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Abstract. The key finding problem for ECDSA can be reduced to the
Hidden Number Problem (HNP) when nonce top bits leak with signa-
tures and hashes. Two main HNP-solving methods exist: lattice-based at-
tacks and Fourier analysis-based attacks. Bleichenbacher’s Fourier analysis-
based attack can recover keys even if the nonces error rate is high. Aranha
et al. (CCS 2020) use a 4-list sum algorithm for linear combinations of
samples, which is important in the Fourier analysis-based attack. They
evaluated the required number of signatures by assuming a uniform sum
distribution in their algorithm. However, the actual distribution was not
uniform, leading to an underestimation of the number of signatures. In
this study, we derive the exact sum distribution and propose an algorithm
incorporating it. Additionally, we introduce a signature reduction algo-
rithm utilizing previously unused pairs. Previous studies assumed biased
top nonces bits values by discarding certain samples to bias the nonces in-
tentionally. However, we demonstrate that even unbiased nonces, if their
top bits are leaked, enable signatures reduction and secret key recovery
without altering execution time using the same algorithm. We show that
for any key length, the number of signatures is reduced by 1/2 for 1 bit
leakage, and the number of signatures is reduced by 1/4 for 2 or more
bits leakage, and we confirm this experimentally for 131-bit ECDSA.

Keywords: ECDSA · Bleichenbacher’s Fourier-analysis based attack ·
4-list sum algorithm · side-channel attack.

1 Introduction

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a digital signature
algorithm used in SSH, SSL/TLS, Bitcoin, and other applications. Therefore,
it is very important to evaluate how much secret information leakage affects
its security. A nonce (Number used only ONCE) is random secret information
generated at the time of signing and can be leaked by side-channel attacks. An
attack has been proposed that attributes a situation in which a certain number
of triples of some bits of the nonces, the corresponding hash value of the message,
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and the signature are leaked to the Hidden Number Problem (HNP) [6]. Lattice-
based and Fourier analysis-based attacks are known as methods for solving HNP.

Lattice-based attacks were considered to be able to solve HNP with a small
number of signatures when the top few bits of nonces are known without error.
If the key length is 160-bit, the attacker can solve the HNP if the 2 bits nonces
are leaked [1, 11, 13], 3 bits for 256-bit [1, 13], 4 bits for 384-bit [1, 13], respec-
tively, with tens to thousands of signatures, it is possible to recover the secret
key in a few minutes. Lattice-based attacks require at least 2 bits of error-free
nonces information, but do not require a large number of signatures and time.
Recently, Geo et al. showed that HNP can be solved with a lattice-based attack
against nonce with errors by using many signatures, computational resources
and time [9]. They succeeded in recovering the secret key for 128-bit ECDSA
with an error rate of 0.1 and 160-bit ECDSA with an error rate of 0.01.

On the other hand, the Fourier analysis-based attack can recover the secret
key even if the nonces error rate are high. However, it requires a large amount of
computing resources (e.g., workstations), and the computation time can range
from several days to a week. In addition, the Fourier analysis-based attack uses
the bias of the nonces to recover the secret key, and only the signatures cor-
responding to the biased nonces are used. The Fourier analysis-based attack is
an attack method against DSA first proposed by Bleichenbacher [4]. Next, De
Mulder et al. [7] introduced the method in detail and successfully recovered a
secret key against 384-bit ECDSA when the top 5 bits of nonce are leaked. Next,
Aranha et al. [2] successfully recovered a secret key for the first time for a 160-bit
ECDSA when the top 1 bit of the nonces are leaked. Next, Takahashi et al. [14]
successfully recovered a secret key for a 252-bit qDSA when the top 2 bits of
the nonces are leaked. Recently, Aranha et al. [3] were the first to estimate the
modular bias when the top 1 bit of the nonces are leaked with errors, and were
the first to successfully recover a 192-bit ECDSA secret key. In addition, Osaki
et al. [12] are the first to estimate the modular bias when the top multiple bits
of the nonces are leaked with errors. They also show experimentally that the
case where each of the 2 bits is leaked with an error rate of 0.1 requires fewer
signatures than the case where the 1 bit are leaked with no errors.

In a Fourier analysis-based attack, the computation to take linear combina-
tions of HNP samples is the most time-consuming. For the linear combination,
small values should be obtained with a small number of computations. Aranha et
al. use the 4-list sum algorithm for linear combinations [3]. They then attribute
the problem of optimizing the number of signatures to a linear programming
problem and solve it to find the parameters for optimizing the number of signa-
tures, memory, and time required for the attack.

1.1 Our contributions

First, we modify the 4-list sum algorithm used in [3] to perform a linear combi-
nation of HNP samples. The sum distribution was assumed to be uniform, but
in actuality it is not uniform, so the number of samples obtained was overesti-
mated. In addition, since carry was not taken into account, half of the samples
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that should have been obtained were discarded. We modify the algorithm to
obtain all samples and estimate the accurate number of signatures, taking into
account distribution and carry. In addition, we estimate the number of signa-
tures that can be recovered with an error-free 1 bit leakage and an error rate of
0.11434 and a 2 bit leakage, with an equal number of signatures.

We then show that it is possible to recover the secret key using only HNP
samples corresponding to uniform nonces, while all previous studies using Fourier
analysis-based attacks used only samples of HNPs corresponding to biased nonces.
We show that the number of signatures required is reduced to 1/2 for a 1 bit
leakage and to 1/4 for a 2 bits leakage. We also show that the number of required
signatures decreases to less than 1/4 for 3 bits or more.

Finally, we conduct experiments for uniform nonces and biased nonces. This
experiment actually confirms that the number of signatures required to recover
the secret key is reduced.

2 Preliminaries

2.1 ECDSA

ECDSA is a digital signature algorithm using elliptic curves. The solution set
(x, y) ∈ F×F and the infinity point O is a commutative group derived from the
chord-and-tangent rule. The signature generation algorithm is shown in Algo-
rithm 1. The k randomly generated in the line 1 of Algorithm 1 is a nonce which
is used only for signature generation, and a different value is used each time.

Algorithm 1 ECDSA signature generation
Input: Elliptic curve E, prime number q, secret key sk ∈ Zq, message msg ∈ {0, 1}∗,

base point on elliptic curve G, and cryptographic hash function H : {0, 1}∗ → Zq

Output: A valid signature (r, s)
1: k ∈ [1, q − 1] is selected at random
2: R = (rx, ry)← kG; r ← rx mod q
3: s← (H (msg) + r · sk) /k mod q
4: return (r, s)

2.2 Hidden Number Problem

The function MSBn (x) returns the top n bits of x for a positive integer x. Let b
be a positive integer, let χb be a fixed distribution on {0, 1}b, and let the error
bit sequence e be sampled from χb. The probabilistic algorithm EMSBχb

(x)
takes x, b as input and returns MSBb (x) ⊕ e. For each i = 1, . . . ,M , let hi, ki
be uniform random values on Zq and zi be zi = ki − hi · sk mod q. HNP is the
problem of finding sk that satisfies these given hi, zi,EMSBχb

(ki) obtained at
i = 1, . . . ,M . HNP was introduced by Boneh et al [6].

