4 4 5 6 6 6 5 4 3 2 2

1 11 111 15 8 2 3 3 4 5 6 6 6 5 4 3 2 2
Table 6. Cryptographic parameters of Construction 1 with the field representation,
n = 16.

From Table 5 and 6 we observe that the obtained functions have optimal
degree (n− 1 for a balanced function) and optimal algebraic immunity (dn/2e).
Their weightwise algebraic immunities are at least as good as the ones of the
functions built in Section 4.1 and Section 4.2, with a neat improvement for the
medium weights in 16 variables. We display in green the values that reach the
upper bound on the weightwise algebraic immunity min{e ∈ N | 2

(
n
e

)
>
(
n
k

)
}

( [4], Corollary 9), we observe that the weightwise AI of the function we test
are optimal on the medium weights (from 6 to 10) in 16 variables. Regarding
the nonlinearity and weightwise nonlinearities, in 8 variables there is always a
function from Table 5 with a better value than the functions with parameters
exhibited in Section 4.1 and 4.2. In 16 variables, the 3 WPB functions with



parameters displayed in Table 6 always have better nonlinearity and weightwise
nonlinearities than the other functions.

To compare the properties of these functions to the state of the art, we
summarize in Table 7 and 8 the best parameters obtained with our construction
from the field representation and the best known parameters for WPB functions.
In 8 variables, all the functions exhibited so far have resilience order 0, the
degree is 7 for more than half of them (see [12]) and cannot be more. The
maximum nonlinearity comes from [13], the algebraic immunity can be optimal,
4 in this case. The maxima for the NLk come from the functions in [21] except
for k = 4 which comes from [38], the maxima for the AIk come from this work.
In 16 variables, all the functions exhibited so far have resilience order 0 and the
maximal degree is 15. The best known nonlinearity comes from [13]. For the
NLk, the best parameters are from h16 [10] or the one reached by the functions
in Table 8. The maxima for the AIk come from this work.

From these tables, we can conclude that the newly built functions reach
the highest parameters exhibited for all the algebraic properties and resilience.
Regarding nonlinearity, the functions from this section reach a lower value than
a random WPB function (see the experiments in [9], but a value sufficient for
functions used in the context of FLIP [26] or FiLIP [25] based on their security
analyses. The NLk for the 16-variable functions is the best exhibited for most of
the values, but there are only a handful of articles to compare with. To conclude,
the experimental findings suggest that utilizing order-based construction with
field representations stands out as a very promising approach for generating
WPB functions with good cryptographic parameters.

res deg NL AI NL2 NL3 NL4 NL5 NL6 AI2 AI3 AI4 AI5 AI6
Table 5 0 7 92 4 6 15 24 18 8 2 2 3 2 2

SOTA 0 7 116 4 9 22 28 22 9 2 2 3 2 2
Table 7. Best known parameters of WPB functions, n = 8.

res NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12 NL13 NL14

Table 6 0 30196 40 219 765 1887 3518 5138 5875 5185 3601 1879 743 196 36

SOTA 0 32598 40 219 765 1887 3629 5138 5875 5185 3625 1884 743 196 36

deg AI AI2 AI3 AI4 AI5 AI6 AI7 AI8 AI9 AI10 AI11 AI12 AI13 AI14
Table 6 15 8 2 3 4 4 5 6 6 6 5 4 3 2 2

SOTA 15 8 2 3 4 4 5 6 6 6 5 4 3 2 2
Table 8. Best known parameters of WPB functions, n = 16.



5 Generalization to WAPB constructions

We generalize the recursive order-based construction to build WAPB functions,
and we exhibit the parameters of some of them. There are a few secondary
constructions for building WAPB functions as illustrated in [10, 43]. However,
most constructions are primarily focused on WPB functions and do not extend
to WAPB functions.

5.1 An order-based WAPB construction

We propose the following construction of WAPB functions for any value of n ≥ 1.

Definition 14 (Construction 3). Let n ∈ N, n ≥ 2 and for i ∈ [1, blog2(n)c]
�bn/(2i)c be a total order on the set of bn/(2i)c-length binary strings. Let fn be
the n-variable function defined recursively as:

– if n = 1, f1(0) = 0 and f1(1) = 1,
– if n is odd, fn(x1, . . . , xn) = fn−1(x1, . . . , xn−1)
–

fn(x, y) =

fbn/2c(x) if x = y,
0 if x ≺n/2 y,
1 if y ≺n/2 x,

where x, y ∈ Fn/2
2 .

Theorem 5. Let fn defined as in Definition 14, fn is WAPB.

Proof. We prove the result by recursion. First, if n = 1, f1(0) = 0 and f1(1) = 1
hence f1 = x1 is WAPB by definition. Then, we assume that fi is WAPB for all
i ∈ [1, n− 1] such that fi is defined. We consider two cases, n odd and n even.

If n is odd, by construction fn(x1, . . . , xn) = fn−1(x1, . . . , xn−1). In this case
fn can be written using Siegenthaler’s construction as:

fn = xn · fn−1(x1, . . . , xn−1) + (1 + xn) · fn−1(x1, . . . , xn−1).

