
Post-Quantum Backdoor for Kyber-KEM

Wenwen Xia1,2 , Geng Wang3,2⋆ , and Dawu Gu3,2,1⋆

1 School of Cyber Engineering, Xidian University, Xi’an, 710071, China
xiawenwen@stu.xidian.edu.cn

2 Lab of Cryptology and Computer Security, Shanghai Jiao Tong University,
Shanghai, 200240, China

3 School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong
University, Shanghai, 200240, China
{wanggxx, dwgu}@sjtu.edu.cn

Abstract. Kleptography, also known as cryptographic backdoor, poses
a significant threat to cryptographic algorithms by clandestinely embed-
ding a backdoor through the use of another cryptographic algorithm,
often leveraging public-key encryption techniques. Achieving a carefully
designed kleptographic attack demands reducing the detectability of the
backdoor to the complexity of cryptographic hard problems. In this pa-
per, we explore the application of kleptography to CRYSTALS-Kyber, a
post-quantum algorithm standardized by NIST. Leveraging the Classic
McEliece Key Encapsulation Mechanism (KEM), also a NIST round-4
candidate, we devise a backdoor for both Kyber-768 and Kyber-1024.
Similar to the approach proposed by Yang et al. [AsiaCCS 2020], our
backdoor manipulates only the key generation algorithm, ensuring com-
patibility with the key encapsulation mechanism (KEM) variant of Ky-
ber, rather than solely the public key encryption. Moreover, we present a
stronger definition of undetectability within a public-key framework, cap-
turing the intuition that the backdoor could be hidden in both the Key
Generation and Encryption processes, and prove the undetectability of
our backdoor under this new definition. In addition, compared with Yang
et al, our backdoor has two advantages: (1) We provide post-quantum
undetectability; (2) Our backdoor remains independent of the public key
seed, preserving public undetectability against certain potential coun-
termeasures. The undetectability of our backdoor hinges on reducing it
to the decisional version of the syndrome decoding problem (SDP) for
Goppa codes.

Keywords: Kelptography · Backdoor attack · CRYSTALS-Kyber · Post-
quantum cryptography

1 Introduction

Kleptography, introduced by Young and Yung in 1997 [YY97a], is a method
for constructing the cryptographic backdoor within a cryptosystem. In simple

⋆ Corresponding author.

https://orcid.org/0009-0001-3433-6165
https://orcid.org/0000-0003-1000-7903
https://orcid.org/0000-0002-0504-9538

terms, kleptography relies on the security of another public key cryptographic
algorithm to ensure the undetectability of the backdoor. Kleptography has al-
ready proven to be a threat for both symmetric and asymmetric cryptography.
For asymmetric schemes, kleptography attacks can be applied to many stan-
dardized algorithms [YY97b,YY16], such as RSA or ECDSA. It succinctly em-
phasizes that kleptography has practical implications beyond theory. Given that
many institutions including banks or governments may outsource programming
to external parties, incorporating cryptosystem implementations into their prod-
ucts. It is possible that backdoors could be implanted in these outsourced binary
codes using kleptography. Such backdoors may remain undetected unless uncov-
ered through reverse engineering. Therefore, kleptography attacks indeed pose
practical threats for users.

With the rapid advancement of quantum computing, the need for developing
new methods for public-key algorithms resistant to quantum attacks has become
urgent, a field commonly referred to as post-quantum cryptography. In 2022,
NIST announced the standardization of four post-quantum algorithms, among
which CRYSTALS-Kyber [ABD+20] stands out as the only key-encapsulation
mechanism (KEM). It is foreseeable that Kyber will emerge as one of the most
widely adopted public-key algorithms in the post-quantum era.

Kyber is a lattice-based scheme, relying on the module learning with errors
(Module-LWE, or MLWE) problem for its security. To achieve indistinguisha-
bility against adaptive chosen ciphertext attacks (IND-CCA2), Kyber initially
presented a public key encryption (PKE) scheme with only IND-CPA security.
Subsequently, it utilized the quantum Fujisaki-Okamoto (QFO) transformation
to convert the IND-CPA PKE into an IND-CCA2 key encapsulation mechanism
(KEM).

Recent works, such as those in [XY18, YCL+20], have proposed common
backdoor methods for LWE-type public key encryptions by modifying encryp-
tion algorithms Enc, with undetectability based on LWE and NTRU, respec-
tively. However, these backdoors are not applicable to Kyber-KEM. In the de-
capsulation algorithm of Kyber-KEM, the ciphertext must be reproduced with
the same encapsulation algorithm, which includes the encryption algorithm as
its subroutine. Therefore, any modification to the encapsulation or encryption
algorithm would be easily detected.

In [YXP20], Yang et al. introduced a novel construction for lattice back-
doors, where the modification is limited to the key generation algorithm Key-
Gen. It’s worth noting that their original construction had flaws, later rectified
by [Hem22]. While they initially demonstrated their backdoor construction on
the PKE version of NewHope [ADPS16], it can readily be extended to Kyber,
including Kyber-KEM. However, their approach employs Diffie-Hellman key ex-
change from elliptic curves, which lacks post-quantum security. We highlight
that, despite symmetric cryptosystems typically being considered post-quantum
secure, kleptography necessitates the use of a public key scheme for hiding the
backdoor, as outlined in the definition by Young and Yung [YY97a]. This re-
quirement ensures that even if the backdoor is uncovered via reverse engineering,

the secret key for backdoor recovery remains concealed. Thus, determining the
exact time of implantation and identifying the infected keys or ciphertexts re-
mains elusive. For a more in-depth discussion, we refer readers to the original
paper [YY97a].

