
Multi-Key Homomorphic Encryption with
Threshold Re-Encryption

Akira Nakashima1, Yukimasa Sugizaki1, Hikaru Tsuchida⋆⋆2, Takuya
Hayashi1, Koji Nuida3, Kengo Mori1, and Toshiyuki Isshiki1

1NEC Corporation, Kanagawa, Japan
{akira-nakashima,yukimasa-sugizaki,takuya-hayashi,

ke-mori.bx,toshiyuki-isshiki}@nec.com
2Saitama Institute of Technology, Saitama, Japan

h tsuchida@sit.ac.jp
3Kyushu University, Fukuoka, Japan

nuida@imi.kyushu-u.ac.jp

Abstract. Fully homomorphic encryption (FHE) is a cryptographic
scheme that allows users to perform arbitrary arithmetic operations over
plaintexts by operations (called homomorphic operations) on ciphertexts
without decryption. A multi-key FHE (MK-FHE) can perform homo-
morphic operations on ciphertexts encrypted with different encryption
keys.

In MK-FHE schemes, to decrypt a ciphertext encrypted with different
users’ keys, users having the corresponding decryption keys run a thresh-
old decryption, which is a combination of each user’s partial decryp-
tion and merging of their results. However, it has a drawback that the
merging process requires communication and hence these users must be
online during the process. Moreover, the computation and communica-
tion costs grow when the number of involved users increases. There is
a previous work to overcome this issue by applying the idea of proxy
re-encryption (PRE), where a proxy can convert a multi-key ciphertext,
using re-encryption keys given by the key holders, into a ciphertext de-
cryptable by a single receiver’s decryption key. However, a collusion of
only an adversarial receiver and the single proxy can reveal the original
user’s decryption key.

To resolve the issue, we propose a new framework of MK-FHE with
threshold PRE. Here we introduce N proxies performing re-encryption
in threshold manner; now the adversarial receiver needs to collude with
all of the N proxies, which becomes more difficult than the previous
single-proxy case. We also propose an instantiation based on the BFV
scheme and prove its security. In addition, we implement our scheme and
measure the running time of its algorithms.

Keywords: Privacy-enhancing technologies · Multi-key homomorphic
encryption · Threshold proxy re-encryption · Secret sharing scheme.

⋆⋆ This work was done when this author worked at NEC Corporation.

2 Nakashima et al.

1 Introduction

1.1 Backgrounds

Fully homomorphic encryption (FHE), one of the privacy-enhancing technolo-
gies [21], is a cryptographic scheme that allows users to perform arbitrary arith-
metic operations over plaintexts by operations on ciphertexts without decryp-
tion. Such operations on ciphertexts are called homomorphic operations. FHE
has attracted worldwide attention, and various communities have carried out
standardization activities in recent years [15, 22, 36]. Mature schemes that are
sometimes mentioned as candidates for standardization include BGV [6], BFV [18],
CGGI [14], and CKKS [13].

Most existing FHE schemes can only perform homomorphic operations on ci-
phertexts encrypted with the same encryption key. Such an FHE scheme is called
single-key FHE (SK-FHE). An FHE that can perform homomorphic operations
on ciphertexts encrypted with different encryption keys is called multi-key FHE
(MK-FHE), which is useful for secure cooperative computation between users,
e.g., cross-organizational data analysis. In MK-FHE, each user encrypts its input
using its encryption key and sends it to a computing server. Then, the computing
server evaluates the function with the users’ encrypted inputs by homomorphic
operations and sends the encrypted evaluation result to the users. Note that the
evaluation result is encrypted by the encryption keys involved in the encryption
of the input. Hence, decrypting it requires all of the involved users’ decryption
keys.

To decrypt the encrypted evaluation result, the users run a threshold decryp-
tion. This procedure allows users to decrypt the ciphertext without revealing
users’ decryption keys by partial decryption, i.e., each user operates on a part
of the ciphertext by using its decryption key and merges partial decryption re-
sults by communicating with each other. Most recently, the National Institute
of Standards and Technology (NIST) has initiated standardization activities on
the threshold decryption in FHE [30].

The threshold decryption requires all the owners of the decryption keys to
be online, which is sometimes difficult to guarantee depending on the commu-
nication environment, each user’s device, and application. It is also undesirable
when a number of users are involved in the computation, in which case more
computations and communications are required for threshold decryption.

To overcome the issue, Yasuda et al. proposed MK-FHE with proxy re-
encryption [37]. They introduced re-encryption keys that allow delegation of
decryption authority between users without revealing the decryption key. The
delegator of the decryption authority creates a re-encryption key for the delega-
tee and sends it to a proxy. The proxy re-encrypts the evaluation results’ cipher-
text encrypted with the users’ encryption keys, including the delegators, into ci-
phertext encrypted with the encryption key of the delegatee, without decrypting
it. The delegatee can obtain the evaluation result by decrypting the re-encrypted
evaluation result with its decryption key without running the threshold decryp-
tion.

Multi-Key Homomorphic Encryption with TRE 3

However, in the scheme of [37], if the delegatee colludes with the proxy who
has the re-encryption key, the decryption key of the delegator may be compro-
mised. If the delegator’s decryption key is compromised, it is possible for the
adversarial delegatee and proxy to perform all the operations that cannot be
performed without using the delegatee’s decryption key, e.g., delegating the del-
egator’s decryption authority to a third party without the delegator’s permission.

1.2 Our Contributions

Table 1. Comparison of Proposed Scheme with Related Works Which Support Proxy
Re-Encryption (#Corruptions: number of corrupted parties from proxies and one
receiver by adversary required for delegator’s decryption key compromise from re-
encryption key. The symbol “ - ” means that an adversary cannot obtain the delegator’s
decryption key from the re-encryption key even if the adversary corrupts any number
of parties other than the delegator.)

Schemes
Is it an

MK-FHE scheme?
#Corruptions

[34, 12]
No

(Not FHE scheme)
-

[26, 16]
No

(SK-FHE)
Two parties

from one proxy and one receiver

[37]
Yes

(MK-FHE [33]
based on GSW [19])

Two parties
from one proxy and one receiver

MK-BFV-TRE
(Ours)

Yes
(MK-FHE [10]

based on BFV [18])

N + 1 parties
from N proxies and one receiver

In this paper, we propose a new framework of MK-FHE with threshold proxy
re-encryption (MK-FHE-TRE). In contrast to MK-FHE with a single proxy
in [37], now a re-encryption key is distributed to multiple proxy servers, and the
re-encryption is jointly performed without reconstructing the re-encryption key.

We also propose an instantiation of MK-FHE-TRE based on the multi-key
variant of BFV [18] (MK-BFV-TRE). It has the following two features. See
Table 1 for a comparison of previous studies and MK-BFV-TRE.

1. MK-BFV-TRE is based on the multi-key BFV (MK-BFV) proposed by Chen
et al. [10], which is a multi-key variant of BFV [18]. BFV is one of the candi-
dates for a standardized FHE scheme. On the other hand, the scheme of Ya-
suda et al. [37] is based on MK-FHE proposed by Peikert and Shiehian [33],
which is a multi-key variant of GSW [19]. GSW is as mature as BFV, but it
has a larger ciphertext size than BFV. Also, while BFV is implemented in
well-known open-source softwares of FHE, e.g., OpenFHE [4] and Microsoft

4 Nakashima et al.

SEAL [35], GSW is not implemented in them. From these viewpoints, being
based on BFV instead of GSW is expected to be practically advantageous.

