

Securing Data with Local Differential Privacy: Concepts, Protocols, and Practical Applications

Héber H. Arcolezi (Inria, France)

Selected Areas in Cryptography (SAC) Summer School, 2024

Aims of This Tutorial

To introduce/motivate the privacy model of Local Differential Privacy (LDP):

- Provide technical understanding, scaling of basic LDP protocols.
- Show how some of these LDP protocols that have been used in practice.
- Analysis beyond utility → Privacy and security analysis of LDP protocols.

To suggest directions for future research:

- Identify topics that have just recently been considered.
- Suggest open problems and grand challenges for the area.

Outline

- Module 1 (Introduction):
 - Review of DP and preliminaries
 - LDP introduction
 - State-of-the-art deployments of LDP

- Module 2 (Current research directions):
 - Privacy attacks on LDP protocols
 - Security attacks on LDP protocols
 - Final remarks & open problems

Context

Privacy Leakages in Legal Data Access/Release

- Privacy risks even when access to data is legal:
 - Open datasets (e.g., Census) can allow adversaries to re-identify individuals.
 - Machine learning models subject to attacks (*e.g.*, membership inference).

• ...

Privacy Leakages in Legal Data Access/Release

- Privacy risks even when access to data is legal:
 - Open datasets (*e.g.*, Census) can allow adversaries to re-identify individuals.
 - Machine learning models subject to attacks (*e.g.*, membership inference).
 - ...
- Maybe we can just remove personally identifying information?
 - Proxy information in the data itself.
 - Multiple sources/background information.
 - "Attackers" may be smarter than we think.

\ /			
Name	Sex	Blood	 HIV?
Chen	F	В	 Υ
Jones	M	Α	 N
Sm	M	0	 N
Ross	M	0	 Υ
/Lu \	F	Α	 N
Shah	M	В	 Υ
/ \			

Data "Anonymization" Is Not Safe

"Oops, we did it again":

- De-identification (GIC, Sweeney, 2000)
- ...
- De-identification (AOL Search Queries, 2006)
- De-identification (Netflix, 2007)
- ...
- De-identification (NYC Taxis, 2014)
- ...
- De-identification (coming soon in a place near you [C22])...

helma Arnold's identity was betrayed by AOI ecords of her Web searches, like ones for her og, Dudley, who clearly has a problem.

Aggregate Statistics Are Not Safe

How about releasing aggregate statistics about many individuals?

- Problem 1 (Differencing attacks). Combining aggregate queries to obtain precise information about specific individuals.
 - Average salary in a company before and after an employee joins.

Aggregate Statistics Are Not Safe

How about releasing aggregate statistics about many individuals?

- Problem 1 (Differencing attacks). Combining aggregate queries to obtain precise information about specific individuals.
 - Average salary in a company before and after an employee joins.
- Problem 2 (Membership inference attacks) [HSRD...C08, SSSS17]. Inferring presence of known individual in a dataset from (high-dimensional) aggregate statistics.
 - Statistics about genomic variants (e.g., GWAS) or attacks to machine learning models.

Aggregate Statistics Are Not Safe

How about releasing aggregate statistics about many individuals?

- Problem 1 (Differencing attacks). Combining aggregate queries to obtain precise information about specific individuals.
 - Average salary in a company before and after an employee joins.
- Problem 2 (Membership inference attacks) [HSRD...C08, SSSS17]. Inferring presence of known individual in a dataset from (high-dimensional) aggregate statistics.
 - Statistics about genomic variants (e.g., GWAS) or attacks to machine learning models.
- Problem 3 (Reconstruction attacks) [DN03]. Inferring (part of) the dataset from the output of many aggregate queries.
 - US Census Bureau's reconstruction attack.

"Fundamental Law of Information Recovery" [DN03]

Fact #1. Every time you release any statistic calculated from a confidential data source, you "leak" a small amount of private information.

Fact #2. Giving overly accurate answers to too many questions will inevitably "destroy privacy".

Summary of The Key Issues/Requirements

1. Auxiliary knowledge (also called background knowledge or side information): we need to be robust to whatever knowledge the adversary may have, since we cannot predict what an adversary knows or might know in the future.

2. Multiple analyses: we need to be able to track how much information is leaked when asking several questions about the same data and avoid catastrophic leaks.

Outline

- Module 1 (Introduction):
 - Review of DP and preliminaries
 - LDP introduction
 - State-of-the-art deployments of LDF

- Module 2 (Current research directions)
 - Privacy attacks on LDP protocols
 - Security attacks on LDP protocols
 - Final remarks & open problems

The attacker cannot tell if was used in the analysis! "your data"

The Math of Differential Privacy [DMNS06]

Definition (Differential Privacy).

Let $\epsilon > 0$, a randomized mechanism \mathcal{M} satisfies ϵ -differential privacy (ϵ -DP), if for any two neighbouring databases D and D' and for any output $z \in \text{Range}(\mathcal{M})$:

$$\frac{\Pr[\mathcal{M}(D) = z]}{\Pr[\mathcal{M}(D') = z]} \le e^{\epsilon}$$

The Math of Differential Privacy [DMNS06]

Definition (Differential Privacy).

Let $\epsilon > 0$, a randomized mechanism \mathcal{M} satisfies ϵ -differential privacy (ϵ -DP), if for any two neighbouring databases D and D' and for any output $z \in \text{Range}(\mathcal{M})$:

$$\frac{\Pr[\mathcal{M}(D) = z]}{\Pr[\mathcal{M}(D') = z]} \le e^{\epsilon}$$

- Informally, DP requires any single user to have only a limited impact on the output.
- ϵ is called the privacy parameter, the privacy loss, or the privacy budget.
- Privacy is a property of the analysis, not of a particular output.

The Math of Differential Privacy [DMNS06]

Definition (Differential Privacy).

Let $\epsilon > 0$, a randomized mechanism \mathcal{M} satisfies ϵ -differential privacy (ϵ -DP), if for any two neighbouring databases D and D' and for any output $z \in \text{Range}(\mathcal{M})$:

$$\frac{\Pr[\mathcal{M}(D) = z]}{\Pr[\mathcal{M}(D') = z]} \le e^{\epsilon}$$

- Informally, DP requires any single user to have only a limited impact on the output.
- ϵ is called the privacy parameter, the privacy loss, or the privacy budget.
- Privacy is a property of the analysis, not of a particular output.

Key Takeaway. The DP definition promises a worst-case guarantee, the worst that could happen against an adversary who knows pretty much everything besides the sensitive data itself.

Side information? ✓ Computational resources? ✓ Arbitrary priors? ✓

• DP is immune to post-processing: it is impossible to compute a function of the output of the private algorithm and make it less differentially private.

If \mathcal{M} is ϵ -DP, then the composition $f(\mathcal{M})$ is ϵ -DP for any function f.

• DP is immune to post-processing: it is impossible to compute a function of the output of the private algorithm and make it less differentially private.

If \mathcal{M} is ϵ -DP, then the composition $f(\mathcal{M})$ is ϵ -DP for any function f.

- Therefore, additional data post-processing can also be used to address issues such as:
 - Ensuring non-negativity (e.g., there is no negative number of people).
 - Ensuring the sum of the whole population for attribute A is equal to the sum (of the same population) for attribute B.

- DP is robust under composition: If multiple analyses are performed on the same data, if each one satisfies DP, all the information released taken together will still satisfy DP (albeit with a degradation in the privacy parameter).
- Simple rules for composition of DP mechanisms. Let \mathcal{M}_1 be ϵ_1 -DP and \mathcal{M}_2 be ϵ_2 -DP:
 - (Sequential composition) If inputs overlap, the composed mechanism $\mathcal{M} = (\mathcal{M}_1, \mathcal{M}_2)$ is $(\epsilon_1 + \epsilon_2)$ -DP.

- DP is robust under composition: If multiple analyses are performed on the same data, if each one satisfies DP, all the information released taken together will still satisfy DP (albeit with a degradation in the privacy parameter).
- Simple rules for composition of DP mechanisms. Let \mathcal{M}_1 be ϵ_1 -DP and \mathcal{M}_2 be ϵ_2 -DP:
 - (Sequential composition) If inputs overlap, the composed mechanism $\mathcal{M} = (\mathcal{M}_1, \mathcal{M}_2)$ is $(\epsilon_1 + \epsilon_2)$ -DP.
 - (Parallel composition) If inputs disjoint, the composed mechanism $\mathcal{M} = (\mathcal{M}_1, \mathcal{M}_2)$ is $\max(\epsilon_1, \epsilon_2)$ -DP.