The backdoor construction of Yang et al. In [YXP20] and [Hem22], the con-
struction of the backdoor is described as follows: Let G be the base point of
an elliptic curve, where the modulus q is very close to 2256. Let p be the or-
der of G, and a ← Zp represent the backdoor private key, with aG being the
backdoor public key. To embed a backdoor into the key generation algorithm,
a value b ← Zp is first chosen, followed by encoding bG and b(aG) into pseu-
dorandom 256-bit strings, which can be accomplished using techniques outlined
in [BHKL13] as pointed out by [Hem22]. The encoding of bG and b(aG) serves
as the public seed and secret seed, respectively, in the key generation algorithm
of the post-quantum scheme (see Section 2.2 for the description of Kyber as
an example). Subsequently, upon receiving the post-quantum public key, the
backdoor secret key holder can recover bG and calculate a(bG) to determine the
secret seed, thereby recovering the secret key. It’s worth noting that for most
lattice-based schemes, the LWE samples used as the public key must be gener-
ated from a public seed, with the seed included in the real public key to prevent
a hidden trapdoor. Therefore, this backdoor construction can potentially affect
most lattice-based schemes.

However, the lengths of the public seed and secret seed are only 256 bits,
necessitating that the ciphertext of the public key encryption scheme used in
the backdoor construction must have, or can be compressed into, a length of at
most 256 bits. This requirement cannot be satisfied for any known post-quantum
public-key schemes. As a result, it remains an open problem about: Is there a
kleptographic attack on Kyber-KEM feasible in the post-quantum era?

In this paper, we address this issue by introducing a backdoor construction for
Kyber-768 and Kyber-1024, derived from Classic McEliece, a code-based post-
quantum Key Encapsulation Mechanism (KEM) that is a candidate in the NIST
4th round [ABC+22]. In our backdoor construction, we employ the 128-bit secure
parameter selection mceliece-348864, which features a 768-bit ciphertext length,
the shortest among all post-quantum schemes to the best of our knowledge.
We reduce the undetectability of our trapdoor to the decisional version of the
syndrome decoding problem (SDP) for Goppa codes, which essentially addresses
the pseudorandomness of McEliece ciphertexts. Hence, it is appropriate to assert
that our backdoor exhibits post-quantum undetectability. While our focus in this
paper is primarily on Kyber, the same technique can be applied to backdoor
other LWE-based post-quantum algorithms, such as NewHope and Frodo.

1.1 Technical Overview

In this paper, we employ a technique similar to [XY18, YCL+20], but with a
variation: instead of embedding the secret seed into the Least Significant Bits
(LSBs) of the ciphertext, we embed the ciphertext of the secret seed into the
LSBs of the public key element t = As+ e mod± q, where e represents a small

error term. In Kyber, only s is included in the secret key. Therefore, even if we
require t to match As precisely, a small deviation (e.g., ±1) is still permissible
in t, allowing the LSBs of t to leak the ciphertext of the Kyber secret seed. For
this embedding to function, the number of elements on Zq in the Kyber public
key t must be equal to or greater than the length of the embedded message,
which is a McEliece ciphertext (of the Kyber secret seed) with a bit-length of
768. This limitation explains why our backdoor can only be applied to Kyber-768
and Kyber-1024.

However, the primary challenge arises from the fact that while the ciphertext
of the Kyber secret seed is pseudorandom, e follows a specific distribution, such
as the central binomial distribution B2. If we simply modify the LSBs of t to
align with the ciphertext of the Kyber secret seed, the secret key holder can
use their secret key to recover e and verify whether e conforms to the expected
distribution. This process enables the detection of the backdoor with a high
probability. This issue is also encountered in previous works [XY18,RBC+24],
leading to the failure of their schemes to achieve provable undetectability.

In this work, we propose a novel technique to address this challenge. Instead
of modifying t, we alter the error term e itself. To embed the ciphertext C of
McEliece into the Least Significant Bits (LSBs) of t, we first compare the LSB
of the i-th coefficient in As with Ci (the i-th bit of C). If the two bits are
identical, we sample an even error ei (the i-th element of e); if they are different,
we sample an odd error ei. Since the secret seed is never disclosed to the secret
key holder, the correct e remains undisclosed. From the perspective of the secret
key holder, ei still adheres to the expected distribution, thereby rendering the
backdoor undetectable.

Here we give a diagram (Fig. 1) to explain the concrete process of our back-
dooring Kyber scheme.

1.2 Our Contribution

We list the contributions of this paper below:

– We provide a formal definition for undetectability in a public-key scheme,
which encompasses the concealment of the backdoor in both KeyGen and
Enc. While [YXP20] offers a formal definition, we demonstrate that their
definition lacks sufficient strength and is not applicable to KEMs.

– We present the first post-quantum backdoor for a post-quantum Key Encap-
sulation Mechanism (KEM) that is provably undetectable. Previous post-
quantum backdoor constructions [XY18, YCL+20] are applicable only to
post-quantum Public Key Encryption (PKE) schemes and can be readily
detected if the PKE is transformed into an IND-CCA2 secure KEM using
Fujisaki-Okamoto (FO) or quantum Fujisaki-Okamoto (QFO) transforma-
tions. Additionally, we provide a reduction demonstrating the undetectabil-
ity of our trapdoor to the post-quantum hard problem of decisional Syn-
drome Decoding Problem (SDP).

Fig. 1. Technical Overview of our Kyber-backdoor Scheme. The notation we used in
this figure has been explained in Sec. 2.

– We propose a potential remedy for the backdoor introduced in [YXP20,
Hem22] to nullify its public undetectability. Furthermore, we demonstrate
that this remedy does not impact the effectiveness of our own backdoor.
Additionally, we assert that rectifying our backdoor to achieve public un-
detectability is highly challenging, thus making our backdoor more robust
compared to previous ones, even without considering its post-quantum char-
acteristics.

1.3 Related Works

Kleptographic attacks targeting post-quantum algorithms have garnered signif-
icant attention since the initiation of the NIST Post-Quantum Cryptography
(PQC) standardization process. The pioneering backdoor construction for post-
quantum algorithms is documented in [KLT17], focusing on the NTRU encryp-
tion scheme. However, it was demonstrated in [YXP20] that their backdoor is
detectable. Subsequently, [XY18, YCL+20] also presented their own backdoor
constructions for LWE-type Public Key Encryption (PKE) schemes. However,
their backdoor constructions cannot be applied to post-quantum Key Encapsu-
lation Mechanisms (KEM) with IND-CCA2 security.