2. In MK-BFV-TRE, the decryption key of the delegator is not compromised
unless the delegatee colludes with all the proxies. As the number of proxies
increases, the adversary’s attack cost to obtain the delegator’s decryption key
increases. Therefore, MK-BFV-TRE can manage re-encryption keys more
securely than the scheme of Yasuda et al. [37].

We also prove the security of MK-BFV-TRE under the same security as-
sumption for MK-BFV and the underlying secret sharing scheme.

In addition, we implement MK-BFV-TRE for experiments to demonstrate a
relationship between computation and communication costs. By using our im-
plementation, we measure the sizes of keys and ciphertexts and the computation
time for each algorithm of MK-BFV-TRE while varying the number of users and
proxies. For processes involving communication, we also estimate the execution
time by making assumptions about the communication environment while vary-
ing the number of users and proxies. From these experimental results, we believe
that our decryption after our threshold re-encryption is superior to threshold
decryption of [10] when the number of users is much larger than the number of
proxies.

1.3 Technical Overview

We extend MK-BFV by adding proxy re-encryption to it. Next, we realize
MK-BFV-TRE by distributing the re-encryption key among multiple proxies
and modifying the extended MK-BFV with proxy re-encryption so that the re-
encryption is performed without reconstructing the re-encryption key.

How to construct proxy re-encryption. A straightforward method of re-
encryption in FHE is the key-switching technique, which is also employed in
the scheme [37] proposed by Yasuda et al. However, the key-switching technique
accumulates noise in the ciphertext, which is undesirable when complex com-
putations are performed by homomorphic operations or when many users are
involved in computations.

To avoid accumulations of noises by re-encryption via the key-switching tech-
nique, we introduce a novel proxy re-encryption scheme for MK-BFV. In our
proxy re-encryption, apart from the user’s decryption key, we introduce a mask-
ing key to decrypt the re-encrypted ciphertext. The masking key is created by
the delegatee at the time of the re-encryption key creation event for each delega-
tor. The delegator adds the delegatee’s masking key to the delegator’s decryption
key and regards it as the re-encryption key.

Since the masking key is used to decrypt the re-encrypted ciphertext, the
delegatee needs to manage the masking key in addition to the decryption key
which decrypts the ciphertext before re-encryption. That is, we avoid noise ac-
cumulation in the ciphertext by the key-switching technique in exchange for an
increase in the cost of key management by the delegatee.

Multi-Key Homomorphic Encryption with TRE 5

How to distribute re-encryption key. To distribute the re-encryption key
among multiple proxies, we use an additive secret sharing (ASS) over the same
polynomial ring as the ciphertexts modulus of our MK-BFV-TRE. We call the
distributed values among multiple proxies using secret sharing as share. Loosely
speaking, since the decryption procedure of MK-BFV [10] is a simple inner prod-
uct of keys and ciphertexts, only addition between shares and multiplication of
shares and constants can re-encrypt the ciphertext without reconstructing the
re-encryption key.
How to avoid adversarial collusions of proxies and a receiver. Our MK-
BFV-TRE introduces N proxies and employs N -out-of-N ASS ((N,N)-ASS).
Even if N − 1 proxies collude, the re-encryption key cannot be reconstructed by
N − 1 proxies.

If the N proxies collude, the re-encryption key is reconstructed. However,
since the delegator’s decryption key is concealed by the added masking key,
which is a random value, the reconstructed re-encryption key does not reveal
the delegator’s decryption key.

Hence, in our MK-BFV-TRE scheme, the delegator’s decryption key is com-
promised only when the N proxies and one receiver (i.e. the delegatee) collude.

1.4 Related Works

MK-FHE. López-Alt et al. were the first to propose an MK-FHE [24]. Following
the work of [24], various MK-FHE schemes [33, 11, 10, 9] were proposed.

Those MK-FHE schemes require the users with the decryption keys corre-
sponding to the encryption keys involved in the computation to participate in
the threshold decryption. Therefore, the key holders must always be online dur-
ing decryption. In addition, as the number of users involved in the threshold
decryption increases, its computation and communication times increase.
Proxy Re-Encryption (PRE). PRE [5, 3, 8] is a cryptosystem that allows a
proxy to convert a ciphertext for the delegator to that for the delegatee with-
out decrypting it. To convert the ciphertext, the proxy uses a re-encryption key
provided by the delegator instead of the delegator’s decryption key. One of the
desirable properties of PRE is collusion resistance. In collusion-resistant PRE
schemes [32, 17], the adversarial delegatee and proxy cannot obtain the delega-
tor’s decryption key from the re-encryption key even if they collude.

To resolve the problem of the proxy becoming a single point of failure and for
secure management of re-encryption keys, threshold PRE (TPRE) schemes have
been proposed [34, 12]. In TPRE schemes, re-encryption keys are distributed
among multiple proxies. The multiple proxies re-encrypt ciphertexts without
reconstructing re-encryption keys.

However, those PRE and TPRE schemes [5, 3, 8, 32, 12, 17, 34] can neither
perform an unbounded number of homomorphic operations nor homomorphic
operations between ciphertexts encrypted with different keys.
Homomorphic PRE (H-PRE). SK-FHE can only perform homomorphic
operations between ciphertexts encrypted with the same encryption key. H-
PRE [26, 16] uses the conversion of ciphertexts, like PRE, to resolve this issue. In

6 Nakashima et al.

H-PRE schemes, after converting ciphertexts encrypted with different keys to one
that is encrypted with the same encryption key by using re-encryption keys, the
computing server can perform homomorphic operations between converted ci-
phertexts. However, because H-PRE requires re-encryption before homomorphic
operations, the number of required re-encryption keys and the computational
cost of re-encryption increase when the number of inputs and users involved are
large.

2 Preliminaries

2.1 Notations

Unless otherwise stated, we denote binary logarithm by log.
For a power of two n, we let R = Z[X]/(Xn +1). We also let Rq = R/(q ·R)

for an integer q ≥ 2, and let |Rq| be a bit size of an element in Rq, i.e., |Rq| = n ·
⌈log(q)⌉. We denote elements inRq in bold, and for x =

∑N−1
i=0 xi·Xi inRq, we let

|x|∞ = maxi(|xi|). For d-element vectors v = (v1, . . . ,vd) and w = (w1, . . . ,wd)

over Rq, we denote an inner product of two vectors as ⟨v, w⟩ =
∑d

i=1 vi · wi.

We write x
U←− S to sample x uniformly from a set S, and x ← D to sample x

according to a distribution D.

Let k and N be the number of users and proxies, and let Ui and Pj be the
ith user and the jth proxy, respectively. We then let U = {U1, . . . , Uk} and
P = {P1, . . . , PN} be the sets of the users and proxies, respectively.