Satisfying ϵ -DP in the Centralized Setting

Example:

- Satisfy ϵ -DP for counting queries by adding a random noise value.
- Uncertainty due to noise → plausible deniability.

(Global) sensitivity of query *f*:

$$s = \max_{D,D'} |f(D) - f(D')|$$
, where D and D' are neighbors.

s = 1 for counting queries.

For every value that is output:

- Add Laplace noise: $z = f(D) + \text{Lap}(s/\epsilon)$.
- Or Geometric noise (discrete).

• "True" microdata D (n = 100):

• Construct cross-tabs (i.e., histogram) from "true" data D (n = 100):

	School Attendance			
	Never	Attending	Past	
Male	3	12	33	
Female	4	17	31	

• Draw noise from Laplace distribution (i.e., Laplace mechanism):

• Add noise to cross-tab data $\rightarrow \tilde{D}$ ($\tilde{n} = 108$):

	School Attendance			
	Never	Attending	Past	
Male	3 - 1 = 2	12 + 0 = 12	33 + 1 = 34	
Female	4 + 8 = 12	17 + 2 = 19	31 - 2 = 29	

• Construct differentially private microdata \widetilde{D} :

Real-World Example of Differentially Private Data Publishing

Census TopDown Algorithm (TDA) [AASKLMS19]:

- Computes and protects histogram for various geographical units at various geographical levels.
- TDA computed statistics, applied noise, and then recomputed statistics at each geographic level of interest, from US, to each state, each county, each census tract, and ultimately each block.

Data Protection Process

Outline

- Module 1 (Introduction):
 - Review of DP and preliminaries
 - LDP introduction
 - State-of-the-art deployments of LDF

- Module 2 (Current research directions)
 - Privacy attacks on LDP protocols
 - Security attacks on LDP protocols
 - Final remarks & open problems

What if We Reduce Trust? From Central DP to Local DP

Central DP [DMNS06]:

"High utility".

X

Need to trust the server.

XX

Data breaches, data misuse, etc.

Local DP (LDP) [KLNRS11]:

No need to trust the server.

"Low utility".

Local Differential Privacy (LDP) [KLNRS11]

Definition (Local Differential Privacy).

Let $\epsilon > 0$, a randomized mechanism \mathcal{M} satisfies ϵ -local differential privacy (ϵ -LDP), if for any two inputs $v, v' \in \text{Domain}(\mathcal{M})$ and for any output $z \in \text{Range}(\mathcal{M})$:

$$\frac{\Pr[\mathcal{M}(v) = z]}{\Pr[\mathcal{M}(v') = z]} \le e^{\epsilon}$$

• Informally, any output should be about as likely regardless of the input value.

Local Differential Privacy (LDP) [KLNRS11]

Definition (Local Differential Privacy).

Let $\epsilon > 0$, a randomized mechanism \mathcal{M} satisfies ϵ -local differential privacy (ϵ -LDP), if for any two inputs $v, v' \in \text{Domain}(\mathcal{M})$ and for any output $z \in \text{Range}(\mathcal{M})$:

$$\frac{\Pr[\mathcal{M}(v) = z]}{\Pr[\mathcal{M}(v') = z]} \le e^{\epsilon}$$

- Informally, any output should be about as likely regardless of the input value.
- Works in LDP consist of designing algorithms with provable upper bounds.
- Properties (like central DP):
 - Post-processing does not consume privacy budget.
 - Sequential and parallel composition hold.

Key Differences Between Central and Local DP

- DP concerns any two neighboring datasets.
 - Let f be the mean query on database $D: z = f(D) + \text{Lap}(s/\epsilon)$.
- LDP concerns any two values.
 - Let user's value v lies in range [-1, 1]: $z = v + \text{Lap}(2/\epsilon)$.
 - Server aggregates LDP data to estimate mean: $\tilde{\mu} = \frac{1}{n} \sum_{i=1}^{n} z_i$.

Key Differences Between Central and Local DP

- DP concerns any two neighboring datasets.
 - Let f be the mean query on database $D: z = f(D) + \text{Lap}(s/\epsilon)$.
- LDP concerns any two values.
 - Let user's value v lies in range [-1, 1]: $z = v + \text{Lap}(2/\epsilon)$.
 - Server aggregates LDP data to estimate mean: $\tilde{\mu} = \frac{1}{n} \sum_{i=1}^{n} z_i$.
- As a result, the amount of noise is different (each sample).
- So, one seeks to design new LDP algorithms that:
 - Maximize the accuracy of the results.
 - Minimize the costs to the users (e.g., space, time, communication).

Ex. of LDP: Randomized Response (RR) [W65]

- Motivated by surveying people on sensitive/embarrassing topics.
- Main idea \rightarrow Providing **deniability** to users' answer (yes/no \rightarrow binary).
- Ask: "Did you test positive for HIV (human immunodeficiency virus)?"

Ex. of LDP: Randomized Response (RR) [W65]

- Motivated by surveying people on sensitive/embarrassing topics.
- Main idea \rightarrow Providing **deniability** to users' answer (yes/no \rightarrow binary).
- Ask: "Did you test positive for HIV (human immunodeficiency virus)?"
- RR → Throw a secret unbiased coin:
 - If tail, throw the coin again (ignoring the outcome) and answer honestly.
 - If head, then throw the coin again and answer at random, e.g., "Yes" if head, "No" if tail.

Seeing answer, still not certain about the secret.

$$p = \Pr[RR(Yes) = Yes] = \Pr[RR(No) = No] = 0.75$$

$$q = \Pr[RR(No) = Yes] = \Pr[RR(Yes) = No] = 0.25$$

Frequency (or histogram) estimation

 $f(v_Y) \rightarrow$ frequency of *true Yes (or No - v_N)* $C(v_Y) \rightarrow \text{frequency of } observed Yes$

•
$$C(v_Y) \approx \frac{1}{2}f(v_Y) + \frac{1}{4}n$$

•
$$f(v_Y) \approx 2C(v_Y) - \frac{1}{2}n$$

$$p = \Pr[RR(Yes) = Yes] = \Pr[RR(No) = No] = 0.75$$

$$q = \Pr[RR(No) = Yes] = \Pr[RR(Yes) = No] = 0.25$$

Frequency (or histogram) estimation

 $f(v_Y) \rightarrow$ frequency of *true Yes (or No - v_N)*

 $C(v_Y) \rightarrow$ frequency of *observed Yes*

Estimated frequency

•
$$C(v_Y) \approx \frac{1}{2}f(v_Y) + \frac{1}{4}n$$

•
$$f(v_Y) \approx 2C(v_Y) - \frac{1}{2}n \approx \hat{f}(v) = \frac{C(v) - nq}{(p-q)}, \forall_{v \in \{v_Y, v_N\}}$$

$$p = \Pr[RR(Yes) = Yes] = \Pr[RR(No) = No] = 0.75$$

$$q = \Pr[RR(No) = Yes] = \Pr[RR(Yes) = No] = 0.25$$

$$\frac{p = \Pr[RR(Yes) = Yes] = \Pr[RR(No) = No] = 0.75}{q = \Pr[RR(No) = Yes] = \Pr[RR(Yes) = No] = 0.25}$$

$$\stackrel{Pr(y|x)}{= \Pr[Y|x']} \le e^{\epsilon} \implies e^{\epsilon} = \frac{0.75}{0.25}, \epsilon = \ln(3)$$

Frequency (or histogram) estimation

$$f(v_Y) \rightarrow$$
 frequency of true Yes (or No – v_N)

 $C(v_V) \rightarrow$ frequency of observed Yes

• $C(v_Y) \approx \frac{1}{2}f(v_Y) + \frac{1}{4}n$

•
$$C(v_Y) \approx \frac{1}{2}f(v_Y) + \frac{1}{4}n$$

•
$$f(v_Y) \approx 2C(v_Y) - \frac{1}{2}n \approx \hat{f}(v) = \frac{C(v) - nq}{(p-q)}, \forall_{v \in \{v_Y, v_N\}}$$

RR satisfies ϵ -LDP w/:

$$\frac{\Pr(y|x)}{\Pr(y|x')} \le e^{\epsilon} \quad \Longrightarrow$$

prob. p of 'being honest'

$$e^{\epsilon} = \frac{0.75}{0.25}, \epsilon = \ln(3)$$

prob. q of 'lying'