The seminal work by [YXP20] marks the inception of post-quantum Key En-
capsulation Mechanisms (KEMs) with embedded backdoors. Despite its ground-
breaking nature, the initial construction suffered from flaws, prompting correc-
tive measures by [Hem22]. However, reliance on the Diffie-Hellman assumption
over elliptic curves compromises their post-quantum undetectability. Recent re-
search by [RBC+24] parallels our approach in constructing Kyber backdoors.

Nonetheless, their claim of public undetectability hints at potential vulnera-
bility to detection by Kyber secret key holders. Intriguingly, our investigation
uncovers that their backdoors are also susceptible to public detection, a topic
we delve into further in Section 3.2.

We provide Table 1 to succinctly summarize existing research and juxtapose
it with our own contributions.

Table 1. Comparison for previous backdoors on post-quantum schemes. The column
“Post-Quantum” means that the backdoor construction is based on a Post-Quantum
public key cryptosystem. The column of “Undetectability” shows the undetectability
of each work. The column of “Provable” means that a formal proof of undetectability
is provided.

Work Post-Quantum Valid for KEM Undetectability Provable

Kwant et al [KLT17] × × × N/A

Xiao and Yu [XY18] ✓ × ✓ ×
Yang et al [YCL+20] ✓ × ✓ ✓
Yang et al [YXP20] × ✓ × N/A

Hemmert [Hem22] × ✓ ✓ ✓
Ravi et al [RBC+24] ✓ ✓ × N/A

This Work ✓ ✓ ✓ ✓

2 Preliminaries

Notations. Let LSB(x) be the least significant bit of x ∈ Z, that is x mod 2.
Let Rq = Zq[X]/(Xn + 1) be the polynomial ring, where each polynomial has
degree at most n − 1. Let t ∈ Rk

q be a vector of polynomials, each element
v = c0 + c1X + ... + cn−1X

n−1 in t can be expressed by its coefficient vector
coeff(v) = (c0, ..., cn−1). For t = (v1, ..., vk), we express t as a vector of length
nk: coeff(t) = (coeff(v1)∥...∥coeff(vk)), where ∥ stands for vector concatenation.
For i = 1, ..., nk, we use [t]i, or simpler, ti to express the i-th element in coeff(t).
Let LSBs(t) be the vector of least significant bits of coeff(t). Furthermore, for a
binary string K, we let Ki ∈ {0, 1} be the i-th bit of K.

For any binary string s ∈ {0, 1}∗, let wt(s) be the hamming weight of s, that
is, the number of 1’s in s.

For an even (resp. odd) positive integer α, we define r′ = r mod± α to be
the unique element r′ in the range −α

2 < r′ ≤ α
2 (resp. −α−1

2 < r′ ≤ α−1
2) such

that r′ = r mod α.
Denote by B the set {0, ..., 255}, i.e. the set of 8-bit unsigned integers (bytes),

and denote by Bk the set of byte arrays of length k.

2.1 Kleptography

We introduce the idea of a kleptography attack by Young and Yung [YY97a],
which is presented through a “SETUP” (Secretly Embedded Trapdoor with Uni-
versal Protection) mechanism.

Definition 1 (SETUP Mechanism). Let C be a publicly known cryptosys-
tem. A SETUP mechanism is an algorithmic modification made in C to get C ′,
such that:

– The input of C ′ agrees with the public specifications of the input of C.
– C ′ computes using the attacker’s public encryption function E (and pos-

sibly other functions as well), contained within C ′. The attacker’s private
decryption function D is not contained within C ′ and is known only by the
attacker.

– The output of C ′ agrees with the public specifications of the output of C.
At the same time, the attacker can easily access a part or the whole of the
output which is needed to perform the attack.

– Furthermore, the output of C and C ′ are polynomially indistinguishable to
everyone (including those who have access to the code of C ′) except the at-
tacker.

Since the definition above is mostly informal, Yang et al [YXP20] gave a new
definition for undetectability in their work. However, since in their definition,
the detector does not have access to the secret key, their definition is not strong
enough to capture the undetectable requirements if the backdoor is hidden in
KeyGen other than Enc (although they used the term “strong undetectability”).
In this paper, we rename their definition as “public undetectability”, and also
give a new definition to handle the case where the backdoor is hidden in KeyGen.

Definition 2 (Public Undetectability). The public undetectability of a back-
doored cryptosystem is defined by an interactive game between a challenger C and
a detector D:

– The challenger C samples b ← {0, 1}. If b = 0, he will run the backdoored
algorithm; otherwise, he will run the plain algorithm.

– After C runs the key generation algorithm, the public key. is sent to D.
– D can ask C to encrypt messages at his will and outputs a bit b′ = 0 if he

decides the encryption scheme is backdoored, otherwise outputs b′ = 1.
– D succeeds if b = b′.

The scheme is publicly undetectable, if for any polynomial time detector D,
Pr(b = b′)− 1/2 is negligible.

Definition 3 (Strict Undetectability). The strict undetectability of a back-
doored cryptosystem is defined by an interactive game between a challenger C
and a detector D:

– The challenger C samples b ← {0, 1}. If b = 0, he will run the backdoored
algorithm; otherwise, he will run the plain algorithm.

– After C runs the possibly backdoored key generation algorithm, both public key.
and secret key. are sent to D.

– D can ask C to run the possibly backdoored Enc algorithm to encrypt messages
(for PKE) or encapsulate keys (for KEM) at his will. D finally outputs a bit
b′ = 0 if he decides the encryption scheme is backdoored, otherwise outputs
b′ = 1.

– D succeeds if b = b′.

The scheme is strictly undetectable, if for any polynomial time detector D, Pr(b =
b′)− 1/2 is negligible.