The ECDSA signature (r, s) is described in Algorithm 1. The nonce k ∈ Zq

is chosen uniformly at random and satisfies s ≡ (H (msg) + r · sk) /k mod q.
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Therefore, the equation H (msg) /s ≡ k − (r/s) · sk mod q is obtained. As h :=
r/s mod q and z := H (msg) /s mod q, we obtain

k ≡ z + h · sk mod q. (1)

Let M be the number of signatures and {(hi, zi)}Mi=1 is obtained. It is a
system of simultaneous linear equations with (M + 1) unknowns and cannot be
solved because it is indefinite, and the secret key sk cannot be obtained. If MSBs
of ki can be obtained by vulnerability, etc., then an instance of HNP is obtained.

2.3 Bleichenbacher’s Fourier analysis-based attack

In this section, we explain the Fourier analysis-based attack, which is one of the
methods for solving HNP. First, we explain the bias function, which is important
in the Fourier analysis-based attack. Next, a naive algorithm using the bias
function is presented. We then present a framework including linear combinations
to search for secret keys efficiently.

We define the bias function needed to find the secret key in this attack.

Definition 1. Let K be a random variable on Zq. The modular bias Bq (K) is
defined as

Bq (K) = E [exp ((2πK/q) i)] .

Where E (K) denotes the mean and i is the imaginary unit. The sample bias of
the set of points K = {ki}Mi=1 on Zq is defined as

Bq (K) =
1

M

M∑
i=1

exp ((2πki/q) i) . (2)

The bias function is the average of these vectors when the nonces are con-
sidered to be vectors over the unit circumference. The larger the number of top
bits fixed in the nonce, the larger the absolute value of the average of the vec-
tors. The bias function satisfies the properties shown in Lemma 1 [7, 14]. For a
positive integer l and a λ-bit integer q, it is proved that when the top l bits of
K are fixed to some constant and the remaining (λ− l) bits are random, the
following equation is proved in [14].

lim
q→∞

|Bq (K) | = 2l

π
· sin

( π
2l

)
(3)

It can be seen that liml→∞ limq→∞ |Bq (K)| = 1 in equation (3). If all bits are
not fixed and are random, the absolute value of bias is 1/

√
M [14].

Aranha et al. show a modular bias when only the MSB contains errors in
Lemma 4.2 [3]. Extending their Lemma 4.2, the modular bias when multiple bits
of nonces contain errors is shown in Theorem 1 in [12]. In addition, the absolute
value of the modular bias when multiple bits leak with errors is expressed as
follows in [12].
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Lemma 1. Let εj be the error rate of the top j-th bit, the absolute value of the
modular bias is given by

l∏
j=1

√
(1− 2εj)

2
sin

π

2j
+ cos2

π

2j
|Bq (K)| . (4)

We will describe a naive key search method with the bias function. The
inputs are HNP samples {(hi, zi)}Mi=1 corresponding to nonces whose top bits
are biased. We compute Kw = {zi+hiw mod q}Mi=1 for each w ∈ [1, q − 1] which
is a candidate secret key. Since the nonces are biased, the w which maximizes
|Bq (Kw)| is the secret key. This method is inefficient because it requires searching
all candidates.

The Fourier analysis-based attack algorithm of [3] is shown in Algorithm 2.
In this algorithm, linear combinations of samples are used to search for the secret
key efficiently, and this phase is called collision search. Except for the [3] and [4],
this phase is called range reduction. Collision search has two constraints: small
linear combinations, which reduces the value by taking linear combinations, and
sparse linear combinations, which limits the number of linear combinations.

The first constraint is small linear combinations. In this constraint, it should
be satisfied that h′

j =
∑

i ωi,jhi < LFFT where ωi,j = {−1, 0, 1}. This constraint
reduces the search range from q to LFFT. Let M ′ be the number of samples after
linear combination, and the linear combinations generate

{(
h′
j , z

′
j

)
= (
∑

i ωi,jhi,
∑

i ωi,jzi)
}M ′

j=1

for each of h, z. Now, from the values of ωi,j , Ωj :=
∑

i |ωi,j | is the number of
linear combinations in h′

j .
The second constraint is sparse linear combinations. This constraint prevents

Ωj , the number of linear combinations, from becoming large. Small linear combi-
nations can be easily obtained by taking a large number of linear combinations.
If all the coefficients of linear combinations are restricted to {−1, 0, 1}, the peak
bias decreases exponentially with the L1 norm of the coefficient vector.

Thus, the absolute value of the bias decreases exponentially as |Bq (K)|Ωj .
Therefore, since the peak can be observed if it is larger than 1/

√
M ′, the average

of the absolute value of the bias, we impose the constraint |Bq (K)|Ωj ≫ 1/
√
M ′.

Bleichenbacher [4] and De Mulder et al. [7] pointed out that the peak value of the
modular bias, and Takahashi et al. [14] show in the next lemma that it decreases
exponentially.

Lemma 2. Let Ki be a random variable with uniform distribution on the in-
terval

[
0, ⌊(q − 1) /2l⌋

]
corresponding to nonces ki. If i1 ̸= i2, then Ki1 ,Ki2 are

independent, ∣∣∣∣∣Bq

(∑
i

ωiKi

)∣∣∣∣∣ = |Bq (K)|Ω .

If the peak width is extended by linear combinations, it is impossible to find
the entire secret key in a single Fourier analysis-based attack. Let λ′ be the



6 S. Osaki et al.

Algorithm 2 Bleichenbacher’s attack framework
Input: {(hi, zi)}Mi=1: HNP samples on Zq with biased nonces, M ′: Number of linear

combinations to be found, LFFT: FFT table size
Output: Top bits of sk
1: Collision Search
2: Generate

{(
h′
j , z

′
j

)}M′

j=1
, for j ∈ [1,M ′], the coefficients ωi,j ∈ {−1, 0, 1}, and the

linear combination pairs are denoted as
(
h′
j , z

′
j

)
=

(∑
i ωi,jhi,

∑
i ωi,jzi

)
.

(1) Small: 0 ≤ h′
j < LFFT

(2) Sparse: |Bq (K) |Ωj ≫ 1/
√
M ′ for all j ∈ [1,M ′], where Ωj :=

∑
i |ωi,j |.

3: Bias Computation
4: Z := (Z0, . . . , ZLFFT−1)← (0, . . . , 0)
5: for j = 1 to M ′ do
6: Zh′

j
← Zh′

j
+ exp

((
2πz′j/q

)
i
)

7: end for
8: Let wi = iq/LFFT ,{Bq (Kwi)}

LFFT−1
i=0 ← FFT (Z)

=
(
Bq (Kw0) , Bq (Kw1) , . . . , Bq

(
KwLFFT−1

))
9: Find i that maximizes |Bq (Kwi) |

10: return Top logLFFT bits of wi

number of recovered bits of the secret key sk in a single Fourier analysis-based
attack, where λ′ = logLFFT. According to [3], logLFFT − 4 bits can always
be recovered empirically. By repeating this attack, the entire secret key can be
obtained. For details, see Section 5.2 in [3].