Estimated

frequency

Frequency (or histogram) estimation

$$f(v_Y) \rightarrow$$
 frequency of true Yes (or $No - v_N$)

 $C(v_V) \rightarrow$ frequency of observed Yes

• $C(v_Y) \approx \frac{1}{2}f(v_Y) + \frac{1}{4}n$

Estimated frequency

RR only handles **binary** attribute.
$$\hat{f}(v) = \frac{c(v) - nq}{(p-q)}, \forall_{v \in \{v_Y, v_N\}}$$

We need a more **general setting**:

- generic ϵ .
 - $k \ge 2$.

$$\hat{f}(v) = \frac{C(v) - nq}{(p-q)}$$
, $\forall_{v \in \{v_Y, v_N\}}$

prob. p of 'being honest'

$$\frac{p = \Pr[RR(Yes) = Yes] = \Pr[RR(No) = No] = 0.75}{q = \Pr[RR(No) = Yes] = \Pr[RR(Yes) = No] = 0.25}$$

$$\frac{Pr(y|x)}{Pr(y|x')} \le e^{\epsilon} \implies e^{\epsilon} = \frac{0.75}{0.25}, \epsilon = \ln(3)$$

$$prob. q of 'lying'$$

LDP Frequency Estimation Protocols

Frequency Estimation Under LDP

Assumption: each user i has a single value v^i from a categorical (or discrete) domain $V = \{v_1, v_2, ..., v_k\}$ of size k = |V|.

Goal: estimate the frequency (or histogram) of any value $v \in V$.

Frequency Estimation Under LDP

Assumption: each user i has a single value v^i from a categorical (or discrete) domain $V = \{v_1, v_2, ..., v_k\}$ of size k = |V|.

Goal: estimate the frequency (or histogram) of any value $v \in V$.

```
General scheme for frequency estimation under LDP
```

Input: Original data of users, privacy parameter ϵ , and LDP protocol \mathcal{M} .

Output: k-bins histogram.

User-side

for each user *i* with input value $v_i \in V$ **do**:

 $x_i = \mathbf{Encode}(v_i)$ (if needed)

 $y_i = \mathbf{Perturb}(x_i)$ with \mathcal{M}

Transmit y_i to the aggregator.

Server-side

The server Aggregates the reported values and estimate their frequency.

From Two to Many Categories: State-of-the-Art LDP Protocols

Generalized Randomized Response (GRR) [KBR16]

User-side

- Encode v = v (direct encoding).
- Toss a coin with bias $p = \frac{e^{\epsilon}}{e^{\epsilon} + k 1}$.
- If it is head, report the true value z = v.
- Otherwise, report any other value $z = \text{Uniform}(V \setminus \{v\})$ w.p. $q = \frac{1-p}{k-1} = \frac{1}{e^{\epsilon} + k 1}$.

Generalized Randomized Response (GRR) [KBR16]

User-side

- Encode v = v (direct encoding).
- Toss a coin with bias $p = \frac{e^{\epsilon}}{e^{\epsilon} + k 1}$.
- If it is head, report the true value z = v.
- Otherwise, report any other value $z = \text{Uniform}(V \setminus \{v\})$ w.p. $q = \frac{1-p}{k-1} = \frac{1}{e^{\epsilon} + k 1}$.
- $\Rightarrow \frac{\Pr[GRR(v)=y]}{\Pr[GRR(v)=y]} = \frac{p}{q} = e^{\epsilon}.$

Server-side

- $C(v) \rightarrow$ number of times the value $v \in V$ has been reported.
- Unbiased Estimation: $\hat{f}(v) = \frac{C(v) nq}{(p-q)}$.

Generalized Randomized Response (GRR) [KBR16]

User-side

- Encode v = v (direct encoding).
- Toss a coin with bias $p = \frac{e^{\epsilon}}{e^{\epsilon} + k 1}$.
- If it is head, report the true value z = v.

Utility issue: The probability of "being honest" is inversely proportional to *k*.

- Otherwise, report any other value $z = \text{Uniform}(V \setminus \{v\})$ w.p. $q = \frac{1-p}{k-1} = \frac{1}{e^{\epsilon} + k-1}$.
- $\Rightarrow \frac{\Pr[GRR(v)=y]}{\Pr[GRR(v')=y]} = \frac{p}{q} = e^{\epsilon}.$

Server-side

- $C(v) \rightarrow$ number of times the value $v \in V$ has been reported.
- Unbiased Estimation: $\hat{f}(v) = \frac{C(v)-nq}{(p-q)}$.

Unary Encoding (UE) [EPK14, WBLJ17]

User-side

- Encode the value v into a bit vector $\vec{v} = \vec{0}$, $\vec{v}[v] = 1$.
- Generate \vec{z} by perturbing each bit in \vec{v} independently w.p.:

• Symmetric UE:
$$p_{1\to 1} = p_{0\to 0} = p = \frac{e^{\epsilon/2}}{e^{\epsilon/2}+1}$$
, $p_{1\to 0} = p_{0\to 1} = q = \frac{1}{e^{\epsilon/2}+1}$.

• Optimal UE:
$$p_{1\to 1} = \frac{1}{2}$$
, $p_{1\to 0} = \frac{1}{2}$, $p_{0\to 0} = \frac{e^{\epsilon}}{e^{\epsilon}+1}$, $p_{0\to 1} = \frac{1}{e^{\epsilon}+1}$.

Unary Encoding (UE) [EPK14, WBLJ17]

User-side

- Encode the value v into a bit vector $\vec{v} = \vec{0}$, $\vec{v}[v] = 1$.
- Generate \vec{z} by perturbing each bit in \vec{v} independently w.p.:
 - Symmetric UE: $p_{1\to 1}=p_{0\to 0}=p=\frac{e^{\epsilon/2}}{e^{\epsilon/2}+1}$, $p_{1\to 0}=p_{0\to 1}=q=\frac{1}{e^{\epsilon/2}+1}$.
 - Optimal UE: $p_{1\to 1} = \frac{1}{2}$, $p_{1\to 0} = \frac{1}{2}$, $p_{0\to 0} = \frac{e^{\epsilon}}{e^{\epsilon}+1}$, $p_{0\to 1} = \frac{1}{e^{\epsilon}+1}$.

Example: v = 2, k = 4 $\vec{v} = [0, 0, 1, 0]$ $\vec{z} = [0, 0, 1, 1]$

Unary Encoding (UE) [EPK14, WBLJ17]

User-side

- Encode the value v into a bit vector $\vec{v} = \vec{0}$, $\vec{v}[v] = 1$.
- Generate \vec{z} by perturbing each bit in \vec{v} independently w.p.:

• Symmetric UE:
$$p_{1\to 1} = p_{0\to 0} = p = \frac{e^{\epsilon/2}}{e^{\epsilon/2}+1}$$
, $p_{1\to 0} = p_{0\to 1} = q = \frac{1}{e^{\epsilon/2}+1}$.

• Optimal UE:
$$p_{1\to 1} = \frac{1}{2}$$
, $p_{1\to 0} = \frac{1}{2}$, $p_{0\to 0} = \frac{e^{\epsilon}}{e^{\epsilon}+1}$, $p_{0\to 1} = \frac{1}{e^{\epsilon}+1}$.

•
$$\Rightarrow \frac{\Pr[\operatorname{UE}(\overrightarrow{v}) = \overrightarrow{z}]}{\Pr[\operatorname{UE}(\overrightarrow{v'}) = \overrightarrow{z}]} \le \frac{p_{1 \to 1}}{p_{0 \to 1}} \times \frac{p_{0 \to 0}}{p_{1 \to 0}} = e^{\epsilon}.$$

Example: v = 2, k = 4 $\vec{v} = [0, 0, 1, 0]$ $\vec{z} = [0, 0, 1, 1]$

Server-side

- To estimate frequency of each value v, do it for each bit.
- Unbiased Estimation: $\hat{f}(v) = \frac{C(v)-nq}{(p-q)}$.

Local Hashing (LH) [BS15,WBLJ17]

User-side

- Each user uses a random hash function H that maps $V \to \{0,1,...,g\}$.
 - Binary LH: g = 2.
 - Optimal LH: $g = e^{\epsilon} + 1$.
- The user then perturbs the hashed ("encoded") value with GRR.
- The user reports the perturbed value and the hash function: $\langle GRR(H(v)), H \rangle$.