Throughout this paper, we assume semi-honest adversaries, i.e., adversaries
try to learn information from users’ inputs without deviating from the protocols.
We also assume that each user and proxy is connected via a point-to-point secure
and synchronous communication channel.

2.2 Ring Learning with Errors (RLWE) Problem [25]

A RLWE sample is given as (a · s + e,a) ∈ R2
q for polynomials a

U←− Rq,
s ← χkey, and e ← χerr, where χkey and χerr are key and error distributions,
respectively. For parameters (n, q, χkey, χerr) depending on a security parameter
λ, the decision RLWE problem is to distinguish polynomial number of RLWE
samples from uniformly random elements in R2

q . The BFV, MK-BFV, and our
MK-BFV-TRE schemes are secure under the RLWE assumption, which means
the RLWE problem cannot be solved in polynomial time.

2.3 (N,N)-ASS

For an element x ∈ Rq, we denote the set of (N,N)-ASS shares of x as [x] =
([x]1, . . . , [x]N) where [x]i ∈ Rq. In MK-BFV-TRE, we use the algorithms below
to generate and reconstruct the shares.

Multi-Key Homomorphic Encryption with TRE 7

– [x]← Share(x, Ui): Let Ui ∈ U be a user who holds x. Ui generates x2, . . . , xN
U←− Rq, and sets x1 = x−

∑N
j=2 xj . Then, Ui sets the shares as [x] = ([x]1 =

x1, . . . , [x]N = xN), and sends [x]j to Pj for j = 1, . . . , N . This algorithm
requires one round and |Rq| ·N bits as communication cost.

– x ← Open([x], Ui): Let Ui ∈ U be a user who want to reconstruct the
shares. Pj sends its share [x]j to Ui for j = 1, . . . , N . Then, Ui adds the
shares and obtains x. This algorithm requires one round and |Rq| ·N bits as
communication cost.

2.4 MK-BFV [10]

The MK-BFV scheme is a natural extension of BFV. It is a tuple MK-BFV =
(Setup,DecKeyGen,EncKeyGen,RelinKeyGen,Encrypt,Decrypt,PartDec,Merge) of
probabilistic polynomial time (PPT) algorithms. For each algorithm and proto-
col taking a ciphertext or a set of keys, we let id· be an injective mapping from
{1, . . . , d} to {1, . . . , k} where 1 ≤ d ≤ k.

– pp = (t, n, q, χkey, χerr, χsmdg, k) ← MK-BFV.Setup(1λ): Return the set of
public parameters, where k is the number of users. All the other algorithms
in MK-BFV implicitly take pp as an argument.

– s ← MK-BFV.DecKeyGen(pp): Compute and output a decryption key s ←
χkey.

– (p0,p1)← MK-BFV.EncKeyGen(s): Given a decryption key s, compute and
output an encryption key (p0,p1) = (−s · p1 + e,p1) by sampling p1 ← Rq

and e← χerr.

– rlk{id1,...,idd} ← MK-BFV.RelinKeyGen(sid1 , . . . , sidd): Given a set of d decryp-
tion keys sid1 , . . . , sidd of users Uid1 , . . . , Uidd , generate and output a relin-
earization key rlk{id1,...,idd} for ciphertexts under the keys of the same set of
users. For more details, see [10].

– (c0, ci) ← MK-BFV.Encrypt(p0,p1,m): Given an encryption key (p0,p1)
and a plaintext m ∈ Rt, compute and output a ciphertext (c0, c1) = (∆ ·
(m mod q)+u ·p0+e0,u ·p1+e1) by sampling u← χkey and e0, e1 ← χerr

where ∆ = ⌊q/t⌋.
– m← MK-BFV.Decrypt(sid1 , . . . , sidd , c0, cid1 , . . . , cidd): Given a set of d (1 ≤

d ≤ k) decryption keys sid1 , . . . , sidd of users Uid1 , . . . , Uidd and a corre-
sponding ciphertext (c0, cid1 , . . . , cidd), decrypt the ciphertext and output
the plaintext as m = ⌊(t/q) · ⟨(c0, cid1 , . . . , cidd), (1, sid1 , . . . , sidd)⟩⌉ mod t.

The number of elements in a ciphertext of MK-BFV [10] can be more than
two. This is because the ciphertext is extended before homomorphic operations
in MK-BFV. Precisely, let ct = (c0, cid1 , . . . , cidd) and ct′ = (c′0, c

′
id′1

, . . . , c′id′
d′
) be

two ciphertexts, where 1 ≤ d, d′ ≤ k, and where id· and id′· are injective mapping
from {1, . . . , d} and {1, . . . , d′}, respectively, to {1, . . . , k}. Here, we let d̄ be the
number of users involved in at least either ct or ct′, that is, max(d, d′) ≤ d̄ ≤ k,
and we let īd· be an injective mapping from {1, . . . , d̄} to {1, . . . , k} such that

8 Nakashima et al.

{id1, . . . , idd} ∪ {id′1, . . . , id
′
d′} = {īd1, . . . , īdd̄}. Then, we extend the ciphertexts

as c̄t = (c0, c̄id1 , . . . , c̄idd̄) and c̄t′ = (c′0, c̄
′
īd1

, . . . , c̄′
īdd̄

) as follows.

c̄īdi =

{
cidi if īdi = idi for some 1 ≤ i ≤ d, and

0 otherwise.

c̄′īdi =

{
c′id′i

if īdi = id′i for some 1 ≤ i ≤ d′, and

0 otherwise.

After this extension procedure, homomorphic addition can simply be performed
by adding each element in ciphertexts. Homomorphic multiplication is also pos-
sible by taking a tensor product (also followed by a relinearization operation
with a relinearization key rlk{īd1,...,īdd̄} to shorten the ciphertext).

However, it is not realistic to assume that a single user holds all the de-
cryption keys in the decryption algorithm. In [10], a decryption method with
distributed decryption keys is proposed, which uses the following two algorithms.

– midi ← MK-BFV.PartDec(sidi , cidi): Given a ciphertext element cidi (idi ̸= 0)
and a corresponding decryption key sidi , sample a noise eidi ← χsmdg, and
compute and output a partially-decrypted ciphertext with noise as midi =
cidi · sidi + eidi .

– m← MK-BFV.Merge(c0,mid1 , . . . ,midd): Given the first element c0 in a ci-
phertext and a set of d (1 ≤ d ≤ k) partially-decrypted elementsmid1 , . . . ,midd ,
decrypt the ciphertext and output the plaintext as

m =

⌊
t

q
·

(
c0 +

d∑
i=1

midi

)⌉
mod t.

The error polynomial eidi drawn from a distribution χsmdg is a smudging noise
to prevent leakage of sidi from the sending values [2], where χsmdg has larger
variance than χerr. The MK-BFV.PartDec algorithm is repeated for all elements
in a ciphertext (i = 1, . . . , d). After that, a decryptor runs the MK-BFV.Merge
algorithm, which results in⌊

t

q
·

(
c0 +

d∑
i=1

(cidi · sidi + eidi)

)⌉
mod t.

We can see that the algorithm correctly decrypts the ciphertext as long as the
noise including the smudging ones is smaller than the threshold determined by
pp.