Using [10] Proposition 2 we have the following relation on the restricted Walsh
transform of fn for all k ∈ [0, n]: Wfn,k(0n) = Wfn−1,k(0n) +Wfn−1,k−1(0n).
Using Property 1 since fn−1 is WAPB we have that both Wfn−1,k(0n) and
Wfn−1,k−1(0n) have absolute value no greater than 1. Since n − 1 is even, at

least one of the binomial coefficients between
(
n−1
k

)
and

(
n−1
k−1
)

is even (
(
m
r

)
with

m even and r odd is even using Lucas’ theorem), hence Wfn,k(0n) ∈ {−1, 0, 1},
and fn is WAPB by Property 1.

If n is even, we rewrite Wfn,k(0n): Wfn,k(0n) = Wfn,A(0n) + Wfn,B(0n),

where A = {Ek,n ∩ {(x, y), x ∈ Fn/2
2 , y ∈ Fn/2

2 , x = y}} and B = {Ek,n ∩
{(x, y), x ∈ Fn/2

2 , y ∈ Fn/2
2 , x 6= y}}. Since fbn/2c(x) = 0 if x ≺n/2 y and 1

if y ≺n/2 x, we get Wfn,B(0n) = 0. Then, note that Wfn,A(0n) = Wfn/2,
n
2

(0n/2),
and since fn/2 is WAPB by assumption, Wfn/2,

n
2

(0n/2) ∈ {−1, 0, 1} hence
Wfn,k(0n) ∈ {−1, 0, 1} which allows to conclude that fn is WAPB in this case
and it finishes the proof.



Remark 3. Note that when Ek,n has an odd parity the value of −1 or +1 ofWf,k

circles back to the values of f1, which leads to having one extra 0 for slices such
that k < n/2 and an extra 1 for k > n/2. Accordingly, the functions generated
by Construction 3 are Special WAPB functions (as introduced in [10]).

We also remark that for m a power of 2, the functions created are the same
WPB functions as the ones from Construction 1 (only the index of the orders
differ, between 0 and m− 1 for Construction 1 corresponding to 20 to 2m−1 for
Construction 3).

Note also that Construction 3 can be generalized to give other WAPB
functions. Defining fn(x1, . . . , xn) as fn−1(x1, . . . , xn−1) when n is odd corre-
sponds to ignoring the last variable to keep even-length bit-strings, it allows to
consider an order comparing the two (same-length) halves. Similarly, any of the
n variables can be ignored at each step where n is odd, giving different WAPB
constructions. Additionally the values of f in 0n and 1n can also be defined
differently at each step to generalize the construction.

5.2 Order-based WAPB construction and experimental results

In this section, we present the parameters of WAPB functions derived from
Construction 3, based on orders previously outlined in Section 4. Notably, for an
odd number n, the function fn is equivalent to fn−1 but includes an additional
mute variable. Consequently, the characteristics of fn can be deduced from those
of fn−1 (for instance, by applying the properties related to the direct sum of fn−1
and the 1-variable null function, see for example [26] Lemma 3). Therefore, our
analysis primarily concentrates on functions with an even number of variables.
Detailed parameters for WAPB functions with 10 variables are provided in
Table 9. Subsequently, we delve into the functions with 12 variables in Table 10
and those with 14 variables in Table 11.

In the tables, “Lex” denotes the lexicographic order applied in Construction 3
across various lengths: 1, 2, 5 for n = 10; 1, 3, 6 for n = 12; and 1, 3, 7 for n = 14.
“Cool” signifies the cool order, detailed in Definition 8. The terms “HWlex” and
“HWcool” are used for weightwise orders as described in Section 4.2. “Fields0”
and “FieldsHalf” represent the field orders from Definition 13, where for the
biggest length, the order is determined with s = 0 or 2n/2−1 respectively, with
0 used for the remaining lengths.

Function res deg NL AINL2 NL3 NL4 NL5 NL6 NL7 NL8 AI2 AI3 AI4 AI5 AI6 AI7 AI8
Lex 0 7 248 2 9 32 45 56 45 32 9 1 2 2 2 2 2 1

Cool 0 9 396 4 9 20 61 62 71 28 10 1 2 3 3 3 2 2

HWlex 0 9 322 5 9 20 53 50 53 20 9 1 2 2 3 2 2 1

HWcool 0 9 354 5 9 20 69 50 65 20 9 1 2 2 3 2 2 1

Fields0 0 9 406 5 9 32 71 90 79 44 13 1 2 3 3 3 3 2

FieldsHalf 0 9 420 5 14 34 81 82 81 34 10 2 2 3 3 3 2 1
Table 9. Cryptographic parameters of Construction 3 in 10 variables.