Bias computation is performed using FFT with a time complexity of O (LFFT (logLFFT)).
Therefore, collision search is the most time-consuming computation in a Fourier
analysis-based attack. So, it is very important to improve the collision search
algorithm and to make accurate estimates.

2.4 4-list sum algorithm

Let the birthday problem be the problem of choosing random n bits elements
x1 ∈ L1 and x2 ∈ L2 from 2 lists L1 and L2 that satisfy x1⊕x2 = 0. In addition,
given K lists with n bits values, the problem of selecting 1 of elements from each
list and finding K-tuples of values for which the XOR of those K values is 0.
This problem is called Generalized Birthday Problem (GBP). Wagner [15] noted
similarities between GBP and Bleichenbacher’s attack [4].

From the two constraints of the Fourier analysis-based attack, it is desirable
to take small values with fewer linear combinations efficiently. As a method to
take such an efficient linear combination, Aranha et al. adopt the 4-list sum
algorithm [3]. 4-list sum algorithm is for K = 4 in GBP.

The 4-list sum algorithm is shown in Algorithm 3. In (a) in the algorithm, the
number of elements in each of {Li}4i=1 is 2a, and since the distribution of x1+x2

is uniform, the number of samples output to L′
1,L′

2 is given by 2a · 2a · 2−a = 2a

regardless of c value.
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Algorithm 4 shows the algorithm that repeats Algorithm 3. The r variable
represents the number of iterations of the 4-list sum algorithm. Using this al-
gorithm, Ωj = 4r can be expressed in Algorithm 2. In this study, we will only
experiment with the case r = 2.

Algorithm 3 Parameterized 4-list sum algorithm based on Howgrave-Graham–
Joux
Input: {Li}4i=1: sorted lists of uniform random samples of λ-bit of length 2a, n: number

of top bits to be discarded in each round, v ∈ [0, a]: parameter
Output: L′: list of (λ− n) bits samples
1: For each c ∈ [0, 2v) :

(a) Find pairs, (x1, x2) ∈ L1 × L2, satisfying MSBa (x1 + x2) = c. Output a new
sorted list L′

1 with 2a · 2a · 2−a = 2a elements of x1 + x2. Similarly, for L3,L4,
the sorted list L′

2 is obtained.
(b) Find pairs, (x′

1, x
′
2) ∈ L′

1 ×L′
2, satisfying MSBn (|x′

1 − x′
2|) = 0. Output a new

sorted list L′ with |x′
1 − x′

2| as 2a · 2a · 2−(n−a) = 23a−n elements.

2: return L′ with M ′ = 23a+v−n elements

Algorithm 4 shows the algorithm that repeats Algorithm 3. The r variable
represents the number of iterations of the 4-list sum algorithm. Using this al-
gorithm, Ωj = 4r can be expressed in Algorithm 2. In this study, we will only
experiment with the case r = 2.

Algorithm 4 Iterative HGJ 4-list sum algorithm
Input: L: list of M = 4×2a uniformly random λ-bit samples, {ni}r−1

i=0 : number of top
bits to be discarded in each round, {vi}r−1

i=0 : parameters vi ∈ [0, ai]
Output: L′: list of

(
λ−

∑r−1
i=0 ni

)
bits in the sample whose length is 2mr

1: Let a0 = a
2: For each i = 0, . . . , r − 1 :

(a) Divide L into four lists L1,L2,L3,L4 of length 2ai and sort each list.
(b) Apply Algorithm 3 to {Li}4i=1 with parameters ni and vi. Obtain a single list
L′ of length 2mi+1 = 23ai+vi−ni . Let L := L′. Let ai+1 = mi+1/4.

3: return L′

In Theorem 4.1 of [3], it is proved that the following holds as N = 2n, T =
2t,M = 2m = 2a+2.

24M ′N = TM2 (5)
m′ = 3a+ v − n (6)

Using this relationship, they formulate a linear programming problem that op-
timizes time, memory, and number of signatures, respectively, and summarized
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in Table 2 in [3]. In addition, they used this linear programming problem for
optimization to successfully recover the secret key.

3 Modification of the 4-list sum algorithm and estimation
of the number of its outputs

The number of elements of L′
1,L′

2 is not 2a in (a) of Algorithm 3 in [3]. This
is caused by the fact that the analysis is based on the assumption that the
distribution of the sum is uniform, even though it is not. First, we propose a
modification algorithm to make the distribution of the sums uniform. However,
this modification method has the problem of consuming a large amount of com-
puter resources. Therefore, since the distribution does not necessarily need to be
uniform, we propose a modification in Section 3.6 that takes advantage of the
non-uniform distribution, based on the algorithm of [3].

3.1 Technical Issues with the algorithm in [3]

Aranha et al. [3] used the algorithm introduced by Dinur [8]. Dinur’s algorithm
computes as a xor ⊕, while Aranha et al.’s algorithm computes as an addition +.
Due to this difference, the algorithm of [3] does not give the estimated results.
In this section, we first point out the problems in the algorithm of [3], and then
the following section shows a simple modification method and the problems of
this modification method.

Consider the following small example of a 4-list sum algorithm.

Example 1. Consider the Algorithm 3. Let l = 5, n = 4, a = 2 and then let
x1 = 17 (1 0001) , x2 = 18 (1 0010) , x3 = 15 (1111) , x4 = 17 (1 0001). In (a),
x′
1 = 35 (10 0011) , x′

2 = 32 (10 0000), and MSB2 (x
′
1) = MSB2 (x

′
2) = 2 (10). In

(b), MSB4 (|x′
1 − x′

2|) = 0 and |x′
1 − x′

2| = 3 (11).

Since l−n = 1, the output result is expected to be less than 1 bit, but it turns out
to be 2 bits. Also, the MSB4 (|x′

1 − x′
2|) is trying to return the top 4 bits, while

|x′
1 − x′

2| is 2 bits, and the behavior of the function MSBn (x) is ambiguous.

3.2 Modifying definition of function MSBn (x)

In [3], MSBn (x) is defined to return the top n bits of x. In the 4-list sum
algorithm we are considering now, x includes values of less than n bits, so the top
n bits of x contain ambiguity. In addition, there is a problem that the algorithm
may output a value with an unintended bit length. To solve these problems, we
introduce a new function MSBl,n (x), which returns the (l − n) bit logical right
shifted value of x.

The function MSBl,n (x) introduced above solves the problem considered in
Example 1. With MSBl,n (x), in (a) the result is MSB5,2 (x

′
1) = MSB5,2 (x

′
2) =

4 (100). In (b), the result of the computation is MSB5,4 (|x′
1 − x′

2|) = 1 (1) ̸= 0,
so the 1 bit output is obtained. Since the output result is not a combination of
solutions that satisfy the condition, it is excluded from the candidates.
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3.3 Output range of 4-list sum algorithm

As can be seen from Example 1, a value of 2 bits is obtained when the value
should be less than 1 bit. This is because the addition of a bits may result in
(a+ 1) bits. The following theorem shows the probability that the sum of a
digits or less in basis b is (a+ 1) digits.