3 MK-FHE-TRE

3.1 Syntax

Our framework, MK-FHE-TRE, extends MK-FHE to enable converting a cipher-
text into one that can be decrypted by a decryptor. After re-encryption, the de-
cryptor can decrypt the ciphertext without using other users’ decryption keys nor

Multi-Key Homomorphic Encryption with TRE 9

communicating with other users. Our MK-FHE-TRE is a tuple MK-FHE-TRE =
(Setup,DecKeyGen,EncKeyGen,RelinKeyGen,Encrypt,ReKeyGen,ReEnc,Decrypt)
of PPT algorithms.

– pp ← MK-FHE-TRE.Setup(1λ): Return the set of public parameters, pp,
including the number of users and proxies, k and N , respectively. All the
other algorithms in MK-FHE-TRE implicitly take pp as an argument.

– ski ← MK-FHE-TRE.DecKeyGen(pp, Ui): Ui ∈ U computes and outputs Ui’s
decryption key ski.

– pki ← MK-FHE-TRE.EncKeyGen(ski, Ui): By using Ui’s decryption key ski,
Ui computes and outputs Ui’s encryption key pki.

– rlk{id1,...,idd} ← MK-FHE-TRE.RelinKeyGen(skid1 , . . . , skidd): Given a set of d
decryption keys skid1 , . . . , skidd of users Uid1 , . . . , Uidd , generate and output a
relinearization key rlk{id1,...,idd} for ciphertexts under the keys of the same
set of users.

– ct{Ui} ← MK-FHE-TRE.Encrypt(pki,m): Given Ui’s encryption key pki and
a plaintext m, an encryptor computes and outputs a ciphertext ct{Ui}. Note
that we describe the extended ciphertexts encrypted by pkid1 , . . . , pkidd as
ct{Uid1

,...,Uidd
}.

– (mki→D, [rki→D]) ← MK-FHE-TRE.ReKeyGen(ski, UD): Given Ui’s decryp-
tion key ski and a delegatee UD ∈ U , Ui and UD run this algorithm and out-
put a masking key mki→D to UD and the shares [rki→D] of the re-encryption
key rki→D that re-encrypts a ciphertext element encrypted with Ui’s key to
the one encrypted with UD’s key.

– rct{UD} ← MK-FHE-TRE.ReEnc([rkid1→D], . . . , [rkidd→D], ct{Uid1
,...,Uidd

}): Given

d (1 ≤ d ≤ k) sets of shares [rkid1→D], . . . , [rkidd→D] of re-encryption keys
and an (extended) ciphertext ct{Uid1

,...,Uidd
}, N proxies run this algorithm

and output a re-encrypted ciphertext rct{UD} to UD.
– m ← MK-FHE-TRE.Decrypt(mkid1→D, . . . ,mkidd→D, rct{UD}): Given a set of

d (1 ≤ d ≤ k) masking keys mkid1→D, . . . ,mkidd→D and a corresponding re-
encrypted ciphertext rct{UD}, UD run this algorithm and output the plaintext
m.

3.2 Algorithms

We construct the instantiation of MK-FHE-TRE based on MK-BFV [10]. We
call our instantiation MK-BFV-TRE.

MK-FHE-TRE.Setup is identical to MK-BFV.Setup except that pp includes N .
MK-FHE-TRE.DecKeyGen,MK-FHE-TRE.EncKeyGen,MK-FHE-TRE.RelinKeyGen,
and MK-FHE-TRE.Encrypt are also identical to MK-BFV.DecKeyGen,MK-BFV.
EncKeyGen,MK-BFV.RelinKeyGen, andMK-BFV.Encrypt, respectively. Hence, we
omit the description of these algorithms.

Algorithm 1 describes the MK-FHE-TRE.ReKeyGen algorithm, which is run
by two users Ui and UD where i ̸= D. Ui and UD are delegator and delegatee
of the decryption authority. Here, UD first generates a masking key ri→D, and
send it to Ui. Then, Ui computes its re-encryption key as rki→D = si−ri→D. Ui

10 Nakashima et al.

Input: Ui’s decryption key ski = si ← χkey and a decryptor UD.
Output: A masking key mki→D of UD, and shares of the re-encryption key

[rki→D] where rki→D re-encrypts a ciphertext element encrypted
with Ui’s key to the one encrypted with the decryptor’s key.

1 UD randomly generates a masking key mki→D = ri→D
U←− Rq, and send it to

Ui.
2 Ui computes the re-encryption key rki→D = si − ri→D, and distributes it

among N proxies as [rki→D] by Share(rki→D, Ui).
3 UD outputs mki→D, and proxies output [rki→D].

Algorithm 1: MK-FHE-TRE.ReKeyGen

distributes its re-encryption key among N proxies, P1, . . . , PN by (N,N)-ASS
as [rki→D]j .

We note that rki→D is a masked decryption key by ri→D. Hence, as explained
in §1.3, rki→D does not leak the information of Ui’s decryption key unless an ad-
versarial UD obtains the reconstructed re-encryption key rki→D. To reconsturct
rki→D, the adversarial UD needs to collude with all the N proxies. Therefore,
the re-encryption key does not leak the delegator’s decryption key in our MK-
BFV-TRE unless an adversary corrupts UD and N proxies.

Input: Shares of re-encryption keys [rkid1→D], . . . , [rkidd→D] and an
(extended) ciphertext ct{Uid1

,...,Uidd
} = (c0, cid1 , . . . , cidd) generated by

MK-FHE-TRE.Encrypt and extension under the keys of users Uid1 , . . . ,
Uidd where 1 ≤ id1, . . . , idd ≤ k and 1 ≤ d ≤ k.

Output: A re-encrypted ciphertext rct{UD}.
1 Pj (j = 1, . . . , N) locally computes

[c′0]j =

d∑
i=1

cidi · [rkidi→D]j + ej +

{
c0 if j = 1, and

0 otherwise,

where ej ← χsmdg is a smudging noise.
2 Proxies send cid1 , . . . , cidd to UD.
3 UD reconstructs c′0 by Open([c′0], UD) and outputs rct{UD} = (c′0, c

′
id1 = cid1 ,

. . . , c′idd = cidd).

Algorithm 2: MK-FHE-TRE.ReEnc

Algorithm 2 describes the MK-FHE-TRE.ReEnc algorithm. Each proxy Pj

computes a share of

c′0 = c0 +

d∑
i=1

cidi · rkidi→D +

N∑
j=1

ej ,

as [c′0]j . Then, proxies send the elements of the ciphertext (cid1 , . . . , cidd) to
UD. Finally, UD reconstructs c′0 by Open([c′0], UD), and returns a re-encrypted

Multi-Key Homomorphic Encryption with TRE 11

ciphertext rct{UD} = (c′0, c
′
id1

= cid1 , . . . , c
′
idd

= cidd). The remaining d elements
in this tuple is the same as in the ciphertext before re-encryption.

Input: Masking keys mkid1→D = rid1→D, . . . ,mkidd→D = ridd→D, and a
re-encrypted ciphertext rct{UD} = (c′0, c

′
id1 , . . . , c

′
idd

).
Output: The corresponding plaintext m ∈ Rt.