Local Hashing (LH) [BS15,WBLJ17]

User-side

- Each user uses a random hash function H that maps $V \to \{0,1,...,g\}$.
 - Binary LH: g = 2.
 - Optimal LH: $g = e^{\epsilon} + 1$.
- The user then perturbs the hashed ("encoded") value with GRR.
- The user reports the perturbed value and the hash function: $\langle GRR(H(v)), H \rangle$.

Example:

$$v = 2, k = 4, g = 2$$

 $H(v) = 0$
 $z = 0$

Local Hashing (LH) [BS15,WBLJ17]

User-side

- Each user uses a random hash function H that maps $V \to \{0,1,...,g\}$.
 - Binary LH: g = 2.
 - Optimal LH: $g = e^{\epsilon} + 1$.
- The user then perturbs the hashed ("encoded") value with GRR.
- The user reports the perturbed value and the hash function: $\langle GRR(H(v)), H \rangle$.
- $\Rightarrow \frac{\Pr[\operatorname{GRR}(H(v))=z]}{\Pr[\operatorname{GRR}(H(v'))=z]} = \frac{p}{q} \le e^{\epsilon}$.

Server-side

- $C(v) \to |\{u \in U | H^u(z) = v^u\}|, q' = \frac{1}{g}p + \left(1 \frac{1}{g}\right)q = \frac{1}{g}.$
- Unbiased Estimation: $\hat{f}(v) = \frac{C(v) nq'}{(p-q')}$.

Example: v = 2, k = 4, g = 2 H(v) = 0z = 0

Subset Selection (SS) [YB18]

User-side

- Initialize an empty subset Ω and add v to Ω $w.p.: p = \frac{\omega e^{\epsilon}}{\omega e^{\epsilon} + k \omega}$, where $\omega = \frac{k}{e^{\epsilon} + 1}$.
- Finally, add values to Ω as follows:
 - If $v \in \Omega$, sample $\omega 1$ values (wo/replacement) from $V \setminus \{v\}$.
 - Else, sample ω values (wo/replacement) from $V \setminus \{v\}$.

Subset Selection (SS) [YB18]

User-side

- Initialize an empty subset Ω and add v to Ω $w.p.: p = \frac{\omega e^{\epsilon}}{\omega e^{\epsilon} + k \omega}$, where $\omega = \frac{k}{e^{\epsilon} + 1}$.
- Finally, add values to Ω as follows:
 - If $v \in \Omega$, sample $\omega 1$ values (wo/replacement) from $V \setminus \{v\}$.
 - Else, sample ω values (wo/replacement) from $V \setminus \{v\}$.

Example: $v = 2, k = 4, \omega = 2$ $\Omega = \{0, 2\}$

Subset Selection (SS) [YB18]

User-side

- Initialize an empty subset Ω and add v to Ω $w.p.: p = \frac{\omega e^{\epsilon}}{\omega e^{\epsilon} + k \omega}$, where $\omega = \frac{k}{e^{\epsilon} + 1}$.
- Finally, add values to Ω as follows:
 - If $v \in \Omega$, sample $\omega 1$ values (wo/replacement) from $V \setminus \{v\}$.
 - Else, sample ω values (wo/replacement) from $V \setminus \{v\}$.

•
$$\Rightarrow \frac{\Pr[SS(v)=\Omega]}{\Pr[SS(v')=\Omega]} \le \frac{p(k-\omega)}{\omega(1-p)} = e^{\epsilon}$$
.

Example: $v = 2, k = 4, \omega = 2$ $\Omega = \{0, 2\}$

Server-side

- $C(v) \to \text{number of times the value } v \in V \text{ has been reported, } q = \frac{\omega e^{\epsilon}(\omega 1) + (k \omega)\omega}{(k 1)(\omega e^{\epsilon} + k \omega)}$.
- Unbiased Estimation: $\hat{f}(v) = \frac{C(v) nq}{(p-q)}$.

Probabilistic Analysis [WBLJ17]

Same estimator $\hat{f}(v)$ for all LDP protocols (GRR, SUE, OUE, BLH, OLH, and SS).

- $\hat{f}(v)$ is a random variable.
- The estimation $\hat{f}(v)$ is unbiased: $\mathbb{E}[\hat{f}(v)] = f(v)$.
- (Approximate) variance of $\hat{f}(v)$: $\operatorname{Var}^* \left[\frac{\hat{f}(v)}{n} \right] = \frac{q(1-q)}{n(p-q)^2} + \frac{f(v)(1-p-q)}{n(p-q)}$.
- Since $\hat{f}(v)$ is unbiased, the variance is equal to the MSE metric.
- Transform from variance to error bound.

 $f(v) \approx 0$

(Approximate) Variance and Utility Comparison

Variance in terms of k, n, and ϵ .

GRR

$$\frac{k + e^{\epsilon} - 2}{n(1 - e^{\epsilon})^2}$$

SUE

OUE

$$\frac{1}{4n\sinh^2\left(\frac{\epsilon}{4}\right)} \qquad \frac{1.0}{n\sinh^2\left(\frac{\epsilon}{2}\right)}$$

$$\frac{1.0}{n \sinh^2\left(\frac{\epsilon}{2}\right)}$$

BLH

OLH

$$\frac{1.0}{n \tanh^2\left(\frac{\epsilon}{2}\right)}$$

$$\frac{1.0}{n \tanh^2\left(\frac{\epsilon}{2}\right)} \qquad \frac{1}{n \sinh^2\left(\frac{\epsilon}{2}\right)}$$

SS

$$\frac{(2k - e^{\epsilon} - 1)(-2k + 2(k - 1)(e^{\epsilon} + 1) + e^{\epsilon} + 1)}{n(-2k + (k - 1)(e^{\epsilon} + 1) + e^{\epsilon} + 1)^2}$$

(Approximate) Variance and Utility Comparison

Variance in terms of k, n, and ϵ .

GRR

$$\frac{k + e^{\epsilon} - 2}{n(1 - e^{\epsilon})^2}$$

SUE

OUE

$$\frac{1}{4n\sinh^2\left(\frac{\epsilon}{4}\right)}$$

$$\frac{1.0}{n \sinh^2\left(\frac{\epsilon}{2}\right)}$$

BLH

OLH

$$\frac{1.0}{n\tanh^2\left(\frac{\epsilon}{2}\right)}$$

$$\frac{1}{n \sinh^2\left(\frac{\epsilon}{2}\right)}$$

SS

$$\frac{\left(2k-e^{\epsilon}-1\right)\left(-2k+2\left(k-1\right)\left(e^{\epsilon}+1\right)+e^{\epsilon}+1\right)}{n(-2k+\left(k-1\right)\left(e^{\epsilon}+1\right)+e^{\epsilon}+1)^2}$$

Analytical measure of variance:

$$e.g., k = 128 \text{ and } n = 10000.$$

Outline

- Module 1 (Introduction):
 - Review of DP and preliminaries
 - LDP introduction
 - State-of-the-art deployments of LDP

- Module 2 (Current research directions):
 - Privacy attacks on LDP protocols
 - Security attacks on LDP protocols
 - Final remarks & open problems

Task: Frequency ("monitoring") estimation throughout time $t \in [\tau]$.

- Assumption: each user i has a sequence of values $\vec{v}^i = [v_1^i, ..., v_{\tau}^i]$, where v_t^i represents the discrete value $v \in V$ of user i at time $t \in [\tau]$ and k = |V|.
- Goal: at each time $t \in [\tau]$, estimate the k-bins histogram.

Task: Frequency ("monitoring") estimation throughout time $t \in [\tau]$.

- Assumption: each user i has a sequence of values $\vec{v}^i = [v_1^i, ..., v_{\tau}^i]$, where v_t^i represents the discrete value $v \in V$ of user i at time $t \in [\tau]$ and k = |V|.
- Goal: at each time $t \in [\tau]$, estimate the k-bins histogram.

What is the prefered webpage of each user along time?

Time 1

Time 2

Time τ

Challenge: Bound the privacy loss ϵ , avoid tracking, and minimize the estimation error.

Differential privacy based on "coin tossing" is (or has been) widely deployed!

- In Google Chrome browser, to collect browsing statistics (now deprecated).
- In Microsoft Windows, to collect telemetry data over time.
- In Apple iOS and MacOS, to collect typing statistics.
- In Google Gboard, for out-of-vocabulary word discovery.

Differential privacy based on "coin tossing" is (or has been) widely deployed!