Theorem 1. Let a and b ≥ 2 be positive integers and n be a positive integer
such that ⌈ba/2⌉ ≤ n− 1 < ba. The probability that the sum of x1, x2 ∈ [0, n− 1]
in basis b is (a+ 1) digits is given by

(2n− ba − 1) (2n− ba)

2n2

Proof. Let x1, x2 ∈ [0, n− 1]. When x1 is fixed, the condition for x1 + x2 to
be (a+ 1) digits is x2 ≥ ba − x1. The interval of x2 satisfying the condition is
[ba − x1, n− 1] and there are (n− ba + x1) as x2. Also, the smallest x1 at which
the carry occurs is ba − n+ 1. Therefore,

n−1∑
x1=ba−n+1

(n− ba + x1) .

Since there are n2 possible combinations of adding x1, x2, the probability of
(a+ 1) digits is∑n−1

x1=ba−n+1 (n− ba + x1)

n2
=

(2n− ba − 1) (2n− ba)

2n2
.

In Theorem 1, if n − 1 is the maximum of a digits, i.e., n − 1 = ba − 1,
then (1− 1/ba) /2 = (1− 1/n) /2 is obtained, showing that it is carried forward
with about half probability. From this, the size of L′

1,L′
2 in (a) of Algorithm 3 is

2a ·2a ·2−(a+1) = 2a−1. The number of elements output to L′ in (b) is 2a−1 ·2a−1 ·
2−(n−a) = 23a+n−2, and M ′ = 23a+v−n−2. Therefore, the number of elements in
the output is 1/4 compared to the estimate in [3].

Considering Theorem 1, the range of v in Algorithm 3 can be modified from
v ∈ [0, a] to v ∈ [0, a+ 1]. This makes M ′ = 24a−n−1 only when v = a+ 1, and
the number of output elements becomes 1/2 compared to the estimation in [3].

3.4 Number of outputs of 4-list sum algorithm

In Theorem 4.1 of the [3], the equations (5) and (6) are presented. In the proof,
(a) of Algorithm 3 assumes that it is possible to find 2a pairs whose sum is c
for each c. However, in reality, only c+ 1 pairs can be obtained when v ∈ [0, a].
Furthermore, MSBl,a (x1 + x2) can be (a+ 1) bit as considered in Theorem 1.
Let v ∈ [0, a+ 1], allowing (a+ 1) bits in c, there are 22a+1 − c − 1 pairs of
combinations for which the sum in the range c ∈

[
2a, 2a+1 − 1

)
is c. The following

theorem shows the number of combinations in these two cases.
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Theorem 2. For a non-negative integer A, let x1, x2 be non-negative integers
x1, x2 ≤ A. For c ≤ A, there are c + 1 pairs of (x1, x2) such that x1 + x2 = c.
In the case of A ≤ c ≤ 2A − 1, there are 2A − c − 1 pairs of (x1, x2) such that
x1 + x2 = c.

Proof. Consider the case c ≤ A. From x1 + x2 = c, there always exists one x2

corresponding to x1. Since x1, x2 ∈ [0, c], there are c+1 pairs of x1, x2 such that
x2 = c− x1. Therefore, there are c+ 1 pairs of (x1, x2) whose sum is c.

Next, consider the case A ≤ c ≤ 2A−1. Since x1+x2 = c, there is exactly one
corresponding x2, if there exists an x1 satisfying the condition. Since x1, x2 ∈
[c−A,A], there exist A − (c−A) + 1 = 2A − c + 1 pairs of x1, x2 such that
x2 = c− x1. Therefore, there are 2A− c+ 1 pairs of (x1, x2) that sum to c.

When applying Theorem 2 to Algorithm 3, we can set A = 2a − 1. In [3],
the number of elements in the list does not depend on the parameter c, but this
theorem shows that it does depend on c. In Algorithm 3, [3] claims that 220 pairs
are output for any c when a = 20, but only 1 pair is output when c = 0.

Based on Theorem 2, Figure 1 shows the distribution of elements output in
(a) of Algorithm 3 for the case a = 5. In [8], which was referred to in applying
the 4-list sum algorithm in [3], xor is used instead of addition. In the case of
xor, the distribution is uniform as shown in Figure 2. In [3], the estimate was
based on the assumption that the distribution would be Figure 2, but the actual
distribution is not uniform as in Figure 1. The number of collisions in (a) is
shown in Appendix A.
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Fig. 1. Distribution of combinations of
sums in the case a = 5.
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Fig. 2. Distribution of combinations of
xor in the case of a = 5.

3.5 Simple modification of the algorithm

In this section, we show the modification to make the distribution uniform so that
the carry does not occur and the sum does not become (a+ 1) bits. GBP perform
addition on Zq instead of ⊕ in [5, 10], which also results in a uniform distribution.
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In (a) of the algorithm, the computation as modulo q allows pairs not used by
carry to be included in the L′

1,L′
2 as elements satisfying the condition, and they

are uniformly distributed. This modification does not affect bias computation in
Fourier analysis-based attacks. A simple modification is to output the element
(x1 + x2) mod q in list L′

1 with MSBa ((x1 + x2) mod q) = c as the condition
to be satisfied in (a) of the Algorithm. Similarly for L3,L4. This modification
allows the algorithm to output 2a elements in (a) without (a+ 1) bits due to
carry. The distribution of the output is uniform, and for a = 5, the distribution
is as shown in Figure 2. Therefore, the linear programming problem presented
by Aranha et al. can be applied [3].

3.6 Improved 4-list sum algorithm using the distribution of sums

In the implementation of the 4-list sum algorithm in [3], x1+x2, x3+x4 are not
output to L′

1, L
′
2 in order to save memory. Their implementation does not keep all

the bits in each list, which allows it to run with less memory. First, only the top
127 bits of the original xi are output to L1,L2,L3,L4, and the original samples
are stored in ROM to reduce memory consumption. Next, in (a) of the algorithm,
find pairs (x1, x2) satisfying MSB127,a (x1 + x2) = c and store the triplet con-
sisting of the indices of x1 and x2 and the value of x1+x2 in L′

1. Similarly, in (b) of
the algorithm, find pairs ((x1 + x2, indexx1

, indexx2
) , (x3 + x4, indexx3

, indexx4
)) ∈

L′
1 × L′

2 satisfying MSB127,n (|x′
1 − x′

2|) = 0 and store the quadruplet indices
(indexx1 , indexx2 , indexx3 , indexx4) in L′. Finally, the samples are read from
ROM and the result of the linear combinations are computed from the indices
list L′. This implementation keeps only 127 bits of each value of h in memory
while searching for collisions, no matter how long the key length is. In addition,
a linear combination of h and z must be taken simultaneously, but using a list
of indices, only h needs to be kept in RAM during collision search.