1 UD outputs m by MK-BFV.Decrypt(c′0, c
′
id1 , . . . , c

′
idd

, rid1→D, . . . , ridd→D).

Algorithm 3: MK-FHE-TRE.Decrypt

Note that the re-encrypted ciphertext is no longer decryptable by using only
users’ decryption keys in the straightforward manner because the masking keys of
UD are embedded in the re-encrypted ciphertext through MK-FHE-TRE.ReEnc.
Therefore, we need to employ the MK-FHE-TRE.Decrypt algorithm to decrypt
the re-encrypted ciphertext, of which procedure is described in Algorithm 3.
Here, since

c′0 +

d∑
i=1

c′idi · ridi→D

= c0 +

d∑
i=1

cidi · rkidi→D +

N∑
j=1

ej +

d∑
i=1

cidi · ridi→D

= c0 +

d∑
i=1

cidi · (sidi − ridi→D) +

N∑
j=1

ej +

d∑
i=1

cidi · ridi→D

=

(
c0 +

d∑
i=1

cidi · sidi

)
+

N∑
j=1

ej ,

MK-BFV.Decrypt(rid1→D, . . . , ridd→D, c′0, c
′
id1

, . . . , c′idd) correctly outputs the plain-

text m as long as the noise including the terms
∑N

j=1 ej is small enough. We

note that
∑N

j=1 ej corresponds to the smudging noise
∑k

j=1 ej in MK-BFV [10].

In [10], the smudging noise
∑k

j=1 ej must be small enough that a decryptor can

decrypt the ciphertext. Hence, our assumption that
∑N

j=1 ej is sufficiently small
is as reasonable as [10].

4 Security Proof of MK-BFV-TRE

As a security proof strategy, we consider the MK-BFV-TRE to be an extension of
MK-BFV [10] with secure re-encryption protocols in the universal composability
(UC) framework [7]. The established UC-secure protocols remain secure even
when executed in parallel or concurrently with other secure or insecure protocols.

12 Nakashima et al.

Therefore, we can prove the security of the entire MK-BFV-TRE under RLWE
assumption if our proposed protocols about re-encryption are UC-secure.

As well as the original MK-BFV [10], MK-FHE-TRE.Setup,MK-FHE-TRE.
DecKeyGen,MK-FHE-TRE.EncKeyGen,MK-FHE-TRE.RelinKeyGen, andMK-FHE-
TRE.Encrypt are secure under RLWE assumption because these algorithms are
identical to the algorithms of the MK-BFV except that pp includes N .

Note that MK-FHE-TRE.Decrypt consists of performing operations by a de-
cryptor without communications. Hence, if sufficient smudging noise is added to
the re-encrypted ciphertext, the decryptor can obtain only the plaintext as in the
original MK-BFV [10]. We assume that a semi-honest adversary can corrupt up
to N parties from N proxies and the decryptor. Therefore, even if the adversary
corrupts N−1 proxies and the decryptor, the remaining uncorrupted proxy adds
the smudging noise to the re-encrypted ciphertext during MK-FHE-TRE.ReEnc,
and the added smudging noise prevents information leakage regarding the users’
decryption keys during MK-FHE-TRE.Decrypt. Therefore, MK-FHE-TRE.Decrypt
is as secure as MK-BFV.Decrypt [10] under RLWE assumption.

Hence, we focus on proving the security of MK-FHE-TRE.ReKeyGen and MK-
FHE-TRE.ReEnc in the UC framework [7]. If we prove the security of MK-FHE-
TRE.ReKeyGen and MK-FHE-TRE.ReEnc in the UC framework, we can prove the
security of the entire MK-BFV-TRE under RLWE assumption.

MK-FHE-TRE.ReKeyGen consists of sharing a masking key and Share. For
this reason, it is UC-secure under the assumptions of the secure channel and
Share, i.e., UC-secure (N,N)-ASS.

Finally, we prove the security of MK-FHE-TRE.ReEnc in a hybrid model [7].

4.1 Security Definition

Real model. Let ΠReEnc be the actual protocol of MK-FHE-TRE.ReEnc. We
also denote a semi-honest adversary by A. A is a non-uniform PPT adversary.

Here, N proxies and a delegatee in U are regarded as N + 1 parties without
distinction. For simplicity of description, we temporarily set the delegatee as
PN+1 in §4.1 and §4.2. We denote the number of corruptions by A by T (< N+1).
The output of the honest parties, the set of corrupted parties I ⊂ P ∪ {PN+1},
and A in a real execution of ΠReEnc, with inputs x1, . . . , xN+1, auxiliary input
aux for A, and security parameter λ is denoted by REALΠReEnc,A(aux),I(x1, . . . ,
xN+1, λ).

Ideal model. We define the ideal model for the ideal functionality of our re-
encryption FReEnc, receiving inputs from N +1 parties and providing them with
outputs. We also define f as (N + 1)-party functionality. The ideal execution
proceeds as follows.

– Send inputs to trusted party: Each honest party Pj (j = 1, . . . , N + 1)
sends its specified input xj to the trusted party.

– Answer the parties by trusted party: The trusted party computes f(x1,
. . . , xN+1) = (y1, . . . , yN+1). It sends yj to Pj for j = 1, . . . , N + 1.

Multi-Key Homomorphic Encryption with TRE 13

– Outputs: All parties always output the output value they received from the
trusted party. A outputs the initial inputs {xi}i∈I and the messages received
by the corrupted parties that are sent from the trusted party {yi}i∈I .

Let S be a non-uniform PPT adversary controlling {Pi}i∈I . We also denote
the output of the honest parties, the set of corrupted parties I and S in an ideal
execution with FReEnc, with inputs x1, . . . , xN+1, auxiliary input aux for S, and
security parameter λ by IDEALFReEnc,S(aux),I(x1, . . . , xN+1, λ).

Definition 1. Let FReEnc be a (N + 1)-party functionality, and let ΠReEnc be
a (N + 1)-party protocol. We say that ΠReEnc securely computes FReEnc in the
presence of an adversary controlling N semi-honest corrupted parties, if for every
non-uniform PPT adversary A in the real world, there exists a non-uniform PPT
simulator/adversary S in the ideal model with FReEnc such that for I,

{IDEALFReEnc,S(aux),I(x1, . . . , xN+1, λ)}
≡ {REALΠReEnc,A(aux),I(x1, . . . , xN+1, λ)}

where x1, . . . , xN+1 under the constraint that |x1| = · · · = |xN+1| and λ ∈ N.

4.2 Security Proof

In a hybrid model [7], each party runs the real protocol with actual messages
and can access the ideal subfunctionality that a trusted party computes. Let
g be the subfunctionality computed by a trusted party, which can be replaced
with a secure real protocol. Then, we say that protocol Π is secure in the g-
hybrid model. We denote protocol Π secure in the g-hybrid model as Πg. We
also assume input availability (i.e., the inputs of all parties are fixed before the
execution of the protocol begins) to prove UC of MK-FHE-TRE.ReEnc. Hence,
it is sufficient that we prove the security of MK-FHE-TRE.ReEnc in the classic
stand-alone setting and automatically derive UC from a previous study [23].