- In Google Chrome browser, to collect browsing statistics (now deprecated).
- In Microsoft Windows, to collect telemetry data over time.
- In Apple iOS and MacOS, to collect typing statistics.
- In Google Gboard, for out-of-vocabulary word discovery.

- This yields deployments of over more than 100 million users...
- All deployments are based on RR (improved protocols to handle large k).
- LDP is state-of-the-art in 2024 ↔ RR invented in 1965, six decades ago!

Naïve Solution: Repeated Usage of an LDP Protocol

Let a user has a secret sequence $\vec{v} = [v, v, ..., v]$ (static value for τ time steps):

- Naïve solution \rightarrow At time $t \in [\tau]$, encode/perturb v with an ϵ -LDP protocol.
- Following the sequential composition, the privacy loss is at most $\tau \epsilon$ -LDP.
- This solution is subject to "averaging attacks" as t gets large.

Naïve Solution: Repeated Usage of an LDP Protocol

Let a user has a secret sequence $\vec{v} = [v, v, ..., v]$ (static value for τ time steps):

- Naïve solution \rightarrow At time $t \in [\tau]$, encode/perturb v with an ϵ -LDP protocol.
- Following the sequential composition, the privacy loss is at most $\tau \epsilon$ -LDP.
- This solution is subject to "averaging attacks" as t gets large.
 - For all analyzed LDP protocols (GRR, SUE, OUE, BLH, OLH, and SS) the probability of 'being honest' p is always higher than q.

Ínría-

Google's RAPPOR Solution for Chrome [EPK14]

- Each user has one value out of a very large set of possibilities (e.g., favourite URL).
- Reduce domain size through hashing.
- Two obfuscation rounds to avoid tracking.

- Each user has one value out of a very large set of possibilities (e.g., favourite URL).
- Reduce domain size through hashing.
- Two obfuscation rounds to avoid tracking.

Metaphor for RAPPOR*

^{*} Utilizing Large-Scale Randomized Response at Google: RAPPOR and its lessons by Ananth Raghunathan: https://www.youtube.com/watch?v=tuOBz5AzivM&ab_channel=RutgersUniversity.

Metaphor for RAPPOR*

^{*} Utilizing Large-Scale Randomized Response at Google: RAPPOR and its lessons by Ananth Raghunathan: https://www.youtube.com/watch?v=tuOBz5AzivM&ab_channel=RutgersUniversity.

Metaphor for RAPPOR*

Big picture remains!

^{*} Utilizing Large-Scale Randomized Response at Google: RAPPOR and its lessons by Ananth Raghunathan: https://www.youtube.com/watch?v=tuOBz5AzivM&ab_channel=RutgersUniversity.

Basic RAPPOR (deterministic UE) → utility-oriented version of RAPPOR.

User-side

- Encode the value v into a bit vector $\vec{v} = \vec{0}$, $\vec{v}[v] = 1$.
- Perturb each bit independently with SUE:
 - Memoize and reuse for each time the value v repeats. \longrightarrow Permanent RR (PRR)

Basic RAPPOR (deterministic UE) → utility-oriented version of RAPPOR.

User-side

- Encode the value v into a bit vector $\vec{v} = \vec{0}$, $\vec{v}[v] = 1$.
- Perturb each bit independently with SUE:
 - Memoize and reuse for each time the value v repeats. \longrightarrow Permanent RR (PRR)
- For each time $t \in [\tau]$, apply SUE (again) to the memoized value. \longrightarrow Instantaneous RR (IRR)

Server-side (for each time $t \in [\tau]$)

- $c(v) \rightarrow$ number of times the bit corresponding to $v \in V$ has been reported.
- Unbiased estimator: $\hat{f}(v) = \frac{c(v) nq_1 (p_2 q_2) nq_2}{n(p_1 q_1)(p_2 q_2)}$.

Pros:

- RAPPOR upper bounds the privacy loss (*i.e.*, PRR).
- The IRR step also prevents tracking (when excluding users' IDs).
- Original RAPPOR makes use of Bloom filters (generic), and UE improves utility.

Pros:

- RAPPOR upper bounds the privacy loss (*i.e.*, PRR).
- The IRR step also prevents tracking (when excluding users' IDs).
- Original RAPPOR makes use of Bloom filters (generic), and UE improves utility.

Limitations:

- Practical deployment \rightarrow needs \sim 10K reports to identify a value with confidence.
- Does not support even small data changes of the user's actual data:
 - Need to run RAPPOR for each value $v \in V$.
 - Worst-case longitudinal privacy loss linear on domain size k.

$$\left\{ \forall_{u \in U} : \ \check{\epsilon}_{\infty}^{(u)} \le k \epsilon_{\infty} \right\}$$

Microsoft Telemetry Data collection [DKY17]

Microsoft collect data on app usage:

- How much time was spent on a particular app today?
- Allows finding patterns over time...

Microsoft Telemetry Data collection [DKY17]

Microsoft collect data on app usage:

- How much time was spent on a particular app today?
- Allows finding patterns over time...

Makes use of multiple subroutines:

- 1BitMean to collect numeric data for mean estimation.
- *d*BitFlipPM to collect (sparse) histogram data.
- Memoization and output perturbation to allow repeated data collection.

Permanent Memoization → PRR only

dBitFlipPM \rightarrow a memoization-based solution as alternative to RAPPOR.

User-side

- Bucketize domain k to b buckets (e.g., with equal width): $V \rightarrow [b]$.
- User samples d buckets without replacement and perturb them with SUE:
 - Memoize and reuse for all values falling into the same bucket.

Permanent Memoization → PRR only

dBitFlipPM \rightarrow a memoization-based solution as alternative to RAPPOR.

User-side

- Bucketize domain k to b buckets (e.g., with equal width): $V \rightarrow [b]$.
- User samples d buckets without replacement and perturb them with SUE:
 - Memoize and reuse for all values falling into the same bucket.

Server-side

- Aggregator counts and unbiases the noisy reports: $\hat{f}(v) = \frac{b}{nd} \frac{(c(v)-nq)}{(p-q)}$.
- Error proportional to $\sqrt{(b/d)}$: trades off error and cost.

Permanent Memoization → PRR only

Run dBitFlipPM for each bucket and permanently memoize them.

$$\vec{v} = [1,1,1,9,2,1,1,1,8,9]$$
 Same bucket 1

Permanent Memoization \rightarrow PRR only

Pros:

- Less computation and communication costs ($d \le b$ bits).
- Creates uncertainty on values falling into the same bucket.

Permanent Memoization → PRR only

Pros:

- Less computation and communication costs ($d \le b$ bits).
- Creates uncertainty on values falling into the same bucket.

Limitations:

- Information loss due to $V \rightarrow [b]$ and sampling only d out of b bits.
- Supports only small data changes of the user's actual data:
 - Possibility of (real-time) detection of large data change.
 - Need to run dBitFlipPM for each bucket in [b].
 - Worst-case longitudinal privacy loss linear on new domain size $b \le k$.

$$\forall_{u \in U} : \ \check{\epsilon}_{\infty}^{(u)} \leq \min(d+1,b)\,\epsilon_{\infty}$$

Our proposal \rightarrow join forces of RAPPOR + dBitFlipPM:

- Double randomization to minimize data change detection \rightarrow PRR and IRR.
- Several values are mapped to the same randomized value → Local hashing.

Given a (universal) family of hash functions
$$\mathcal{H}$$
: $\forall v_1, v_2 \in V, v_1 \neq v_2$: $\Pr_{H \in \mathcal{H}} [H(v_1) = H(v_2)] \leq \frac{1}{g}$

$$V = \{1,2,...,100\}, k = 100$$

$$[g] = \{1,2\}, g = 2$$

User-side

- Each user uses a (unique) random hash function H that maps $V \to \{0,1,...,g\}$.
- The user then perturbs the hashed ("encoded") value with GRR:
 - Memoize and reuse for all values hashing into the same value in [g]. \longrightarrow PRR
- For each time $t \in [\tau]$, apply GRR (again) to the memoized value. \longrightarrow IRR
- BiLOLOHA (g = 2) and OLOLOHA (optimal g, large equation).

User-side

- Each user uses a (unique) random hash function H that maps $V \to \{0,1,...,g\}$.
- The user then perturbs the hashed ("encoded") value with GRR:
 - Memoize and reuse for all values hashing into the same value in [g]. \longrightarrow PRR
- For each time $t \in [\tau]$, apply GRR (again) to the memoized value.
- BiLOLOHA (g = 2) and OLOLOHA (optimal g, large equation).