Algorithm for simple modifications requires that each value of x1, x2, x3, x4

be kept in all-bit memory for the modulo calculation in (a) in the algorithm.
Therefore, the next section considers an algorithm to increase the number of
samples after linear combinations without modulo to save memory.

In Section 3.3, we confirmed that the number of samples output is not uniform
depending on the value of c. The range of c in [3]’s Algorithm 3 with c selected
is shown in Figure 3. Since their algorithm assumes uniformity, c is selected in
the range from 0 to 2v − 1, and the figure clearly shows that they select a small
range. In this section, we seek the optimal interval of c that maximizes output
count, while maintaining a width of 2v for non-uniformity.

For c ∈ [p, p+ 2v), the number of samples output after one round of 4-list
sum algorithm is

min(2a−1,p+2v−1)∑
i=p

(i+ 1) +

max(2a−1,p+2v−1)∑
i=2a−1

(
−i+ 2a+1 − 1

)
.
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Finding p that maximizes the above equation. p = 2a − 1 − 2v−1, 2a − 2v−1

maximize it to 2v−1
(
2a+1 − 2v−1

)
. This is also clear from Figure 4, which shows

that it is sufficient to take an interval from the center, 2a, to the left and right.

Fig. 3. Range of c in [3] (v = 4). Fig. 4. Range of optimal c (v = 4).

From the range of c obtained, the number of samples output after one round
of the 4-list sum algorithm is less than the estimate of [3] as follows.

M ′ =

2

2a−2∑
c=2a−2v−1

(c+ 1)
2
+
(
2a − 2v−1

)2 2−(n−a) + 23a−n

=

(
22a+v − 2a+2v−1 +

23v−2

3
− 22v−2 +

7 · 2v

6

)
2−(n−a) (7)

< 23a+v−n

Algorithm 5 shows the modified algorithm based on these modifications. From
Theorem 2, let the function f (c) which returns the number of combinations of
sums be

f (c) =

{
c+ 1 if c ≤ 2a − 1
2a+1 − c− 1 otherwise

Note that in (b), {f (c)}2 · 2−(n−a) < 1 and the number of elements output to
L′ may be 0 depending on the possible range of c.

3.7 Experiments and evaluations on distribution

We experimented to confirm that the number of samples output differs depending
on the range chosen for c. Comparison experiments are performed by applying
the original Algorithm 3 and the improved Algorithm 5 to 60-bit ECDSA. Table 1
shows the parameters and the experimental results. To check the distribution, it
is not necessary to recover the key, and it is sufficient to confirm that the number
of samples output does not depend on a. Therefore, the key length can be any
number of bits, and in this experiment, we will use 60-bit.
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Algorithm 5 Modified: Parameterized 4-list sum algorithm based on Howgrave-
Graham–Joux
Input: {Li}4i=1: sorted lists of uniform random samples of λ of length 2a, n: number

of top bits to be discarded in each round, v ∈ [0, a+ 1]: parameter, λ: parameter
Output: L′: list of (λ− n) bits in the sample
1: if v ̸= a+ 1 then
2: γ = 2a − 2v−1 − 2, δ = 2a + 2v−1 − 1
3: else
4: γ = 0, δ = 2v

5: end if
6: For each c ∈ [γ, δ) :

(a) Find pairs (x1, x2) ∈ L1 × L2 satisfying MSBλ,a (x1 + x2) = c. Out put a new
sorted list L′

1 with (c+ 1) elements of x1 +x2. Similarly, for L3,L4, the sorted
list L′

2.
(b) Find pairs (x′

1, x
′
2) ∈ L′

1×L′
2 satisfying MSBλ,n (|x′

1 − x′
2|) = 0. Out put a new

sorted list L′ with |x′
1 − x′

2| as {f (c)}2 · 2−(n−a) elements.

7: return L′ with M ′ =
{
2
∑2a−2

c=2a−2v−1 (c+ 1)2 +
(
22a + 2v − 2a+v

)
+ 22a

}
2−(n−a).

Table 1. Parameters and results of the experiment

Parameter a0 v0 n0 a1 v1 n1 Original M ′ M ′ after modification
l = 1, ε = 0 8 5 14 14 2 16 0 229.43

l = 2, ε = 0.1 8 5 15 14 2 15 0 227.34

In the original algorithm, the secret key could not be recovered due to the
M ′ = 0, but it could be recovered in the modified algorithm. The reason for the
small number of samples in the original algorithm is that v1 = 2, which means
that only the sums of combinations 0, 1, 2, 3 are considered, and the number of
pairs satisfying these conditions is small. Thus, the number of samples obtained
by the algorithm of [3] becomes 0 when the value of v is extremely small with
respect to a. The modified algorithm succeeded in recovering the secret key
because a sufficient number of samples were obtained.

3.8 Equivalent ε for l = 2 to l = 1, ε = 0

Consider the case where nonce is leaking with multi-bit errors. An estimate if
the 2 bits leaked with an error rate of 0.1 could recover the secret key with fewer
signatures than if the 1 bit nonce was leaked without error was obtained. [12]. We
can find the error rate in Table 2 in [3] so that mr = 2 (logα− 4r log (|Bq (K)|))
are equal. Details on α are given in Appendix C of [3], and if 1 bit contain error,

α =
√
2 ln (2LFFT/ε). If l bits contain errors, α =

√
2 ln

(
2LFFT/

(
1− (1− ε)

l
))

.

Consider the case r = 2. The error rate that makes mr equal to l = 1, ε = 0 is
ε = 0.11 for l = 2. In both cases, m2 ≈ 27.0740. Here, since the error rate for each
bit is 0.11, we have Note that the error rate at the 2 bit is 1−(1− 0.11)

2 ≈ 0.21.
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4 New Fourier analysis-based attack for uniform nonces

All previous studies [2, 3, 7, 12, 14] on Fourier analysis-based attacks, while avoid-
ing all searches by linear combinations, used only biased nonces, and only the
number of signatures actually used in the attacks were given as estimates. How-
ever, when the nonces are generated uniformly at random, several times as many
signatures and nonces leak are required to obtain signatures corresponding to
biased nonces if the previously proposed methods are applied. Therefore, the
signatures that could be used for the attack would be a fraction of the total, and
many signatures would have been wasted. For example, if only samples in which
the top 2 bits of the nonces are 01 are used when 2 bits are leaked, then samples
in which the remaining top 2 bits are 00, 10, 11 are not used. In other words, 3/4
of the signatures collected are not used, so a successful attack requires 4 times
the number of signatures to be collected.

In this section, we show that by using all signatures without wasting, the
number of signatures decreases to 1/2 in the case of a 1 bit leak and 1/4 in the
case of a 2 bits leak in the same execution time as before, and the secret key
is successfully recovered. Furthermore, we show that when 3 or more l bits are
leaked, the time remains the same when the number of signatures is reduced to
1/4, while the number of signatures required decreases by spending more time
when the number of signatures decreases by 1/2(l+6)/4.