Theorem 1. If we assume the security of Open and let FOpen be the ideal func-
tionality of opening shares on (N,N)-ASS, MK-FHE-TRE.ReEnc protocol ΠReEnc

in the FOpen-hybrid model compute FReEnc in the presence of an adversary con-
trolling N semi-honest corrupted parties.

Proof. In ΠReEnc, we replace the call to Open by invoking FOpen. Then, Π
FOpen

ReEnc

consists of invoking FOpen and computations without communications. Note that
the view of PN+1 can be constructed easily by Share because PN+1 receives only
the shares of c′0 and original ciphertexts (c′id1 = cid1 , . . . , c

′
idd

= cidd). That
is, PN+1’s view regarding shares of c′0 can be generated by sampling random

elements a2, . . . ,aN from Rq and setting [c′0]1 = c′0 −
∑N

j=2 aj and [c′0]j = aj

for j = 2, . . . , N .
Hence, S can be composed when A corrupts N parties. Therefore, since

Definition 1 is satisfied, ΠReEnc securely computes FReEnc in the presence of an
adversary controlling N semi-honest corrupted parties assuming that Open is
secure, i.e., (N,N)-ASS is UC-secure.

14 Nakashima et al.

FReEnc - (threshold proxy re-encryption)

1. Proxy Pj sends the message (ReEnc, {[rkidi]j}
d
i=1, (c0, cid1 , . . . , cidd)) to

FReEnc for j = 1, . . . , N .
2. After receiving the messages, FReEnc reconstructs the values, {rkidi}

d
i=1 by

using {[rkidi]j}
d
i=1 for j = 1, . . . , N .

3. FReEnc samples ej
U←− χsmdg for j = 1, . . . , N .

4. FReEnc computes

c′0 = c0 +

d∑
i=1

cidi · rkidi +
N∑

j=1

ej .

5. FReEnc sends (c′0, c
′
id1 = cid1 , . . . , c

′
idd

= cidd) to PN+1 (that is a delegatee
in U).

Fig. 1. Ideal functionality for threshold proxy re-encryption

5 Performance Analysis

5.1 Implementation and Parameters

We implement our MK-BFV-TRE scheme in C++ from scratch except for using
the NTL library [31] (for polynomial arithmetic over multi-precision integers) to
show performance1. In our implementation, each coefficient of a secret s ∈ Rq

and an error e ∈ Rq is drawn according to the discrete Gaussian distribution
with standard deviation σerr ≈ 3.2.

In the noise smudging algorithm (in MK-BFV.PartDec and MK-FHE-TRE.
ReEnc), we use an error polynomial whose coefficients are drawn from the dis-
crete Gaussian distribution with a standard deviation σsmdg = 220, which is the
same one used for smudging noise in the OpenFHE library [4]. Theoretically,
we should make σsmdg large as 2λ for the security parameter λ according to
Smudging lemma [2]. However, a reasonably large standard deviation is often
used for efficiency in practice, as in the OpenFHE library. We choose σsmdg from
a practical standpoint as well as other implementations.

We set the plaintext modulus t = 28 and the (maximum possible) arithmetic
circuit depth L = 5 in our experiment. Since it is well known that the noise
growth of homomorphic multiplication is much more significant than the noise
growth of homomorphic addition, we estimate the noise from a depth-L circuit
of homomorphic multiplications. In addition, we only considered the dominant
terms of the noise as in [10]. However, our noise estimation is bound-based as
in [18], which tends to result in larger parameters compared to a variant-based
approach in [10] in exchange for a higher decryption success rate.

1 We note that there is room for improvement in optimization in our MK-BFV-TRE
implementation because we do not apply the residue number system technique which
avoids multi-precision integers computation as in the implementation of the original
MK-BFV in [10], for simplicity.

Multi-Key Homomorphic Encryption with TRE 15

Table 2. Parameters for which we used different values depending on the number of
users.

#Users (= k) 2 4 8

log b 46 40 34

⌈logb q⌉ 5 6 7

Table 3. Size of primitives in MK-BFV-TRE scheme. MB=106 bytes.

#Users (= k) 2 4 8

Size [MB]

Decryption key s 0.07
Encryption key (p0,p1) 0.45
Relinearization key rlk 3.38 4.06 4.73

Ciphertext (c0, c1, . . . , ck) 0.68 1.13 2.03
Masking key rid·→D 0.23
ReEnc key rkid·→D 0.23

According to Homomorphic Encryption Standard [1], we used the parameters
log q = 220, n = 8192, and σerr ≈ 3.2 that provide a 128-bit of security level.
As a result of estimation for the noise growth and security, we can use the same
parameters when the number of users k is equal to 2, 4, 8. We do not consider
the case of k = 1 since the re-encryption algorithm is meaningless in that case.

The parameters for which we used different values depending on the number
of users are provided in Table 2. The log b row shows the bit length of the base of
the decomposition algorithm, which is a subroutine in MK-BFV.Relinearize. We
remark that the base of the decomposition b affects the accumulated noise during
MK-BFV.Relinearize, a subroutine of homomorphic multiplication, as shown in
[10]. In addition, the dimension of the gadget vector ⌈logb q⌉ affects the size of
the rlk and the computational complexity of MK-BFV.Relinearize.

In Table 3, we estimate the size of primitives of our MK-BFV-TRE scheme in
megabytes. We remark that the form of the decryption key, the encryption key,
the relinearization key, and the ciphertext are all identical to the original MK-
BFV scheme in [10]. The size of the decryption key s is estimated by assuming
|s|∞ ≤ 10 · σerr.

5.2 Our Experiments

Measurement of execution time. Our implementation is executed on a
single core of Intel Xeon Silver 4114 CPU clocked at 2.20GHz with 96GB of
memory. The program is compiled with GCC 7.5.0 (with -O2 option) on Ubuntu
18.04.

We measured the execution time for key generation, encryption, homomor-
phic addition and multiplication, threshold decryption (partial decryption and
merge), proxy re-encryption, and decryption using Google’s Benchmark library
[20]. As for execution time, we take an average of 10 times trials.

16 Nakashima et al.

Table 4. Measured execution time of algorithms without communications of the MK-
BFV-TRE scheme. ms=10−3sec.

#Users (= k) 2 4 8

Exec. [ms]

KeyGen 651 782 911
Encrypt 50.4
HomAdd 1.05 1.77 3.27
HomMul 2345 10438 47022

Table 4 shows the time of key generation, encryption, and homomorphic ad-
dition and multiplication in our MK-FHE-TRE scheme for k ∈ {2, 4, 8} where
k is the number of users. We note that the parameter d ∈ {1, . . . , k}, which
is the number of users involved in the homomorphic computation for a certain
ciphertext, is implicitly set to d = k for brevity in our experiments. That is, we
use extended ciphertexts in Rk+1

q to measure the time of HomAdd and HomMul.
We remark that these algorithms are identical to the original MK-BFV scheme
[10]. Therefore, the execution time of these algorithms is irrelevant to the num-
ber of proxies. In addition, these algorithms do not need network communica-
tion. In Table 4, the KeyGen row is the total time of MK-BFV.DecKeyGen, MK-
BFV.EncKeyGen, and MK-BFV.RelinKeyGen for one user.