Server-side

- $c(v) \rightarrow |\{u \in U | H^u(v) = v^u\}|, q_1' = \frac{1}{g}.$
- Unbiased estimator: $\hat{f}(v) = \frac{c(v) nq'_1(p_2 q_2) nq_2}{n(p_1 q'_1)(p_2 q_2)}$.

Pros:

- Creates uncertainty on values hashed to the same value in [g].
- Smallest communication cost than all competitors.
- Allows to balance privacy (g = 2) and utility (optimal g).
- Worst-case longitudinal privacy loss linear on $g \ll k$ only.

$$\left\{ \forall_{u \in U} \colon \ \check{\epsilon}_{\infty}^{(u)} \leq g \epsilon_{\infty} \right\}$$

Limitations:

• The unique random hash function can be used to track user. However, LDP assumes to know users' identifier but not their private data.

Other LDP Deployments [DPT17, SKSGS24]

Apple: Common emoji & out-of-vocabulary word discovery:

- Sketches and Transforms.
- Count Mean Sketch (CMS) + RR.

Other LDP Deployments [DPT17, SKSGS24]

Apple: Common emoji & out-of-vocabulary word discovery:

- Sketches and Transforms.
- Count Mean Sketch (CMS) + RR.

Gboard: Out-of-vocabulary word discovery:

- Prefix Tree and Sampling.
- SS protocol + Sampling.

Outline

- Module 1 (Introduction)
 - Review of DP and preliminaries
 - LDP introduction
 - State-of-the-art deployments of LDP

- Module 2 (Current research directions):
 - Privacy attacks on LDP protocols
 - Security attacks on LDP protocols
 - Final remarks & open problems

Shuffle DP: LDP + Anonymity [CSUZZ19, EFMRTT19]

- Remove all metadata that can link users to their (perturbed) reported values.
- Amplification by shuffling \rightarrow from ϵ -LDP to (ϵ', δ) -DP where $\epsilon' > \epsilon$.
- Challenge: prove tighter bounds and design optimal Shuffle DP mechanisms.

LDP Tasks Based on Frequency Estimation

Heavy hitter estimation [CCDFHJMT24]:

- Goal: Find the t most frequent values from a large V.
- *V* is large (when *V* is small, LDP frequency estimation suffices).

Heavy hitter estimation [CCDFHJMT24]:

- Goal: Find the *t* most frequent values from a large *V*.
- *V* is large (when *V* is small, LDP frequency estimation suffices).

Marginal estimation [CKS18]:

- User has d bits of data and the server want (all) marginals over m attributes.
- Each marginal is a frequency distribution \rightarrow could apply RR... (optimal?)

	Gender	Obese	•••	Smoke	Disease
Alice	1	0		1	0
Bob	0	1		1	1
Carl	0	0		0	0

Gender/Obese	0	1
0	0.28	0.22
1	0.29	0.21

Disease/Smoke	0	1
0	0.55	0.15
1	0.10	0.20

Frequent itemset mining [LGGWY22]:

- Each user has a set of values.
- The goal is to find the frequent singletons and itemsets.

$$\{a, c, e\} \ \{b, e\} \ \{a, b, e\} \ \{a, d, e\} \ \{a, b, c, d, e, f\} \longrightarrow \frac{\text{Top-3 singletons: } e(5), a(4), b(3)}{\text{Top-3 itemsets: } \{e\}(5), \{a\}(4), \{a, e\}(4)\}}$$

Frequent itemset mining [LGGWY22]:

- Each user has a set of values.
- The goal is to find the frequent singletons and itemsets.

$$\{a, c, e\} \ \{b, e\} \ \{a, b, e\} \ \{a, d, e\} \ \{a, b, c, d, e, f\}$$

Spatial data (e.g., crowd density estimation) [TG24]:

- Impose a hierarchical grid structure and count.
- If small grid → LDP frequency estimation suffices.
- Identify heavy regions → a heavy hitter problem!

Top-3 singletons: e(5), a(4), b(3) Top-3 itemsets: {e}(5), {a}(4), {a, e}(4)

Frequency monitoring (i.e., longitudinal data):

- Current deployment \rightarrow weak longitudinal guarantees:
 - Google & Microsoft → Memoization:
 - Small or no data change.
 - Violates DP guarantees.
 - Apple \rightarrow independent fresh noise [TKBWW17].

Frequency monitoring (i.e., longitudinal data):

- Current deployment \rightarrow weak longitudinal guarantees:
 - Google & Microsoft → Memoization:
 - Small or no data change.
 - Violates DP guarantees.
 - Apple \rightarrow independent fresh noise [TKBWW17].

Frequency monitoring (i.e., longitudinal data):

- Current deployment \rightarrow weak longitudinal guarantees:
 - Google & Microsoft → Memoization:
 - Small or no data change.
 - Violates DP guarantees.
 - Apple → independent fresh noise [TKBWW17].

- Data change-based solutions [JRUW18, EFMRTT19]:
 - Consider the infrequent data changes on the user side.
 - Privacy loss & accuracy proportional to number of changes.
 - Mainly designed for Boolean data.
 - Restriction on the number of data changes & number of data collections.

[TKBWW17] Privacy loss in apple's implementation of differential privacy on macos 10.12. Arxiv 2017. [JRUW18] Local differential privacy for evolving data. NeurIPS 2018. [EFMRTT19] Amplification by shuffling: From local to central differential privacy via anonymity. SODA 2019.

Learning tasks [ABKLCA20, YAC20, CLCNGBK22]:

- The goal is to learn a model for prediction purposes (e.g., binary classification).
- Train machine (or federated) learning models using LDP-based statistics or NN layer.

Open-Source (Python) Implementations

RAPPOR [CMM21]:

- https://github.com/google/rappor.
- Frequency estimation

pure-ldp [CMM21]:

- https://pypi.org/project/pure-ldp/.
- Frequency estimation:
 - Unidimensional data.
- Heavy hitter estimation.

multi-freq-ldpy [ACGPZ22]:

- https://pypi.org/project/multi-freq-ldpy/.
- Frequency estimation:
 - Unidimensional data.
 - Multidimensional data.
 - Longitudinal data.

Outline

- Module 1 (Introduction)
 - Review of DP and preliminaries
 - LDP introduction
 - State-of-the-art deployments of LDP

- Module 2 (Current research directions):
 - Privacy attacks on LDP protocols
 - Security attacks on LDP protocols
 - Final remarks & open problems

Exploiting the "Good Side" of Privacy Attacks*

Privacy attacks play an essential role in privacy research!

Re-identification

Failures of pseudonymization & invention of *k*-anonymity

Homogeneity

	N	lon-Sen	Sensitive	
	Zip Code	Age	Nationality	Condition
1	130**	< 30	*	Heart Disease
2	130**	< 30	*	Heart Disease
3	130**	< 30	*	Viral Infection
4	130**	< 30	*	Viral Infection
5	1485*	≥ 40	*	Cancer
6	1485*	≥ 40	*	Heart Disease
7	1485*	≥ 40	*	Viral Infection
8	1485*	≥ 40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

Failures of *k*-anonymity & invention of *l*-diversity

Re-construction

TABLE 4: A SINGLE SATISFYING ASSIGNMENT

AGE	SEX	RACE	MARITAL STATUS		SOLUTION #1
8	F	В	S		8FBS
18	М	W	S	_	18MWS
24	F	W	S	=	24FWS
30	М	W	M		30MWM
36	F	В	М		36FBM
66	F	В	M		66FBM
84	М	В	М		84MBM
•••••	•••••		•••••		•••••

Inspired invention and adoption of differential privacy

Adversarial Privacy Game of Central and Local DP

lnría

Privacy Threats to LDP Protocols [GLCTW22, AGCP23]

Value distinguishability attack:

- Users obfuscate v with an ϵ -LDP protocol \mathcal{M} .
- Bayesian adversary predicts \hat{v} given $z = \mathcal{M}(v)$, i.e., $\hat{v} = \underset{v \in V}{\operatorname{argmax}} \Pr[v \mid z]$.
- Metric: Adversarial Success Rate (ASR = $Pr[v = \hat{v}]$).

Privacy Threats to LDP Protocols [GLCTW22, AGCP23]

Value distinguishability attack:

- Users obfuscate v with an ϵ -LDP protocol \mathcal{M} .
- Bayesian adversary predicts \hat{v} given $z = \mathcal{M}(v)$, i.e., $\hat{v} = \underset{v \in V}{\operatorname{argmax}} \Pr[v \mid z]$.
- Metric: Adversarial Success Rate (ASR = $Pr[v = \hat{v}]$).