2.2 Kyber Key Generation and Central Binomial Distribution

Overview of Kyber Key Generation In Kyber [ABD+20], the Key gener-
ation algorithm can be simplified as Alg. 1, ignoring the NTT acceleration and
compression functions. It firstly generates a 256-bit seed d in a uniformly random
distribution B32 (Defined in Sec. 2), and calls a Hash function G to generate a
random seed pk.seed for generating public key and a random seed sk.seed for
generating secret key by computing (sk.seed, pk.seed) = G(d). Then it samples
the public matrix A ∈ Rk×k

q using pk.seed through sample function Parse and

the extendable function XOF, samples the secret vector s ∈ Rk
q and the noise vec-

tor e ∈ Rk
q using sk.seed thrugh the pseudorandom function PRF, which follows

the Central Binomial Distribution (Def. 4). Here, n = 256, q = 3329, k = 2, 3, 4
for Kybe r-512, Kyber-768 and Kyber-1024 respectively. Next, it computes the
public vector t = As + e mod± q. Finally, it outputs pk = (t, pk.seed) and
sk = s.

output: pk ← (t, pk.seed), sk ← s
1 Function Kyber.KeyGen():
2 d← B32.
3 (sk.seed, pk.seed)← G(d) //Hash Function G is declared in Kyber
4 (s, e)← PRF(sk.seed) //Sample s and e from sk.seed in distribution Bη

5 A← Parse(XOF(pk.seed)) //Sample A from pk.seed .
6 t← As+ e mod± q;
7 return pk ← (t, pk.seed), sk ← s

Algorithm 1: Kyber Key Generation Algorithm KeyGen

Central Binomial Distribution Each coefficient in secret vector s and noise
vector e in Kyber is sampled from a centered binomial distribution Bη for η = 2
(Kyber-768 and Kyber-1024) or η = 3 (Kyber-512). Bη in Kyber is defined as
follows:

Definition 4 (Central Binomial Distribution Bη).

Sample (a1, · · · , aη, b1, ..., bη)← {0, 1}2η

and output z =

η∑
i=1

(ai − bi),

then z follows Central Binomial Distribution Bη.

2.3 Classic McEliece KEM and the Syndrome Decoding Problem

Classic McEliece KEM The Classic McEliece Key Encapsulation Mechanism
(KEM) [ABC+22] is a code-based scheme whose security relies on the hardness of
syndrome decoding of Goppa codes. It comprises Key Generation (mc.KeyGen),
Encapsulation (mc.Encap), and Decapsulation (mc.Decap) algorithms. The Key
Generation algorithm, mc.KeyGen, produces a key pair (mc.pk, mc.sk), where
the public key is represented as a matrix T ∈ {0, 1}(m1·t)×k. Specific algorithmic
details are not necessary for consideration in this paper.

In mc.Encap, it inputs mc.pk = T and firstly generates a random binary
vector v ∈ {0, 1}n of weight wt(v) = t. Then, we can compute the ciphertext
C = ENCODE(v,mc.pk) = (I|T) · v. After that, it computes the session key
K = H(1,v, C), where H is a Hash function declared in [ABC+22]. Finally, it
outputs the the ciphertext C and session key K.

In mc.Decap, we should input the ciphertext C and the private key mc.sk.
It decodes the v by calling a DECODE function, i.e. v = DECODE(C,mc.sk).
After obtaining v, compute K = H(1,v, C) to get the session key.

In mceliece348864, m1 = 12 , t = 64, k = 2720, n = m1 · t+ k = 3488, thus
the ciphertext size m1t = 768, which is the shortest among all post-quantum
KEM to the best of our knowledge. This is also the reason why we choose
mceliece348864 to design the backdoor in our scheme.

Syndrome Decoding Problem The undetectability of our backdoor is based
on the following (decisional) syndrome decoding problem (SDP) for Goppa codes.
We define the problem as follows (in a slightly modified way):

Definition 5 ((Decisional) Syndrome Decoding Problem). Given H ∈
{0, 1}(m1·t)×n and s ∈ {0, 1}m1·t, decide whether s is chosen uniform randomly
from {0, 1}m1·t or from {Hv|v ∈ {0, 1}n ∧ wt(v) = t}.

If we choose H = (I|T), where T is the McEliece public key, thus H represents a
(variant of) random Goppa code, then the decisional SDP problem claims that a
McEliece ciphertext is independent from a random string. Note that we rely on
a stronger assumption compared with the submission Classic McEliece in NIST
PQC round 4, where the submission requires only the hardness of the search
version of SDP, that is, given Hv where wt(v) = t, find v.

It has been proven in [BMvT78] that both the search and decision versions
of SDP for random codes are NP-complete. In most McEliece-type cryptosys-
tems including Classic McEliece, it is assumed that the public key matrix T is
indistinguishable from random, thus we have high confidence that the problem
is hard for Classic McEliece ciphertexts.

3 Our Backdoor Construction with Classic McEliece

In this section, we give our backdoor construction for Kyber-768 and Kyber-
1024. Our backdoor construction consists of two algorithms: the backdoor key

generation algorithm and the backdoor key recovery algorithm. The backdoor
key generation algorithm embeds the backdoor into the seed d and the public
key of Kyber. The backdoor key recovery algorithm is used to recover the secret
key of Kyber, hence can decrypt the ciphertext in Kyber-PKE or decapsulate
the session key in Kyber-KEM. In this section, we firstly introduce our back-
door key generation algorithm (Sec. 3.1) and backdoor key recovery algorithm
(Sec. 3.2) designed through Classic McEliece. Then, we give proof of the strict
undetectability of our backdoor construction in Sec. 3.3.

3.1 Backdoor Key Generation Algorithm

For the convenience of description, we simplify the public and secret key of Kyber
as pk = (t, pk.seed) and sk = s (pk and sk in Kyber are actually the compressed
ones after NTT transform), where t = As + e mod± q with modulo q, e is the
noise vector and A is sampled from pk.seed. It is worth emphasizing that both
s and e are generated through the seed d ← B32 (a randomly selected 256-bit
unsigned integer) in Kyber.