4.1 Trick of our new attacks

The absolute value of the bias function increases when there is a bias in {ki}Mi=1.
Fourier analysis-based attacks can reduce the number of key searches by linear
combinations. Linear combinations generate

{(
h′
j , z

′
j

)}M ′

j=1
form {(hi, zi)}Mi=1. In

this case, linear combinations are also performed for the corresponding set of
nonces {ki}Mi=1, and there exist triplets

{(
k′j , h

′
j , z

′
j

)}M ′

j=1
. Here, we have a new

problem of solving HNP for the samples. That is, if
{
MSBl

(
k′j
)}M ′

j=1
are biased, it

can be solved by a Fourier analysis-based attack. In the Algorithm 2, this is done
by bias computation after linear combination. Therefore, the nonces {ki}Mi=1 of

the HNP samples itself need not necessarily be biased; it is sufficient if
{
k′j
}M ′

j=1

corresponding to the samples after linear combinations are biased.
The next theorem shows that the peak value is identical when the constraint

that K is uniformly distributed over some interval is removed in the Lemma 2.

Theorem 3. Let l be the number of leakage bits and b the positive integer b ∈[
0, 2l − 1

]
. Let kb,i be the nonces whose top l bits are b and Kb,i be a random vari-

able uniform distributed overt the interval
[
b⌊(q − 1) /2l⌋, (b+ 1) ⌊(q − 1) /2l⌋

]
corresponding to nonce kb,i. Let K be a uniformly distributed random variable
on the interval

[
0, ⌊(q − 1) /2l⌋

]
. Assuming that ωb,i takes only {−1, 0} or {0, 1}
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values depending on the value of b, then∣∣∣∣∣Bq

(∑
b

∑
i

ωb,iKb,i

)∣∣∣∣∣ = |Bq (K)|Ω .

Proof. Let i+b ∈ {i|ωb,i = 1}, i−b ∈ {i|ωb,i = −1} and Ω :=
∑

b

∑
i |ωb,i|, then

Bq

(∑
b

∑
i

ωb,iKb,i

)
= Bq

∑
b

∑
i+b

Kb,i+ −
∑
b

∑
i−b

Kb,i−b


= Bq

∑
b

∑
i+b

Kb,i+b

Bq

∑
b

∑
i−b

Kb,i−b

 =
∏
b

∏
i+b

Bq

(
Kb,i+b

)∏
b

∏
i−b

Bq

(
Kb,i−b

)
∣∣∣∣∣Bq

(∑
b

∑
i

ωb,iKb,i

)∣∣∣∣∣ =
∣∣∣∣∣∣
∏
b

∏
i+b

Bq

(
Kb,i+b

)∏
b

∏
i−b

Bq

(
Kb,i−b

)∣∣∣∣∣∣ = |Bq (K)|Ω

Theorem 3 shows that the peak value after linear combinations is equal to
Lemma 2, even when the top bits of nonces are uniform.

4.2 Distribution after linear combinations

Previous studies have not discussed the distribution after linear combinations.
In this section, we discuss the distribution after linear combinations. Then, we
will show the graphical representations in the next section.

Generalize for leaks of more than 2 bits. Let l be the number of leakage bits
and b ∈

[
0, 2l − 1

]
. Let Kb be a random variable that is uniformly distributed

on the interval
[
b⌊(q − 1) /2l⌋, (b+ 1) ⌊(q − 1) /2l⌋

]
corresponding to nonces. Let

α ∈
[
0, 2l − 1

]
and K0

α, . . . ,K
2l−1
α be independent random variables. In the

previous studies, the linear combinations were taken only for random variables
in equal intervals, so the random variable after the linear combinations is K ′ =
K0

α+K1
α−K2

α−K3
α. The combinations of random variables in different intervals

are K ′′ = Kα0+Kα1−Kα2−Kα3 , where α0, . . . , α2l−1 ∈
[
0, 2l − 1

]
, as αi ̸= αj

when i ̸= j. Next, we show that the ranges of K and K ′′ are equal in range and
the distribution is shifted by a constant amount. As ζ0, . . . , ζ2l−1 ∈

[
0, 2l − 1

]
,

from the interval, Kα0
≡ K0

α + ζ0⌊(q − 1) /2l⌋ mod q can be expressed as

K ′′ ≡
(
K0

α +K1
α −K2

α −K3
α

)
+ (ζ0 + ζ1 − ζ2 − ζ3) ⌊(q − 1) /2l⌋ mod q

= K ′ + (ζ0 + ζ1 − ζ2 − ζ3) ⌊(q − 1) /2l⌋ mod q

Thus, the distributions are off by a constant amount and the ranges are equal.
From the above and Theorem 3, it can be seen that the case of taking a linear
combination with only K biased before the linear combination and the case of
taking a linear combination that is unbiased before the linear combination and
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biased after the linear combination, the peak values are equal, and the intervals
of the distribution are also equal. Therefore, it is not necessary that the set of
nonce {ki}Mi=1 is biased before the linear combination. However, itt is sufficient

that
{
k′j
}M ′

j=1
corresponding to the sample after the linear combination is biased.

4.3 Visual explanation of the distribution after linear combination

We show conceptual illustrations of the distribution described in the previous
section. First, Figure 5 shows a conceptual illustration of the distribution of
conventional nonces that are all biased to 0 at the time of 1 bit leakage. Figure 6
shows a conceptual illustration of the distribution when the top 1 bit are 1 +
1− 0− 0 and linear combinations are taken with uniform nonces. These figures
show that the distributions after linear combinations are the same when the 1
bit is leaked, whether the nonces are biased or not.

Next, the distributions for the 2 bits leakage case are shown. Figure 7 shows
a conceptual illustration of the distribution of nonces that are all biased to 01
at the time of 2 bits leakage case. Figure 8 shows a conceptual illustration of
the distribution when linear combinations are taken with uniform nonces at 2
bits leakage. Here, the top 2 bits are 0 + 1− 2− 3. These figures show that the
distributions after linear combinations are the same. The distributions for 3 bits
and the other case of 1 bit are shown in Appendix B. Furthermore, we explain
that the distributions of Fig 1 and a part of Fig 5 are the same in Appendix B.

-

Fig. 5. Distribution by linear combina-
tions with top 1 bit biased towards 0.

-

Fig. 6. Distribution by linear combina-
tions with unbiased top 1 bit.

4.4 Algorithm for precomputation resulting in bias

In order to achieve the above, when dividing the list in (a) of Algorithm 5, it is
sufficient to make the nonces corresponding to each element of the list {Li}4i=1

biased. In other words, in the case of 2 bits, the HNP samples corresponding to
the above 4 random variables and the corresponding nonces should be assigned
to the list and given as input. Algorithm 6 shows the precomputation for the
general l bits case. In the case of 1 bit, since 2 lists are returned, each list is
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-

Fig. 7. Distribution by linear combina-
tions with top 2 bits biased towards 01.

-

Fig. 8. Distribution by linear combina-
tions with unbiased top 2 bits.

divided into 2 lists to make 4 lists for use in the 4-list sum algorithm. For 2 bits,
4 lists are returned, and for 3 bits or more, 8 or more lists are returned.