Designed attacks A tailored to the LDP protocol

Generalized Randomized Response (GRR) [W65, KBR16]

Bayesian adversary A_{GRR} :

- Optimal prediction strategy is to assume user is honest.
- For any value $v \in V$, $\Pr[z = v] > \Pr[z = v']$ for all $v' \in V \setminus \{v\}$.
- \mathcal{A}_{GRR} : $\hat{v} = z$.

Unary Encoding (UE) Protocols [EPK14, WBLJ17]

Bayesian adversary A_{UE} :

- Optimal prediction strategy is to pick among indexes set to 1.
- Construct: $\mathbb{I} = \{ v \mid \mathbf{z}_n = 1 \}$.
- $\mathcal{A}_{\mathrm{HF}}^0$: $\hat{v} = \mathrm{Uniform}([k])$, if $\mathbb{I} = \{\emptyset\}$.
- $\mathcal{A}^1_{\mathrm{HF}}$: $\hat{v} = \mathrm{Uniform}(\mathbb{I})$, otherwise.

Encode OHE(
$$v$$
)
$$v = [0,0,0,1,0] \xrightarrow{\text{Perturb}} z = [1,0,1,1,0]$$

$$\text{Pr}[z_i = 1] = \begin{cases} p & \text{if } v_i = 1, \\ q & \text{if } v_i = 0. \end{cases}$$
Server

Local Hashing (LH) Encoding Protocols [WBLJ17, BS15]

Bayesian adversary A_{LH} :

- Optimal prediction strategy is a random choice from subset of values that hash to z.
- Construct: $\mathbb{I} = \{v \mid H(v) = z\}.$
- $\mathcal{A}_{\mathrm{LH}}^0$: $\hat{v} = \mathrm{Uniform}([k])$, if $\mathbb{I} = \{\emptyset\}$.
- \mathcal{A}_{LH}^1 : $\hat{v} = \text{Uniform}(\mathbb{I})$, otherwise.

Subset Selection (SS) [YB18]

Bayesian adversary A_{SS} :

- Optimal prediction strategy is a random choice from the reported subset Ω .
- For any value $v \in V$, $\Pr[v \in \Omega] > \Pr[v' \in \Omega]$ for all $v' \in V \setminus \{v\}$.
- \mathcal{A}_{SS} : $\hat{v} = \text{Uniform}(\Omega)$.

Privacy-Utility-Robustness Trade-Off [GLCTW22, AGCP23]

 ϵ is not the unique parameter to measure privacy!

Other Privacy Threats to LDP Protocols

Re-identification risks [MT21, AGCP23]:

- Sequential data (e.g., location traces) allows linking obfuscated data to users.
- Multiple collections lead to profiling and uniqueness through quasi-identifiers.

Other Privacy Threats to LDP Protocols

Re-identification risks [MT21, AGCP23]:

- Sequential data (*e.g.*, location traces) allows linking obfuscated data to users.
- Multiple collections lead to profiling and uniqueness through quasi-identifiers.

Pool inference attacks [GHAM22]:

• Multiple collections lead to profiling and pool inference.

Using Privacy Attacks to Audit LDP

• For every attacker:
$$\Pr[\mathcal{A}(\mathcal{M}(v)) = v] \le e^{\epsilon} \cdot \Pr[\mathcal{A}(\mathcal{M}(v')) = v]$$

True Positive (TPR)

False Positive (FPR)

Setup:

- Eight fundamental LDP protocols.
- Theoretical $\epsilon = 2$ (red dashed line).

Main Insights:

• Distinct auditing results due to different encoding & perturbation LDP functions.

Setup:

- Eight fundamental LDP protocols.
- Theoretical $\epsilon = 2$ (red dashed line).

Main Insights:

- Distinct auditing results due to different encoding & perturbation LDP functions.
- GRR is the only LDP protocol that yields tight empirical privacy estimates (i.e., $\epsilon_{emp} \approx \epsilon$).

Setup:

- Eight fundamental LDP protocols.
- Theoretical $\epsilon = 2$ (red dashed line).

Main Insights:

- Distinct auditing results due to different encoding & perturbation LDP functions.
- GRR is the only LDP protocol that yields tight empirical privacy estimates (i.e., $\epsilon_{emp} \approx \epsilon$).

Hypotheses:

- State-of-the-art attacks are **not** strong enough...?
- Privacy gain in the encoding step (e.g., LH)...?

Question → Can LDP-Auditor also help finding bugs in LDP implementations?

General Setup:

- LDP Python package: pure-ldp [M21, CMM21].
- LDP protocols: Symmetric UE (SUE) and Optimal UE (OUE).

Question → Can LDP-Auditor also help finding bugs in LDP implementations?

General Setup:

- LDP Python package: pure-ldp [M21, CMM21].
- LDP protocols: Symmetric UE (SUE) and Optimal UE (OUE).

Main Insights:

- UE implementation with ϵ -LDP violation (i.e., $\epsilon_{emp} > \epsilon$).
- Missing step in code reported to authors.
- Bug fixed with new pure-LDP version 1.2.0 [M21].

Outline

- Module 1 (Introduction):
 - Review of DP and preliminaries
 - LDP introduction
 - State-of-the-art deployments of LDP

- Module 2 (Current research directions):
 - Privacy attacks on LDP protocols
 - Security attacks on LDP protocols
 - Final remarks & open problems

Spoil the estimated statistic at the server side.

- Data poisoning attack: Target items.
- Manipulation attacks: No target items.

Spoil the estimated statistic at the server side.

- Data poisoning attack: Target items.
- Manipulation attacks: No target items.

Spoil the estimated statistic at the server side.

- Data poisoning attack: Target items.
- Manipulation attacks: No target items.

Users

[CJG21] Data poisoning attacks to local differential privacy protocols. USENIX Security 2021. [CSU21] Manipulation Attacks in Local Differential Privacy. IEEE S&P 2021.

Users

[CJG21] Data poisoning attacks to local differential privacy protocols. USENIX Security 2021. [CSU21] Manipulation Attacks in Local Differential Privacy. IEEE S&P 2021.

[CJG21] Data poisoning attacks to local differential privacy protocols. USENIX Security 2021. [CSU21] Manipulation Attacks in Local Differential Privacy. IEEE S&P 2021.

[CJG21] Data poisoning attacks to local differential privacy protocols. USENIX Security 2021. [CSU21] Manipulation Attacks in Local Differential Privacy. IEEE S&P 2021. [AJL04] Cryptographic randomized response techniques. PKC 2004.

[CSU21] Manipulation Attacks in Local Differential Privacy. IEEE S&P 2021.

[KCY21] Preventing Output-Manipulation in LDP using Verifiable Randomization Mechanism. DBSec 2021.

Goal:

- Promote a set of target items *T*.
- Increasing their estimated frequency.

Background knowledge:

• LDP protocol.

Capability:

• Inject fake accounts.

Fake accounts are cheap!

Prices through the course of our analysis range from \$0.01 to \$0.20 per Twitter account with a median cost of \$0.04 for all merchants. Despite the large overall span,

Yahoo Yahoo accounts, like Hotmail, are widely available, with prices ranging from \$0.006 – 0.015 per account.

Metrics:

- Frequency gain: $\Delta \widetilde{f}_t = \widetilde{f}_{t,a} \widetilde{f}_{t,b}$, $f_{t,a}$: after attack, $f_{t,b}$: before attack.
- Overall gain: $G = \sum_{t \in T} \mathbb{E}(\Delta \widetilde{f}_t)$.
- G depends on the set of attacker-crafted perturbed values Z.
- Attacker manipulates Encode/Perturb to craft **Z** that maximizes **G**.
- Attacker controls *m* fake users.
- Fraction of fake users: $\beta = \frac{m}{n+m}$.

Attacks:

- Random perturbed-value attack (RPA):
 - Each fake user randomly selects $z \in V$.

Non-targeted "output manipulation"

Attacks:

- Random perturbed-value attack (RPA):
 - Each fake user randomly selects $z \in V$.

Non-targeted "output manipulation"

- Random item attack (RIA):
 - Each fake user randomly selects a target item $t \in T$.
 - Follow the LDP protocol to generate *z*.

"input manipulation"

Attacks:

- Random perturbed-value attack (RPA):
 - Each fake user randomly selects $z \in V$.