Let the key pairs generated by the key generation algorithm (Sec. 2.3) from
McEliece KEM be mc.pk and mc.sk. Suppose the key generation algorithm in
McEliece KEM is mc.KeyGen, the encapsulation algorithm is mc.Encap and
decapsulation algorithm is mc.Decap. Denote the session key in McEliece KEM
by K and its ciphertext by C. It implies that (K,C) = mc.Encap(mc.pk) and
K = mc.Decap(mc.sk, C).

In our Backdoor Generation Algorithm (Alg. 2), we should firstly replace
the seed d with McEliece session key K (Since d is never transferred, no one
except the key generator knows the replacement of d). Then, we could embed C
into the LSBs of t by sampling a different e. In Kyber-768 and Kyber-1024, the
probabilistic distribution of each coefficient in s and e is B2 = {−2 : 1

16 ,−1 :
1
4 , 0 : 3

8 , 1 : 1
4 , 2 : 1

16}. Since Pr(LSB(ei) = 1) = Pr(LSB(ei) = 0) = 1/2, we can
depart the probabilistic distribution of B2 into two distributions: D0 = {−2 :
1
8 , 0 : 3

4 , 2 : 1
8} and D1 = {−1 : 1

2 , 1 : 1
2}.

Next, if the LSB of i-th coefficient in As agrees with the i-th bit of C, then
sample the i-th coefficient of e from D0, otherwise from D1, without changing
the distribution of e. Now the LSBs of t = As+ e are almost the same as the
bit representation in C. However, there are some border cases as we compute in
modular q. For example, if [As]i = (q−1)/2, and Ci ̸= LSB([As]i), then we need
to sample ei from {−1, 1}. If ei = 1, then ti = (q−1)/2+1 mod ± q = −(q−1)/2,
which leads to LSB(ti) ̸= Ci. However, since the border cases rarely occur and
can easily be detected, we leave them to the key recovery algorithm for further
discussion.

3.2 Backdoor Key Recovery Algorithm

Since we modify KeyGen instead of Enc, the backdoor decryption algorithm
becomes a backdoor key recovery algorithm (Alg. 3) in our scheme. We embed
the ciphertext of seed d, which is used to generate the secret key of Kyber, into

input : mc.pk
output: pk ← (t, pk.seed), sk ← s

1 Function KeyGen∗(mc.pk):
2 (K,C)← mc.Encap(mc.pk)
3 d← K // Let the seed in Kyber be the session key of McEliece.
4 (sk.seed, pk.seed)← G(d) //Function G is declared in Kyber
5 (s,)← PRF(sk.seed) //Sample s from sk.seed in distribution Bη

6 A← Parse(XOF(pk.seed)) //Sample A from pk.seed .
7 t← As;
8 for i from 1 to dim(t) do
9 if i ≤ len(C) then

10 if (t[i]− C[i]) mod 2 = 1 then
11 Sample ei from the probabilistic distribution D1

12 else
13 Sample ei from the probabilistic distribution D0

14 else
15 Sample ei from the probabilistic distribution B2

16 t[i]← t[i] + ei mod± q

17 return pk ← (t, pk.seed), sk ← s

Algorithm 2: Backdoor Key Generation Algorithm KeyGen∗

the LSBs of t in public key of Kyber. Suppose the backdoor user has mc.sk, then
he can decrypt the seed d after receiving pk = (t, pk.seed) through implementing
d′ = mc.Decap(mc.sk,LSBs(t)). He can use d′ to regenerate the secret key seed
sk.seed′ and public key pk.seed′ seed by calling G function. Since we know

the correct pk.seed, we can verify s′
?
= s by determining whether pk.seed′

?
=

pk.seed. However, the backdoor user cannot always get a correct ciphertext C
from computing the LSBs of t since there are border cases where Ci ̸= LSB(ti).
We just use exhaustive search to handle these border cases.

Discussion on the border case. We note that the existence of border cases
where LSB(ti) disagrees with Ci is necessary for the undetectability of our
backdoor. If there is no border case, which means that LSB(ti) follows ex-
actly the same distribution as Ci, that is, uniform on {0, 1}. However, the
real ti is indistinguishable from uniform in Zq, and for q = 3329 as in Ky-
ber, Pr(LSB(ti) = 0) = 1665/3329 = 1/2 + 1/6658. Since the two distributions
are different, given sufficiently many public keys, it should be easy to deter-
mine whether the keys are backdoored by statistical approaches, such as Special
Publication 800-22 Revision 1a of NIST [RSN+10], the Diehard tests [Bro], the
TestU01 [LS07] or the popular test suite AIS20/31 [PMB+16]. In [RBC+24], the
authors did not handle the border cases and simply let LSB(ti) = Ci, so in con-
trast with their claim, their backdoors cannot satisfy even public undetectability.

We can see that LSB(ti) and Ci disagree only when ti ∈ {−(q − 1)/2,−(q −
3)/2, (q − 3)/2, (q − 1)/2}, which has a probability of p = 4/q. For q = 3329 in

input : pk ← (t, pk.seed), mc.sk, η ← 2
output: sk ← s or ⊥

1 Function KeyRec∗(pk):
2 Sample A from pk.seed;
3 C′ ← LSBs(t), mark C′[i] = ⋆ if t[i] ≥ (q − 3)/2 or t[i] ≤ −(q − 3)/2;
4 repeat
5 Set C′[i] = ⋆ to 0 or 1 respectively;
6 d′ ← mc.Decap(mc.sk, C′);
7 (sk.seed′, pk.seed′)← G(d′);
8 if pk.seed′ = pk.seed then
9 (s′,)← PRF(sk.seed′); //Sample s′ from sk.seed′ through

pseudorandom function PRF
10 return sk ← s′;

11 until Exhaust all possibilities of C′[i] = ⋆;
12 return ⊥;

Algorithm 3: Backdoor Key Recovery Algorithm KeyRec∗

Kyber, the probability that i border case elements occurrence is

Ptheo = Pr(i border case elements in (t1, · · · , tm)) = Ci
mpi(1− p)m−i, (1)

where m = len(C) = 768 is the length(bitsize) of C. It infers that the probability
that there are more than 4 border case elements is only about 0.2%. We also note
that not every border case leads to the disagreement between LSB(ti) and Ci.
From our experiment in Section 4.1, we can see that the key recovery is efficient
in most cases.