Function res NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10

Lex 0 1008 12 56 123 186 204 186 123 56 12

Cool 0 1650 12 30 147 202 320 200 173 50 14

HWlex 0 1362 12 40 143 180 258 180 143 40 12

HWcool 0 1430 12 40 163 180 278 180 156 40 14

Fields0 0 1728 14 65 168 216 372 316 180 81 19

FieldsHalf 0 1730 20 64 179 322 384 330 195 71 14

Function deg AI AI2 AI3 AI4 AI5 AI6 AI7 AI8 AI9 AI10
Lex 10 2 1 2 2 2 2 2 2 2 1

Cool 11 5 1 2 3 3 4 3 3 2 2

HWlex 11 6 1 2 2 3 3 3 2 2 1

HWcool 11 6 1 2 2 3 3 3 2 2 1

Fields0 11 6 1 2 3 4 4 4 3 2 2

FieldsHalf 11 6 2 2 3 4 4 4 3 2 1
Table 10. Cryptographic parameters of Construction 3 in 12 variables.

Function res NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12

Lex 0 4064 19 94 275 506 699 792 699 506 275 94 19

Cool 0 6600 19 42 289 532 1103 924 1089 520 354 82 20

HWlex 0 5656 19 70 315 490 893 884 893 490 315 70 19

HWcool 0 5810 19 70 319 490 941 884 931 490 332 70 21

Fieds0 0 6894 21 106 339 704 1233 1452 1314 823 384 122 22

FieldsHalf 0 6976 25 90 384 834 1259 1414 1221 837 407 138 28

Function deg AI AI2 AI3 AI4 AI5 AI6 AI7 AI8 AI9 AI10 AI11 AI12
Lex 11 2 1 2 2 2 2 2 2 2 2 2 1

Cool 12 6 1 2 3 3 4 4 4 3 3 2 2

HWlex 12 7 1 2 2 3 3 4 3 3 2 2 1

HWcool 13 7 1 2 2 3 3 4 3 3 2 2 1

Fieds0 13 7 1 2 3 4 5 5 5 4 3 2 2

FieldsHalf 13 7 2 2 3 4 5 5 5 4 3 2 2
Table 11. Cryptographic parameters of Construction 3 in 14 variables.

The outcomes for WAPB functions mirror those observed in the previous
section for 8-variable and 16-variable WPB functions. We note that across
various cryptographic parameters, WAPB functions utilizing field-based ordering
achieve superior outcomes, particularly in terms of nonlinearities and algebraic
immunities. Specifically, the two field-based constructions significantly outper-
form others in nonlinearity and weightwise nonlinearities, followed by those based
on the cool order, which in turn exhibit better parameters than the remaining
constructions. To the best of our knowledge, no other studies have presented
parameters for WAPB constructions in more than 8 variables, making it difficult
to compare the values reached by these functions beyond between themselves. In



terms of algebraic properties, the degree and AI for the Fields0 and FieldsHalf
constructions are consistently optimal. Highlighted in green are the values that
achieve the upper bound of the weightwise algebraic immunity, indicating that,
particularly for mid-range weights, the field-based functions reach the optimum.
It is important to note that this upper bound may not always be attainable,
suggesting that other values presented in the tables could also be optimal.

6 Conclusion

In this article, we presented two WPB constructions and one WAPB construction
based on the concept of order. Unlike previous approaches for constructing these
functions, we anticipate that these W(A)PB functions will be easier to implement
and will lead to more efficient computations when used in the context of stream
ciphers. Indeed, the ease of implementation and efficiency largely depend on how
effectively the order between two inputs, x and y, can be determined. This, in
turn, hinges on the orders chosen to define the function

In this article, we first demonstrated the general properties of order-based
WPB functions. We introduced two constructions: a recursive one that utilizes
multiple orders (one for each power of 2 up to n/2), and a second one that
employs only two orders. We then counted the WPB functions in these two
families and examined their nonlinearities. Specifically, we provided a lower
bound for the nonlinearity and the weightwise nonlinearities for all functions
within these two families.

Subsequently, we concentrated on specific orders that are commonly used:
lexicographic and cool. We also examined weightwise orders, as well as those
based on field representation. We demonstrated that within these constructions,
some functions, such as those using the lexicographic order, exhibit the lowest
possible algebraic immunity. Conversely, all functions employing weightwise
orders achieve optimal algebraic immunity.

We provided experimental results detailing the parameters of WPB functions
in 8 and 16 variables, along with WAPB functions for n ∈ {10, 12, 14}. We pre-
sented the outcomes for global parameters—such as resilience order, nonlinearity,
degree, and algebraic immunity—as well as weightwise parameters, specifically
NLk and AIk. This more comprehensive experimental study illustrates that order-
based W(A)PB functions can possess robust cryptographic parameters. Notably,
those based on field orders exhibit optimal degree, strong algebraic immunity,
and favorable weightwise algebraic immunities and nonlinearities.

We outline two open questions arising from this work:

– The bound on nonlinearity from Theorem 3 assures that these functions
achieve a nonlinearity that is at least half that of bent functions. It would
be interesting to determine if a better bound could be established for the
entire family or for a specific subfamily of order-based WPB functions.

– In the tables presented in Sections 4.3 and 5, we highlight instances where
functions based on field orders achieve the upper bound of the AIk parameter.



This parameter may be optimal for additional values of k, given that the
upper bound is not proven to be tight. Further investigation into this
criterion is warranted, as currently, very little is known about this variant
of algebraic immunity. To date, the values achieved by W(A)PB functions
have only been exhibited in a limited number of studies, such as [12,37].
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