Non-targeted "output manipulation"

- Random item attack (RIA):
 - Each fake user randomly selects a target item $t \in T$.
 - Follow the LDP protocol to generate *z*.

"input manipulation"

- Maximal gain attack (MGA):
 - Find **Z** by solving $\max_{\mathbf{Z}} G(\mathbf{Z})$.
 - Maximize the number of items that z supports.

Targeted "output manipulation"

• Randomly sets other bits such that number of 1's seems normal.

[CJG21] Data poisoning attacks to local differential privacy protocols. USENIX Security 2021.

Attacks:

- Random perturbed-value attack (RPA):
 - Each fake user randomly selects $z \in V$.
- Random item attack (RIA):
 - Each fake user randomly selects a target item $t \in T$.
 - Follow the LDP protocol to generate *z*.
- Maximal gain attack (MGA):
 - Find **Z** by solving $\max_{\mathbf{Z}} G(\mathbf{Z})$.
 - Maximize the number of items that z supports.
 - Randomly sets other bits such that number of 1's seems normal.

Ex. MGA with OUE

$$T = \{2,4\}$$

There is a security-privacy trade-off for the LDP protocols!

Smaller $\epsilon \rightarrow$ stronger privacy and weaker security!

Countermeasures:

- Normalization:
 - Normalize estimated frequencies to form a distribution.

• Detecting fake users:

• MGA max the gain with **Z** supporting all target items.

User 2:

User 1:

0 1 0 1 1 1

• Common pattern in z of fake users.

User 3:

0 0 1 0 0 1

Detect via frequent itemset mining.

User 4:

Detecting and removing fake users:

- Privacy parameter: $\epsilon = 1$.
- Fraction of fake users: $\beta = \frac{m}{n+m}$.

Recent Advances on Security Vulnerabilities of LDP Protocols

LDP protocols are highly vulnerable to manipulation/poisoning attacks:

- Data poisoning attacks can effectively promote target items.
- There is an inherently security-privacy trade-off in LDP protocols.

New attacks/countermeasures:

- Poisoning attacks on different data types (or tasks) [WCJG22, LLSGL23, TCNZ24].
- Preventing output-manipulation attacks via verifiable LDP [KCY21, HKY23, SXZ23].
- Neutralizing data poisoning attacks [HOYHZZZZ24, SYHDWXY24].

[WCJG22] Poisoning attacks to local differential privacy protocols for Key-Value data. USENIX Security 2022. [LLSGL23] Fine-grained poisoning attack to LDP protocols for mean and variance estimation. USENIX Security 2023. [TCNZ24] Data Poisoning Attacks to Locally Differentially Private Frequent Itemset Mining Protocols. CCS 2024. [KCY21] Preventing Output-Manipulation in LDP using Verifiable Randomization Mechanism. DBSec 2021. [HKY23] Local differential privacy protocol for making key-value data robust against poisoning attacks. MDAI 2024. [SXZ23] Efficient Defenses Against Output Poisoning Attacks on Local Differential Privacy. IEEE TIFS. [HOYHZZZZ24] LDPGuard: Defenses against data poisoning attacks to LDP protocols. IEEE TKDE. [SYHDWXY24] LDPRecover: Recovering frequencies from poisoning attacks against LDP. ICDE 2024.

Outline

- Module 1 (Introduction):
 - Review of DP and preliminaries
 - LDP introduction
 - State-of-the-art deployments of LDF

- Module 2 (Current research directions):
 - Privacy attacks on LDP protocols
 - Security attacks on LDP protocols
 - Final remarks & open problems

Recap of key insights:

- Trust models of DP: Central, local, and shuffle DP.
- Core principles of LDP: Minimal trust assumptions, data obfuscated at the user side.

Recap of key insights:

- Trust models of DP: Central, local, and shuffle DP.
- Core principles of LDP: Minimal trust assumptions, data obfuscated at the user side.
- **Practical applications:** LDP is a big success for privacy research:
 - Adopted by Google, Apple, Microsoft for gathering statistics (e.g., frequency).
 - LDP comes at a cost \rightarrow Need many more users than central DP.
 - Privacy settings are 'not very tight' \rightarrow deployed ϵ ranges from 0.5 to 16.

Recap of key insights:

- Trust models of DP: Central, local, and shuffle DP.
- Core principles of LDP: Minimal trust assumptions, data obfuscated at the user side.
- **Practical applications:** LDP is a big success for privacy research:
 - Adopted by Google, Apple, Microsoft for gathering statistics (e.g., frequency).
 - LDP comes at a cost \rightarrow Need many more users than central DP.
 - Privacy settings are 'not very tight' \rightarrow deployed ϵ ranges from 0.5 to 16.
- Adversarial Considerations: Yet, the LDP model is vulnerable to:
 - Privacy attacks \rightarrow Bayesian adversary can infer the user's true value.
 - Security attacks → Data poisoning and manipulation attacks spoil statistical utility.

Reflecting on LDP:

- Opening private data: LDP offers a decentralized approach that ensures privacy at the point of data collection, before any data leaves the user's device.
 - However, deployments of LDP are still tightly controlled by the server (e.g., Google).
 - Could there be a more "open" implementation of LDP?

Reflecting on LDP:

- **Opening private data:** LDP offers a decentralized approach that ensures privacy at the point of data collection, before any data leaves the user's device.
 - However, deployments of LDP are still tightly controlled by the server (e.g., Google).
 - Could there be a more "open" implementation of LDP?
- Balancing privacy, utility, robustness, communication cost: A four-way optimization issue:
 - Enhancing one often comes at the expense of another(s)...

Reflecting on LDP:

- Opening private data: LDP offers a decentralized approach that ensures privacy at the point of data collection, before any data leaves the user's device.
 - However, deployments of LDP are still tightly controlled by the server (e.g., Google).
 - Could there be a more "open" implementation of LDP?
- Balancing privacy, utility, robustness, communication cost: A four-way optimization issue:
 - Enhancing one often comes at the expense of another(s)...
- Closing encouragement:
 - Think of LDP not just as a set of tools, but as a mindset that prioritizes privacy at every step of data handling.
 - LDP is not a one-size-fits-all solution \rightarrow tailor LDP protocols to fit specific needs.

- Take any data analysis/mining task and ask \rightarrow "Can we handle this under LDP?".
 - Sentiment analysis for (private) reviews → "LDP"-IMDB?
 - Trajectory analysis of GPS movements → "LDP"-Strava?

- Take any data analysis/mining task and ask \rightarrow "Can we handle this under LDP?".
 - Sentiment analysis for (private) reviews \rightarrow "LDP"-IMDB?
 - Trajectory analysis of GPS movements → "LDP"-Strava?
- Designing optimal LDP protocols for:
 - Evolving data, graph data, trajectory data, unstructured data (e.g., text, video?), ...
 - Learning tasks (*i.e.*, machine learning, federated learning, gossip learning)...

- Take any data analysis/mining task and ask \rightarrow "Can we handle this under LDP?".
 - Sentiment analysis for (private) reviews → "LDP"-IMDB?
 - Trajectory analysis of GPS movements → "LDP"-Strava?
- Designing optimal LDP protocols for:
 - Evolving data, graph data, trajectory data, unstructured data (e.g., text, video?), ...
 - Learning tasks (i.e., machine learning, federated learning, gossip learning)...
- Make LDP widely available → RAPPOR, pure-ldp, multi-freq-ldpy but just the beginning...

- Take any data analysis/mining task and ask \rightarrow "Can we handle this under LDP?".
 - Sentiment analysis for (private) reviews → "LDP"-IMDB?
 - Trajectory analysis of GPS movements → "LDP"-Strava?
- Designing optimal LDP protocols for:
 - Evolving data, graph data, trajectory data, unstructured data (e.g., text, video?), ...
 - Learning tasks (i.e., machine learning, federated learning, gossip learning)...
- Make LDP widely available → RAPPOR, pure-ldp, multi-freq-ldpy but just the beginning...
- What are other emerging attack vectors in the context of LDP, and how can they be mitigated?
- How can we combine LDP with cryptographic techniques to provide stronger guarantees against sophisticated adversaries?

Thank You for Your Attention! Questions?

CONTACT

Héber H. Arcolezi

 \bowtie

heber.hwang-arcolezi@inria.fr

Research Scientist

hharcolezi.github.io

Inria Grenoble, France

<u>@hharcolezi</u>