3.3 Proof of Undetectability

In this section, before proving the undetectability of the backdoor in our scheme,
we first need to establish that the error term e in KeyGen and KeyGen∗ is iden-
tically distributed. From the description of Kyber.KeyGen (Algorithm 1), we
know that each coefficient ei of the noise vector e follows the B2 distribution
as shown in Table 2. Therefore, we only need to demonstrate that each coeffi-
cient in e generated by Kyber.KeyGen∗ (Algorithm 2) also follows the same B2

distribution as Kyber.KeyGen. We provide Lemma 1 to support this conclusion.
Subsequently, we present Theorem 1. It proves that our backdoor scheme is

strictly undetectable by the definition of strict undetectability, Lemma 1 and
the hardness of decisional SDP.

Table 2. Error distribution B2 in Kyber.KeyGen

value −2 −1 0 1 2

distribution 1/16 1/4 3/8 1/4 1/16

Lemma 1. If C is uniformly distributed and independent with A, s, then the
distribution of e generated from Algorithm 2 is also independent with A, s, and
identical with random e where each coefficient of e is randomly sampled from
B2.

Proof. Since C is uniform and independent with A, s, the probability Pr(Ci =
[As]i) = 1/2 and independent with As. By Algorithm 2, we can see that
Pr(ei|Ci = [As]i) and Pr(ei|Ci ̸= [As]i) satisfies the distribution in Table 3,
also independent with A, s.

Table 3. Error distribution in Kyber.KeyGen∗ (assume that C is uniform)

value −2 −1 0 1 2

distribution when Ci = [As]i 1/8 0 3/4 0 1/8

distribution when Ci ̸= [As]i 0 1/2 0 1/2 0

distribution in average 1/16 1/4 3/8 1/4 1/16

Thus, we have: Pr(ei) = Pr(ei|Ci = [As]i) Pr(Ci = [As]i) + Pr(ei|Ci ̸=
[As]i) Pr(Ci ̸= [As]i) = (Pr(ei|Ci = [As]i) + Pr(ei|Ci ̸= [As]i))/2. As shown
in Table 2 and Table 3, the distribution of ei is identical to ei ← B2. Thus, we
finish the proof. □

Theorem 1. The backdoor scheme is strictly undetectable under the hardness
of decisional SDP problem for Goppa codes.

Proof. Let Game 0 be the strict undetectability game (Definition 3) where C
runs Kyber. KeyGen∗. We define the following sequence of games:

Game 1: s is generated as truly random from the distribution B2 instead
of PRF(sk.seed), and pk.seed is generated as a truly random bit string. Since
sk.seed and d = K are never revealed to D, Game 0 and Game 1 are indis-
tinguishable by the pseudorandomness of PRF and G (which is a cryptographic
hash function, see the definition of Kyber [ABD+20]).

Game 2: C is changed into a truly random bit string which independent with
A, s. We show that if there is a detector D which distinguishes between Game
1 and Game 2 with a non-negligible advantage, then there exists an algorithm
that solves decisional SDP for Goppa codes with a non-negligible advantage.

Let C be the challenger which D interacts within the strict undetectability
game. C is given a sample of the decisional SDP problemH = (I|T) and C, where
T is the McEliece public key (thus H represents a random Goppa code) and C
is either a uniform random bit string or C = Hv mod 2 and wt(v) = t. Then C
continues to run the backdoored key generation algorithm Kyber.KeyGen∗ with
embedded string C as in Game 1, and interacts with D normally.

We can see that if C = Hv, then C is a random McEliece ciphertext and
C acts as the challenger in Game 1. If C is truly random, then C acts as the
challenger in Game 2. So if D distinguishes between Game 1 and Game 2 with a

non-negligible advantage, then C can solve decisional SDP with a non-negligible
advantage. So Game 1 and Game 2 are computationally indistinguishable.

Game 3: C runs Kyber.KeyGen, the real key generation algorithm of Kyber,
except that pk.seed is a truly random bit string and s, e are generated as truly
random from the distribution B2. Since C is truly random and independent with
A, s, by Lemma 1, the distribution of s, e in Game 2 and Game 3 are identical,
so Game 2 and Game 3 are the same from the view of D.

Game 4: C uses a truly random seed d to generate (sk.seed, pk.seed)← G(d),
and s, e are generated as PRF(sk.seed). Game 3 and Game 4 are indistinguish-
able due to the pseudorandomness of PRF and G. Here Game 4 is the strict
undetectability game where C runs Kyber.KeyGen.

Having established the indistinguishability of Game 0 and Game 4, we con-
clude the proof. ⊓⊔

4 Experimental Results

Our backdoor embedding method has been implemented in the C language1. All
experiments were conducted on a single core (Intel(R) Core(TM) i5-9500 CPU
@ 3.00GHz).

4.1 Efficiency Test of KeyGen∗ and KeyRec∗

The median and average costs of KeyGen∗ (Sec. 3.1) and KeyRec∗ (Sec. 3.2)
over 1000 trials are summarized in Table 4. The results indicate that the cost of
KeyGen∗ is comparable to that of the original Kyber KeyGen algorithm (all run-
ning times are lower than 1 ms per trial), making it difficult for detectors to iden-
tify the backdoor solely based on the time cost of the Key Generation Algorithm.
Furthermore, the time required to recover the secret key using KeyRec∗ with the
backdoor is approximately 1 ms on a personal desktop computer, demonstrating
the efficiency of the backdoor holder in recovering the secret key through the
backdoor. Furthermore, we achieved a 100% success rate in recovering the Kyber
secret key.

Table 4. The median and average costs of KeyGen (Alg. 1), KeyGen∗(Sec. 3.1) and
KeyRec∗ (Sec. 3.2). Each experimental result is median or averaged over 1000 instances.