Table 5. Measured execution time and estimated communication time of threshold
decryption, i.e., combination of MK-FHE-TRE.PartDec and MK-FHE-TRE.Merge. ms =
10−3 sec.

#Users (= k) 2 4 8

Exec. [ms] 26.9 27.6 28.9

Comm. [ms]
LAN 2.04 4.75 10.2
WAN 290 677 1451

Table 6. Measured execution time and estimated communication time of MK-FHE-
TRE.ReKeyGen. ms = 10−3 sec.

#Proxies (= N) 1 2 4 8

Exec. [ms] 51.2 102 203 409

Comm. [ms]
LAN 1.36 2.03 3.39 6.10
WAN 193 290 484 871

Tables 5, 6, and 7 show the execution time of the threshold decryption
(i.e., the combination of MK-BFV.PartDec and MK-BFV.Merge), MK-FHE-TRE.
ReKeyGen, and MK-FHE-TRE.ReEnc, respectively. We assume that users and
proxies can execute their local computations in parallel. Hence, the execution

Multi-Key Homomorphic Encryption with TRE 17

Table 7. Measured execution time and estimated communication time of MK-FHE-
TRE.ReEnc. ms = 10−3 sec.

#Users (= k) 2 4 8

#Proxies (= N) 1 2 4 8 1 2 4 8 1 2 4 8

Exec. [ms] 250 298 393

Comm. [ms]
LAN 2.03 2.71 4.07 6.78 3.39 4.07 5.42 8.14 6.10 6.78 8.14 10.8
WAN 290 387 580 967 484 580 774 1169 871 967 1161 1548

Table 8. Measured execution time of MK-FHE-TRE.Decrypt. ms = 10−3 sec.

#Users (= k) 2 4 8

Exec. [ms] 0.05 0.95 1.85

time shown in these tables is the maximum total computation time for one user
or one proxy.

Table 5 shows that the effect of the increase in the number of users on the exe-
cution time of threshold decryption is small even thoughMK-BFV.Merge requires
O(k) addition over Rq because the MK-BFV.PartDec process is the dominant ac-
cording to our profiling.

In Table 6, we can see that the execution time of MK-FHE-TRE.ReKeyGen
appears linear regarding the number of proxies N . In the case of N = 1, we
remark that one proxy holds all of the rk, and neither Share nor Open happens.
It is consistent with the complexity of MK-FHE-TRE.ReKeyGen, which requires
O(N) random polynomial generation and O(N) times additions over Rq.

Table 7 shows that the execution time of MK-FHE-TRE.ReEnc increases
gradually as the number of users k increases. It is reasonable that MK-FHE-
TRE.ReEnc requires O(k) multiplications and O(k) times additions over Rq.

Estimation of communication time. As in [29], we run each algorithm of
MK-BFV-TRE with communications on a single server. We therefore estimate
the communication costs assuming a communication environment.

MK-FHE-TRE.ReKeyGen and MK-FHE-TRE.ReEnc in our MK-BFV-TRE
scheme and also the threshold decryption algorithm (MK-BFV.PartDec and MK-
BFV.Merge) which is inherited from the original MK-BFV [10] need the network
communication. The network bandwidth and latency may affect the performance
of these algorithms. In Tables 5, 6 and 7, we also give the estimated communi-
cation time.

We describe how to estimate the communication time in our protocol. We
consider both a local area network (LAN; 10 Gbps throughput, 0.5 ms latency)
[27] and a wide area network (WAN; 72 Mbps throughput and 72 ms latency)
[28]. The bandwidth and latency of LAN/WAN are based on a measurement
between AWS US East and West regions. We assume that the communication
channels connecting all users and servers have the same communication band-
width and communication delay.

18 Nakashima et al.

In LAN (resp. WAN) setting, we put throughput := 10 [Gbps] = 10 · 10−3

[gigabit/ms] (resp. 72 [Mbps] = 72 · 10−3 [megabit/ms]) and latency := 0.5 [ms]
(resp. 72 [ms]). When a party sends an element in Rq, i.e., n · log q bits, the
required communication time is

CTRq
:=

n · log q
throughput

+ latency [ms].

The following is how to estimate the communication time of MK-FHE-TRE.
ReKeyGen, MK-FHE-TRE.ReEnc, and MK-BFV.PartDec.

MK-FHE-TRE.ReKeyGen: When the delegatee UD sends the masking key ri→D ∈
Rq to the user Ui, the communication time required is CTRq . In addition,
sending the piece of share [rki→D]ℓ to the proxy Pℓ ∈ P for all ℓ ∈ {1, . . . , N}
from the user Ui takes N · CTRq

. As a result, the total communication time
for MK-FHE-TRE.ReKeyGen is (N + 1) · CTRq

.

MK-FHE-TRE.ReEnc: For ℓ ∈ {1, . . . , N}, the proxy ℓ needs to send [c′0]ℓ ∈ Rq

to UD, which takes N · CTRq
. After that one proxy sends c1, . . . , ck ∈ Rq to

UD, which takes k · CTRq
. Therefore, we see that the total communication

time for MK-FHE-TRE.ReEnc is (k +N) · CTRq .

MK-BFV.PartDec: First, the computation server sends ci to each user Ui, which
takes k · CTRq

. After that, each user except for UD sends the result of MK-
BFV.PartDec to UD, which takes (k−1)·CTRq . Thus, the total communication
time required is (2 · k − 1) · CTRq . We remark that any proxy is not related
in MK-BFV.PartDec.

In our above estimation, we assume that each party among users and proxies
communicates sequentially. Hence, our communication time estimation is the
worst-case estimation. Actually, each user can use upstream and downstream
and communicate in parallel, depending on the network interface they utilize.
Therefore, actual communication times are smaller than our estimations.

Threshold decryption vs. re-encryption then decryption.When the num-
ber of users k exceeds the number of proxies N , the sum of the communication
time of MK-FHE-TRE.ReEnc and that of MK-FHE-TRE.Decrypt is smaller than
the communication time of threshold decryption (MK-BFV.PartDec and MK-
BFV.Merge), since (k +N) · CTRq < (2 · k − 1) · CTRq in this situation.

Considering the execution time, MK-FHE-TRE.Decrypt after MK-FHE-TRE.
ReEnc is not always faster than the threshold decryption in our experiment, e.g.,
in the case of k = 8 and N = 2. However, the execution time of the re-encryption
algorithm heavily depends on the machine specification of the proxy servers. By
improving computer resources themselves, it is relatively easy to improve the
execution time compared to reducing communication time using the network.

Therefore, we believe that MK-FHE-TRE.Decrypt after MK-FHE-TRE.ReEnc
is superior to threshold decryption when the number of users is much larger
than the number of proxies. In the opposite situation, threshold decryption can
be better than MK-FHE-TRE.Decrypt after MK-FHE-TRE.ReEnc in the sense of

Multi-Key Homomorphic Encryption with TRE 19

the time required. Since ciphertexts (before re-encryption) in our MK-BFV-
TRE are identical to ciphertexts in MK-BFV, users in our MK-BFV-TRE can
choose the threshold decryption and MK-FHE-TRE.ReEnc followed by MK-FHE-
TRE.Decrypt according to the environment they are in.