Up to this section, we have shown that it is sufficient if k′ corresponding
to the samples after linear combinations are biased, and the algorithms achieve
this. In the following, we will estimate the number of signatures to be collected
to recover the secret key when those algorithms are executed.

Algorithm 6 Prepcomputation when uniform nonces are leaked
Input: {(MSBl (ki)) , hi, zi}Mi=1: HNP saples with leaage to l bits of nonces
Output: List {Li}2

l

i=1

1: for i = 1 to M do
2: Add (hi, zi) to LMSBl(ki)+1.
3: end for
4: return {Li}2

l

i=1

When 1 bit of nonces are leaked, there are 2 possible values for the top
bits are 0 or 1. For the 4 lists {Li}4i=1 in the 4-list sum algorithm, there are two
classification methods for the combinations of lists that MSB assigns as elements
of lists: {0, 0, 1, 1} and {1, 0, 1, 0}. {0, 0, 1, 1} and {1, 1, 0, 0}, and {1, 0, 1, 0} and
{0, 1, 0, 1} yield equal results, respectively. By classifying the lists as described
above, the number of signatures required is 1/2, since linear combinations can
be taken with signature pairs in which the top 1 bit of nonces are both 0 and 1.

When 2 bits are leaked, there are 4 ways in which the top bits are {00, 01, 10, 11}.
For the 4 lists {Li}4i=1 in the 4-list sum algorithm, there are two classification
methods for the combinations of lists that MSB assigns as elements of lists:
{00, 01, 10, 11}, {00, 10, 01, 11} and {00, 11, 01, 10}. By classifying and listing,
the number of signatures required is 1/4 since linear combinations can be taken
using all signatures where the top 2 bits are {00, 01, 10, 11}.

When l ≥ 3 bits are leaked, it is possible to reduce the number of signatures
to at least 1/4 of the previous method by using any 4 lists. In the following,
we consider the case where all lists are used. There are two possible ways to
obtain biased linear combinations using all the 2l lists obtained. One is to use
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the 2l-list sum algorithm. Dinur also shows in the generalization process linear
combinations with 8-list [8]. Similarly, it is possible for more than 3 bits.

Another way to get biased linear combinations is to perform the first round of
4-list sum algorithm multiple times. Consider the case of 3-bit leakage. K0+K2−
K4−K6 = K1+K3−K5−K7, and since the bias ranges are equal, after first
round of 4-list sum algorithm for each {K0,K2,K4,K6} and {K1,K3,K5,K7},
all the samples obtained in the first round can be run together from the second
round. Generalizing at 3 or more l bits leakage, we need to do the following
combination of round 1 4-list sum algorithm 2l−2 times.

{(Ki,K2l−2+i,K2l−1+i,K2l−1+2l−2+i)}
2l−2−1
i=0

We will now estimate the specific number of signatures. Using all the uniform
signatures obtained at l bits leakage from Equation (7) as M = 2a+2+l as linear
combinations of biased samples, we obtain M ′ · 2l samples in round 1. Because,
for M = 2a+2, M ′ samples are obtained, and this is repeated 2l times, so the
number of samples output is M ′ ·2l. Applying the algorithm where each of the 4
lists is different range of lists, the number of signatures in the input is 2a+l, and
the number of samples after linear combinations in the output is M ′ ·2l−2. Thus,
the required number of samples after linear combinations can be reduced by a
factor of 1/2l−2. Therefore, in the case of l = 2, an equal number of samples M ′

can be obtained with a signature count of 1/4. With respect to the parameter v,
M ′ is minimum for v = 0 and

(
2a−1 + 2

)
2−(n−a), and maximum for v = a + 1

and
(
23a+1/3− 22a + 7 · 2a+1/6

)
2−(n−a). If we take the value of M as 1/2, the

number of samples obtained is at most about 1/4 and at least about 1/16. If we
take η as a positive integer and multiply the value of M by 1/2η, the number of
samples obtained is at least about 1/24η times, so the number of samples is about
M ′ ·2l−2 ·2−4η = M ′ ·2l−4η−2. In order to obtain the same number of samples as
in the original algorithm, we need only l−4η−2 ≥ 0, so we obtain η ≥ (l − 2) /4.
Thus, the number of signatures required can be at least 1/2(l−2)/4+2 = 1/2(l+6)/4

times that of previous studies using only biased samples, or at most 1/2(l+2)/2

times, so the number of signatures required decreases as l increases.

4.5 New Fourier analysis-based Algorithm for uniform nonces

We will describe an algorithm using the 4-list sum algorithm for uniform nonces,
which is shown in Appendix C. First, lists are constructed from the leaked nonces
values so that the nonces are biased by using Algorithm 6 then obtain L′. Next,
the 4-list sum algorithm is applied to the lists so that the lists become biased
after linear combinations.

When biasing while performing the 4-list sum algorithm, there is a slight
difference between the 1 bit leakage case and other cases. In the 1 bit leakage
case, there are only 2 lists because they are biased toward 0 or 1. Therefore,
the 4-list sum algorithm is executed after the list is split into 4 lists. When
the leakage is 2 bits or more, there are more than 4 lists. For 3 bits or more,
there are more than 8 lists, and each linear combination must be biased to the
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same extent. Therefore, we classify them into biased pairs and run the 4-list sum
algorithm once on each of them. Since the samples obtained after that are the
same biased, the normal 4-list sum algorithm is performed after the 2nd round.

5 Comparison between previous and our proposed
algorithms for uniform nonces

In this section, we compare the method proposed in Section 4 with existing
methods. The 4-list sum algorithm uses the algorithm proposed in Section 3. In
the case of error, we use the error rate obtained in Section 3.8.

Under the following four conditions, experiments were performed on 131-bit
ECDSA with and without nonces bias. (1) 1 bit leakage with no error (2) 2 bits
leakage with no error (3) 2 bits each with an error rate of about 0.11 leakage
(4) 3 bits leakage with no error. In the case of 1 bit leakage, we experimented
with different combinations of lists. In the case of 3 bits leakage, we performed
experiments on half of the 4 lists and on all 8 lists. A total of 10 experiments were
performed. Table 2 shows the parameters used when the 4-list sum algorithm
is applied. Table 3 shows the parameters for the algorithm shown in 4.4. The
number of signatures in the input is M = 2a0+3, since the 2nd round is performed
after the 1st round is run 2 times. Experiments were performed on Ubuntu 20.04
LTS, Intel Xeon Silver 4214R × 2, 24 cores, 48 threads, DDR4 256GB.