Scheme Cost Type KeyGen KeyGen∗ KeyRec∗

Kyber768
Median Cost(cycles/tick) 28397 115590 166088
Average Cost(cycles/tick) 36207 118271 169267

Kyber1024
Median Cost(cycles/tick) 39636 133840 191503
Average Cost(cycles/tick) 48604 135736 194552

1 https://github.com/Summwer/kyber-backdoor

https://github.com/Summwer/kyber-backdoor

4.2 Border Case Test

In Sec. 3.2 we give a theoretical analysis of border case probability Ptheo (Eq.
(1)), to show its accuracy we test 1000 instances of Kyber768 (the result of
Kyber1024 is close to Kyber768 since the bit size of McEliece ciphertext is same
) in Fig. 2. Assume there are i border case elements among (t1, · · · , tm), where
m = len(C). The actual border case probability can be computed as Pactual(i) =
i border case elements occur in (t1,··· ,tm)

1000 . In Fig. 2, it shows that the accuracy of Ptheo

fits well to Pactual(i). Besides, we can also see in Fig. 2 that the border case
probability decreases rapidly with the growth of i. As the maximal enumeration
times for finding the correct elements in border case is 2i, it takes an acceptable
low cost in small i as shown in the cost of KeyRec∗ of Table 4.

Fig. 2. Border case probability among m = 768 elements. Here the x-axis is the num-
ber of border case elements among m elements. The blue blocks are the experimen-
tal border case probability among 1000 Kyber768 instances, it can be computed as
Pactual(i) = i border case elements occur in (t1,··· ,tm)

1000
. The pink line is the theoretical bor-

der case probability declared in Eq. (1).

5 Discussion

5.1 Possible Fixes

In [Hem22], the author gave a possible fix for the [YXP20] type backdoor, which
also works for our backdoor. We simply describe the method.

Note that in Kyber.KeyGen, both pk.seed and the secret key are generated
from a single seed d in PRF. We only need to include d in the secret key. The secret

key holder firstly generates pk.seed and sk.seed from d, then computes A =
Parse(XOF(pk.seed)), (s, e) = PRF(sk.seed). Then, the secrete key holder checks
As+ e = t mod± q. If the check fails, then the algorithm might be backdoored.

We note that such a fixing method can detect any backdoor hidden in the
KeyGen algorithm, and we suggest that the fix should be applied to the Kyber
standard to avoid potential risks.

5.2 Discussion on Public Undetectablity

We note that the fix above aims at strict undetectability, but not public un-
detectability. It is easy to see that both the [YXP20] type backdoor and our
backdoor still have public undetectability even when the fix is applied to Kyber.
Before further discussion, we give another fix for [YXP20] type backdoors which
can invalidate their public undetectability but does not affect our backdoor. The
idea came from the discussion of backdoor resistance in NewHope [ADPS16].

Let crs be a uniform common reference string, which is generated from
trusted methods such as MPC protocols. Let H be a cryptographic hash func-
tion, and each user public seed is generated by pk.seed = H(crs∥id), id is the
identity of the user. Since pk.seed is the output of a hash function, it cannot be
the encoding of a point on the elliptic curve. However, our trapdoor does not
modify pk.seed, hence is not affected.

If our backdoor becomes publicly detectable after a certain fix, it means
that a detector without having the secret key can know whether the secret
key is correctly generated. However, by the security of the original Kyber, no
information about the secret key can be extracted from the public key, so if
the fix maintains the security claim of Kyber, a zero-knowledge proof must be
contained in the public key to show the correctness of private key generation. We
note that the zero-knowledge proof must prove a relation on both hash functions
and polynomial operations, and to the best of our knowledge, it takes several
hundreds of MB to construct a post-quantum proof for such relations. This would
result in a significant increase in public key size, conflicting with the desire for
small-sized keys in signature schemes.

5.3 Backdoor on Other LWE-based Schemes

By the construction and undetectability proof of our backdoor, we can see that
to plant our backdoor in an LWE-type scheme, the following three conditions
are required for our backdoor to be valid:

(1) The LSBs of the LWE error term in the public key must be uniform;
(2) The number of coefficients in the public key vector must be equal or

larger than the McEliece ciphertext size (at least 768);
(3) The LSBs in the public key are not compressed (which means that our

backdoor cannot be applied to Dilithium).
While condition (1) may appear to be a stringent requirement, we demon-

strate that it is easily achievable. For practical implementation convenience, the

LWE error is often modeled as a central binomial distribution rather than a
discrete Gaussian. Under this assumption, we can establish that condition (1)
can be met through Lemma 2.

Lemma 2. Let e ← Bη be sampled from a central binomial distribution with
parameter η. Then Pr(LSB(e) = 0) = 1/2.

Proof. By the definition of the central binomial distribution (Def. 4), e ← Bη

can be sampled by the algorithm below:
(1) Sample ai, bi ← {0, 1}, i = 1, ..., η;
(2) Calculate e =

∑η
i=1(ai − bi).

From the given a2, . . . , aη, b1, . . . , bη, we observe that LSB(e) differs for a1 = 0
and a1 = 1, implying that the conditional probability

Pr(LSB(e) = 0|a2, . . . , aη, b1, . . . , bη) = 1/2

for any a2, . . . , aη, b1, . . . , bη. Thus, Pr(LSB(e) = 0) = 1/2.

Condition (2) is the main obstacle to implementing our backdoor, and this
is the reason why our backdoor cannot be applied to Kyber-512. Similarly, our
backdoor cannot be applied to NewHope-512.

Since all the listed conditions are satisfied for NewHope-1024, Frodo-640,
and Frodo-976, our backdoor can be applied to these schemes. However, for
Frodo-1344, Pr(LSB(ei) = 0) = 1/2 + 2−15, which is not uniform and violates
condition (1). As a result, the strict undetectability proof of our backdoor fails for
this case. Nonetheless, given the small deviation, detecting the backdoor would
require knowledge of several hundred secret keys, making it still challenging to
detect in practice.