6 Conclusions

We proposed the new framework, MK-FHE-TRE, and its instantiation based on
MK-BFV [10], MK-BFV-TRE. MK-BFV-TRE can avoid not only the thresh-
old decryption but also the decryption key compromise from re-encryption keys
unless the adversarial delegatee colludes withN proxies. We also proved the secu-
rity of MK-BFV-TRE under the RLWE assumption and the UC-secure (N,N)-
ASS.

In addition, we implemented our MK-BFV-TRE and measured the size of
keys and ciphertexts. By using our implementation, we also measured the run-
ning time of each algorithm and estimated the communication time of each algo-
rithm. From these experimental results, we believe that MK-FHE-TRE.Decrypt
after MK-FHE-TRE.ReEnc is superior to threshold decryption when the number
of users is much larger than the number of proxies.

Since the MK-BFV-TRE can avoid the threshold decryption, secure com-
puting applications built using it do not require the decryption key holders to
be online, and there is less need to consider the effects of the communication
environment and the user’s device.

References

1. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi,
S., Hoffstein, J., Laine, K., Lauter, K., Lokam, S., Micciancio, D., Moody, D., Mor-
rison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic Encryption Security Stan-
dard (2018), http://homomorphicencryption.org/wp-content/uploads/2018/

11/HomomorphicEncryptionStandardv1.1.pdf

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction via
threshold fhe. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 7237,
pp. 483–501. Springer (2012)

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS. The Internet
Society (2005)

4. Badawi, A.A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov,
Y., R.V., S., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikuntanathan,
V., Zucca, V.: OpenFHE: Open-Source Fully Homomorphic Encryption Library.
Cryptology ePrint Archive, Paper 2022/915 (2022), https://eprint.iacr.org/
2022/915

5. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 1403, pp.
127–144. Springer (1998)

20 Nakashima et al.

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1–13:36
(2014)

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS. pp. 136–145. IEEE Computer Society (2001)

8. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
CCS. pp. 185–194. ACM (2007)

9. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from TFHE.
In: ASIACRYPT (2). Lecture Notes in Computer Science, vol. 11922, pp. 446–472.
Springer (2019)

10. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption
with packed ciphertexts with application to oblivious neural network inference. In:
CCS. pp. 395–412. ACM (2019)

11. Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key FHE from ring-lwe
with compact ciphertext extension. In: TCC (2). Lecture Notes in Computer Sci-
ence, vol. 10678, pp. 597–627. Springer (2017)

12. Chen, X., Liu, Y., Li, Y., Lin, C.: Threshold proxy re-encryption and its application
in blockchain. In: Cloud Computing and Security: 4th International Conference,
ICCCS 2018, Haikou, China, June 8–10, 2018, Revised Selected Papers, Part IV
4. pp. 16–25. Springer (2018)

13. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arith-
metic of approximate numbers. In: ASIACRYPT (1). Lecture Notes in Computer
Science, vol. 10624, pp. 409–437. Springer (2017)

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

15. community, F.: Fully Homomorphic Encryption — We are a community of re-
searchers and developers interested in advancing homomorphic encryption and
other secure computation techniques. (2023), https://fhe.org/

16. Derler, D., Ramacher, S., Slamanig, D.: Homomorphic proxy re-authenticators and
applications to verifiable multi-user data aggregation. In: Financial Cryptography.
Lecture Notes in Computer Science, vol. 10322, pp. 124–142. Springer (2017)

17. Dutta, P., Susilo, W., Duong, D.H., Roy, P.S.: Collusion-resistant identity-based
proxy re-encryption: Lattice-based constructions in standard model. Theor. Com-
put. Sci. 871, 16–29 (2021)

18. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. p. 144 (2012)

19. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: CRYPTO
(1). Lecture Notes in Computer Science, vol. 8042, pp. 75–92. Springer (2013)

20. Benchmark. https://github.com/google/benchmark/ (2023)

21. ICO: Homomorphic encryption (HE) — ICO (2023), https://

ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/

data-sharing/privacy-enhancing-technologies/what-pets-are-there/

homomorphic-encryption-he/

22. ISO/IEC: ISO/IEC WD 18033-8 - Information security — Encryption algo-
rithms — Part 8: Fully Homomorphic Encryption (2023), https://www.iso.org/
standard/83139.html

23. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. SIAM J. Comput. 39(5), 2090–2112 (2010)

Multi-Key Homomorphic Encryption with TRE 21

24. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC. pp. 1219–1234.
ACM (2012)

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 6110, pp.
1–23. Springer (2010)

26. Ma, C., Li, J., Ouyang, W.: A homomorphic proxy re-encryption from lattices. In:
ProvSec. Lecture Notes in Computer Science, vol. 10005, pp. 353–372 (2016)

27. Mohassel, P., Rindal, P.: ABY3: A Mixed Protocol Framework for Machine Learn-
ing. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security. p. 35–52. CCS ’18, Association for Computing Machinery,
New York, NY, USA (2018), https://doi.org/10.1145/3243734.3243760

28. Mohassel, P., Zhang, Y.: SecureML: A System for Scalable Privacy-Preserving
Machine Learning. Cryptology ePrint Archive, Paper 2017/396 (2017)

29. Mouchet, C., Troncoso-Pastoriza, J.R., Bossuat, J., Hubaux, J.: Multiparty homo-
morphic encryption from ring-learning-with-errors. Proc. Priv. Enhancing Technol.
2021(4), 291–311 (2021)

30. NIST: Multi-Party Threshold Cryptography — CSRC (2023), https://csrc.

nist.gov/Projects/threshold-cryptography

31. NTL: A library for doing Number Theory. https://libntl.org/ (2021)
32. Paul, A., Srinivasavaradhan, V., Selvi, S.S.D., Rangan, C.P.: A cca-secure collusion-

resistant identity-based proxy re-encryption scheme. In: ProvSec. Lecture Notes in
Computer Science, vol. 11192, pp. 111–128. Springer (2018)

33. Peikert, C., Shiehian, S.: Multi-key FHE from lwe, revisited. In: TCC (B2). Lecture
Notes in Computer Science, vol. 9986, pp. 217–238 (2016)

34. Raghav, Andola, N., Verma, K., Venkatesan, S., Verma, S.: Proactive threshold-
proxy re-encryption scheme for secure data sharing on cloud. The Journal of Su-
percomputing pp. 1–29 (2023)

35. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL (Jan 2023),
microsoft Research, Redmond, WA.

36. Standardization, H.E.: Homomorphic Encryption Standardization – An Open In-
dustry / Government / Academic Consortium to Advance Secure Computation
(2023), https://homomorphicencryption.org/

37. Yasuda, S., Koseki, Y., Hiromasa, R., Kawai, Y.: Multi-key homomorphic proxy re-
encryption. In: ISC. Lecture Notes in Computer Science, vol. 11060, pp. 328–346.
Springer (2018)