Table 2. Parameters of the experiment

Condition l ε a0 v0 n0 a1 v1 n1

(1) 1 0 21 13 56 19 15 47

(2) 2 0 21 13 56 19 12 47

(3) 2 0.11 21 13 56 19 15 47

(4) 3 0 15 15 38 20 11 65

Table 3. Parameters for using all when
uniform 3 bits are leaked

Condition a0 v0 n0 a1 v1 n1

(4) 13 13 35 18 12 68

The attack on the 1 bit leakage with no error was experimented on 4 lists
in 2 cases where the top bits are {1, 1, 0, 0} and {1, 0, 1, 0}, respectively. For the
attack on 2 bits leakage with no error, we conducted experiments on 4 lists in
which the top 2 bits are {00, 01, 10, 11}. The attack on 2 bits leakage with errors
was performed with the same sorting as for 2 bits leakage with no error, with an
error rate of about 0.11, which was estimated to be recoverable with the same
number of samples after linear combination as for 1 bit leakage with no error. In
the experiment with 3 bits leakage with no error for only 4 lists, the lists were
selected so that {000, 010, 101, 001}. In the experiment with 3 bits leakage with
no error for only 8 lists, we performed the 4-list sum algorithm 1 time for each list
selected so that {000, 010, 100, 110} and {001, 011, 101, 111}, then summarized
the outputs and using the 4-list sum algorithm again.

Source Code. Our source code is available in GitHub repository https://github.
com/ooshun/bias-from-uniform-nonce.
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5.1 Experimental result

Table 4 shows the experimental results when the conventional top bits are biased,
and Table 5 shows the results when the top bits are unbiased. Computational
time is required for the 4-list sum algorithm. In all conditions, there was no dif-
ference in the number of recovered bits, peak values, or average noise excluding
the peak values between the unbiased and biased cases. These results confirm
that even when the nonces are not biased, they can be biased by linear combi-
nations, and as a result, the secret key can be recovered. Thus, in the case of
uniform leakage, it is possible to recover the secret key with a smaller number of
signatures, which is shown as M in the tables than the previous method. Using
all signatures with 3 bits leakage increased the time.

Table 4. Experimental results with bias

l ε M M ′ Time (sec.) recovered bits Average noise Peak value
1 0 224 226.90 1186 29 7.9 · 10−5 4.6 · 10−4

2
0 225 223.99 504 29 2.1 · 10−4 1.2 · 10−1

0.11 225 226.89 1201 29 7.9 · 10−5 1.9 · 10−3

3 0 220 27.93 90 29 5.7 · 10−2 4.4 · 10−1

Table 5. Experimental results with no bias

l ε
Combinations of
lists top l bits M M ′ Time (sec.) Recovered bits Average noise Peak value

1 0
{0, 0, 1, 1} 223 226.90 1210 29 7.9 · 10−5 4.5 · 10−4

{1, 0, 1, 0} 223 226.90 1223 29 7.9 · 10−5 4.3 · 10−4

2
0 {00, 01, 10, 11} 223 223.98 530 29 2.1 · 10−4 1.2 · 10−1

0.11 {00, 01, 10, 11} 223 226.89 1190 29 7.9 · 10−5 1.9 · 10−3

3 0
{000, 010, 101, 001} 218 27.80 87 29 5.9 · 10−2 4.4 · 10−1

{000, 010, 100, 110,
001, 011, 101, 111} 216 27.77 829 29 6.0 · 10−2 4.6 · 10−1

6 Conclusion

First, we modified 4-list sum algorithm in Section 3 . Issues related to carry and
distribution were pointed out and we derived the exact distribution and made
improvements incorporating that distribution. Second, we proposed an attack
method for the unbiased nonces in Section 4. We showed that when the nonces
are uniformly distributed, the number of signatures required in the case of a
uniform distribution can be reduced to 1/2 in the case of a 1 bit leakage and 1/4
in the case of 2 bits and more leakage. In addition, we showed that the number of
signatures can be reduced to 1/2(l+6)/4 times for l over 3 bits. The conventional
collision search plays the role of reducing the number of secret key searches. In
this study, we show that it can also reduce the number of signatures used by
playing the role of biasing the secret key at the same time. Finally, we performed
comparison experiments between uniform and biased distributions in Section 5
and confirmed that the number of required signatures could decrease.
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A The number of collisions

Consider the number of collisions assumed in [3] for (b) of the algorithm Algo-
rithm 3, the algorithm before modification, and the number of collisions in (b)
of Algorithm 5, the algorithm after modification. Figure 9 and Figure 10 show
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the collision counts for the case where a = 5. It can be seen that the number
of collisions is reduced in the modified algorithm. This also indicates that the
range of c should be taken as in Algorithm 5.
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Fig. 9. Number of collisions in (b) as-
sumed in [3].

0 10 20 30 40 50 60
Value (c)

0

200

400

600

800

1000

Nu
m

be
r o

f c
ol

lis
io

ns

Distribution of the number of collisions in (b), a=5

Fig. 10. Number of collisions in (b) of
Algorithm 5.

B Distributions after linear combinations

We showed the distribution when nonces are unbiased and top 1 bit of lists are
{1, 1, 0, 0} in Fig 6. Figure 11 is distribution when nonces are unibiased and top
1 bit of lists are {0, 1, 0, 1}.

We described the distribution for unibiased 3 bits leakage. Figure 12 is dis-
tribution by linear combinations of the first round when all elements are used
when the top 3 bits are unbiased.

In Section 4.3, we said the distributions of Fig 1 and a part of Fig 5 are the
same. Figures 13 and 14 show how this is illustrated. It means that the sum of
uniform distributions is biased. We can say that each distribution in Fig 13 is
attached to the unit circle in Fig 14.

C Collision search for unbiased nonces

Algorithm 7 shows an algorithm for linear combinations using the 4-list sum
algorithm when the nonces are uniform and the top bits are leaked. First, lists
are created from the leaked nonces values so that the nonces are biased. Next,
the 4-list sum algorithm is applied to the lists so that the lists become biased
after linear combinations. The resulting list can then be used to compute the
secret key by performing bias computation in Algorithm 2. Figure 12 shows lines
7 through 9 of Algorithm 7.
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-

Fig. 11. Distribution after linear combinations with unbiased top 1 bit as {0, 1, 0, 1}.

- -

Fig. 12. Distribution after linear combinations of the first round when all elements are
used when the top 3 bits are unbiased.
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Fig. 13. Distribution after linear combinations of histogram.

Fig. 14. Distribution after linear combinations on the unit circle.



Bias from Uniform Nonce: Revised Fourier Analysis-based Attack on ECDSA 25

Algorithm 7 Collision search using 4-list sum algorithm for uniform nonces
Input: {(MSBλ,l (ki) , hi, zi)}Mi=1: HNP sample on Zq corresponding to uniform nonces

with top l bits leaked, M ′: number of linear combinations to be found, LFFT: FFT
table size.

Output: L′

1: Precomputation
2: Execute Algorithm 6 and obtain {Li}2

l

i=1.
3: Collision Search
4: if l = 1 then
5: Split half of the elements of L1 and L2 into L3 and L4 respectively and perform

4-list sum algorithm
6: else
7: for i = 0 to 2l−2 − 1 do
8: Execute round 1 of the 4-list sum algorithm for the quadruplets{

Ki,K2l−2+i,K2l−1+i,K2l−1+2l−2+i

}
and add the result to L′.

9: end for
10: Run (r − 1) rounds of 4-list sum algorithm for L′.
11: return L′

12: end if