6 Conclusion and Future Works

In this work, we give the first post-quantum provably undetectable backdoor
for post-quantum KEM Kyber-768 and Kyber-1024. We use the post-quantum
code-based KEM Classic McEliece to encapsulate the Kyber secret seed into the
LSBs of the Kyber public key, so the attacker with Classic McEliece secret key
can recover the Kyber secret seed, hence the Kyber secret key. We note that
earlier works either cannot be applied to IND-CCA2 secure KEM or use pre-
quantum backdoor schemes. Moreover, we show that our backdoor maintains
public undetectability against some possible fixes.

Our backdoor can also be applied to NewHope-1024, Frodo-640, and Frodo-
976. We leave as future work whether our backdoor can be modified for other
post-quantum algorithms or we can use Classic McEliece with a higher security
level as the backdoor scheme to achieve higher undetectability.

Acknowledgments This work was supported by the National Natural Science
Foundation of China No. U2336210.

References

ABC+22. Roberto Avanzi, Daniel J Bernstein, Tung Chou, Tanja Lange, Ingo von
Maurich, Rafael Misoczki, Ruben Niederhagen, Edoardo Persichetti, Chris-
tiane Peters, Peter Schwabe, Nicolas Sendrier, et al. Classic mceliece: con-
servative code-based cryptography. NIST PQC Round 4 submissions, 2022.

ABD+20. Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. Crystals-kyber algorithm specifications and supporting doc-
umentation (version 3.0). NIST PQC Round 3 submissions, 2020.

ADPS16. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In Thorsten Holz and Stefan Savage,
editors, 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016, pages 327–343. USENIX Association, 2016.

BHKL13. Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. El-
ligator: elliptic-curve points indistinguishable from uniform random strings.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 2013
ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013, pages 967–980. ACM, 2013.

BMvT78. Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg.
On the inherent intractability of certain coding problems (corresp.). IEEE
Trans. Inf. Theory, 24(3):384–386, 1978.

Bro. Robert G. Brown. Dieharder: A random number test suite. https:

//webhome.phy.duke.edu/~rgb/General/dieharder.php.
Hem22. Tobias Hemmert. How to backdoor lwe-like cryptosystems. IACR Cryptol.

ePrint Arch., page 1381, 2022.
KLT17. Robin Kwant, Tanja Lange, and Kimberley Thissen. Lattice klepto - turning

post-quantum crypto against itself. In Carlisle Adams and Jan Camenisch,
editors, Selected Areas in Cryptography - SAC 2017 - 24th International
Conference, Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Pa-
pers, volume 10719 of Lecture Notes in Computer Science, pages 336–354.
Springer, 2017.

LS07. Pierre L’Ecuyer and Richard Simard. TestU01: A C library for empir-
ical testing of random number generators. ACM Trans. Math. Softw.,
33(4):22:1–22:40, August 2007.

PMB+16. Oto Petura, Ugo Mureddu, Nathalie Bochard, Viktor Fischer, and Lilian
Bossuet. A survey of AIS-20/31 compliant TRNG cores suitable for FPGA
devices. In 2016 26th International Conference on Field Programmable Logic
and Applications (FPL), pages 1–10, August 2016. ISSN: 1946-1488.

RBC+24. Prasanna Ravi, Shivam Bhasin, Anupam Chattopadhyay, Aikata Aikata,
and Sujoy Sinha Roy. Backdooring post-quantum cryptography: Klepto-
graphic attacks on lattice-based kems. In Proceedings of the Great Lakes
Symposium on VLSI 2024, GLSVLSI ’24, page 216–221, New York, NY,
USA, 2024. Association for Computing Machinery.

RSN+10. Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker,
Stefan Leigh, Mark Levenson, Mark Vangel, David Banks, N. Heckert, James
Dray, San Vo, and Lawrence Bassham. A Statistical Test Suite for Random
and Pseudorandom Number Generators for Cryptographic Applications.
Technical Report NIST Special Publication (SP) 800-22 Rev. 1, National
Institute of Standards and Technology, April 2010.

https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php

XY18. Dianyan Xiao and Yang Yu. Klepto for ring-lwe encryption. Comput. J.,
61(8):1228–1239, 2018.

YCL+20. Zhichao Yang, Rongmao Chen, Chao Li, Longjiang Qu, and Guomin Yang.
On the security of LWE cryptosystem against subversion attacks. Comput.
J., 63(4):495–507, 2020.

YXP20. Zhaomin Yang, Tianyuan Xie, and Yanbin Pan. Lattice klepto revisited.
In Hung-Min Sun, Shiuh-Pyng Shieh, Guofei Gu, and Giuseppe Ateniese,
editors, ASIA CCS ’20: The 15th ACM Asia Conference on Computer and
Communications Security, Taipei, Taiwan, October 5-9, 2020, pages 867–
873. ACM, 2020.

YY97a. Adam L. Young and Moti Yung. Kleptography: Using cryptography against
cryptography. In Walter Fumy, editor, Advances in Cryptology - EU-
ROCRYPT ’97, International Conference on the Theory and Application
of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Pro-
ceeding, volume 1233 of Lecture Notes in Computer Science, pages 62–74.
Springer, 1997.

YY97b. Adam L. Young and Moti Yung. The prevalence of kleptographic attacks
on discrete-log based cryptosystems. In Burton S. Kaliski Jr., editor, Ad-
vances in Cryptology - CRYPTO ’97, 17th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceed-
ings, volume 1294 of Lecture Notes in Computer Science, pages 264–276.
Springer, 1997.

YY16. Adam L. Young and Moti Yung. Cryptography as an attack technology:
Proving the rsa/factoring kleptographic attack. In Peter Y. A. Ryan, David
Naccache, and Jean-Jacques Quisquater, editors, The New Codebreakers -
Essays Dedicated to David Kahn on the Occasion of His 85th Birthday,
volume 9100 of Lecture Notes in Computer Science, pages 243–255. Springer,
2016.

	Post-Quantum Backdoor for Kyber-KEM

