A Univariate Attack against the Limited-Data Instance of Ciminion

Augustin Bariant

Inria, Paris, France ANSSI, Paris, France

August 28, 2024

Advanced protocols

Advanced protocols

Zero-Knowledge, Multi-Party Computation or Fully Homomorphic Encryption protocols.

- ▶ Often operate on large finite fields $\mathbb{F}_q = \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ or $\mathbb{F}_q = \mathbb{F}_{2^n}$ $(q \ge 2^{64})$.
- ▶ Allowed operations: + and \times in \mathbb{F}_q .
- ▶ All evaluated functions need to be converted into arithmetic circuits.

Example of an arithmetic circuit of a function: Ciminion round function

Cryptographic primitives in advanced protocols

Cryptographic primitives need to be combined with these protocols.

- ZK: hash functions for verification.
- MPC/FHE: symmetric ciphers for embedded encryption.
- These primitives are evaluated as arithmetic circuits.
- The arithmetic circuit representing AES is very heavy.

Use dedicated primitives: Arithmetization-Oriented (AO) primitives.

Arithmetization-Oriented (AO) primitives

Traditional primitives

- Designed for bit-oriented platforms.
- Operate on bit sequences.
- ► Low resource consumption (time, etc.).
- ➤ S-boxes: small (4 to 8 bits lookups).
- Several decades of cryptanalysis.

Arithmetization-Oriented primitives

- Designed for advanced protocols.
- ▶ Operate on large finite fields \mathbb{F}_q .
- Low number of field multiplications.
- ► S-boxes: large (e.g. $x \mapsto x^{\alpha}$ on \mathbb{F}_q).
- ► ≤ 8 years of cryptanalysis.

Non-exhaustive timeline based on stap-zoo.com:

Statistical cryptanalysis of AO primitives: insights

► AO non-linear components are strong against statistical cryptanalysis.

Example: differential properties of AO S-boxes

For an S-box $x \mapsto x^3$, and $\delta_i \neq 0$:

- ▶ The equation $(x + \delta_i)^3 x^3 = \delta_o$ is of degree 2 and has \leq 2 solutions.
- ▶ The maximal differential transition probability is $\leq 2/q$ ($\leq 2^{-63}$ typically).

Example: differential properties of Toffoli gates

Toffoli gates: $(x, y, z) \mapsto (x, y, z + xy)$. Take $\delta_x \neq 0$.

- ▶ With an input difference $(\delta_x, 0, 0)$, the output difference is $(\delta_x, 0, \delta_x y)$
- ▶ *q* possible values for $\delta_x y$, each with proba 1/q ($\leq 2^{-64}$ typically).

AO primitives need to be designed to resist algebraic attacks.

Algebraic attacks: examples on a block cipher

Consider a block cipher
$$E_{\mathcal{K}}: egin{cases} \mathbb{F}_q & o \mathbb{F}_q \\ P & \mapsto C. \end{cases}$$

- ▶ Integral attacks: exploit the low algebraic degree d_{alg} of E_K (over \mathbb{F}_{2^n}).
 - ▶ For any subspace S of \mathbb{F}_{2^n} with dim(S) > d_{alg} :

$$\sum_{x\in\mathcal{S}}E_K(x)=0.$$

- ► Requires $2^{d_{alg}+1}$ data (typically, $d_{alg} \approx n$).
- ▶ Interpolation attacks: exploit the low univariate degree d of E_K .
 - ▶ Gather $E_K(x)$ for d + 1 values x and perform a Fast Lagrange Interpolation.
 - ▶ Recover the coefficients of $E_K(x)$ and the entire mapping $x \mapsto E_K(x)$.
 - Requires d + 1 data (typically, $d \approx q$).

These two attacks require a heavy amount of data.

Algebraic attacks: examples on a block cipher

Consider a block cipher
$$E_{\mathcal{K}}: egin{cases} \mathbb{F}_q & o \mathbb{F}_q \\ P & \mapsto C. \end{cases}$$

- ▶ Integral attacks: exploit the low algebraic degree d_{alg} of E_K (over \mathbb{F}_{2^n}).
 - ▶ For any subspace S of \mathbb{F}_{2^n} with dim(S) > d_{alg} :

$$\sum_{x\in\mathcal{S}}E_{K}(x)=0.$$

- ► Requires $2^{d_{\text{alg}}+1}$ data (typically, $d_{\text{alg}} \approx n$).
- ► Interpolation attacks: exploit the low univariate degree d of E_K.
 - ▶ Gather $E_K(x)$ for d + 1 values x and perform a Fast Lagrange Interpolation.
 - ▶ Recover the coefficients of $E_K(x)$ and the entire mapping $x \mapsto E_K(x)$.
 - ▶ Requires d + 1 data (typically, $d \approx q$).

These two attacks require a heavy amount of data.

Algebraic attacks: examples on a block cipher

Consider a block cipher
$$E_{\mathcal{K}}: egin{cases} \mathbb{F}_q & o \mathbb{F}_q \\ P & \mapsto C. \end{cases}$$

- ▶ Integral attacks: exploit the low algebraic degree d_{alg} of E_K (over \mathbb{F}_{2^n}).
 - ▶ For any subspace S of \mathbb{F}_{2^n} with dim(S) > d_{alg} :

$$\sum_{x\in\mathcal{S}}E_K(x)=0.$$

- ► Requires $2^{d_{\text{alg}}+1}$ data (typically, $d_{\text{alg}} \approx n$).
- ▶ Interpolation attacks: exploit the low univariate degree d of E_K .
 - ▶ Gather $E_K(x)$ for d + 1 values x and perform a Fast Lagrange Interpolation.
 - ▶ Recover the coefficients of $E_K(x)$ and the entire mapping $x \mapsto E_K(x)$.
 - ▶ Requires d + 1 data (typically, $d \approx q$).

These two attacks require a heavy amount of data.

A low-data algebraic attack: the polynomial solving attack

The polynomial solving attack is an algebraic attack composed of two steps:

Modeling

Represent the primitive with a polynomial system \mathcal{P} .

- ightharpoonup A solution to \mathcal{P} leads to the key.
- Not trivial to find the best modeling.
- Usually requires a low amount of data.

$$\mathcal{P} = \begin{cases} P_1(X_1, \dots X_n) = 0 \\ \vdots \\ P_n(X_1, \dots X_n) = 0 \end{cases}$$

Solving

Find $(X_1, \dots X_n) \in \mathbb{F}_q^n$ which solves \mathcal{P} .

- Use state-of-the-art Gröbner basis or univariate solving algorithms.
- ▶ Different complexity formulas depending on the method used.

Ciminion [Dobraunig, Grassi, Guinet & Kuijsters, EC'21]

- Nonce-based stream cipher on \mathbb{F}_q .
 - N different every query.
 - For each N, generate a sequence S_i .
 - ▶ log(q)-bit of security.
- ▶ Secret subkeys $K_i \in \mathbb{F}_q$.
- Security based on truncated outputs.
- $ightharpoonup p_C$ and p_E permutations of \mathbb{F}_q^3 .
- $\triangleright p_C = f_{r_C} \circ \cdots \circ f_1.$
- f_i: quadratic round function.

Ciminion [Dobraunig, Grassi, Guinet & Kuijsters, EC'21]

- Nonce-based stream cipher on \mathbb{F}_q .
 - N different every query.
 - For each N, generate a sequence S_i .
 - ▶ log(q)-bit of security.
- ▶ Secret subkeys $K_i \in \mathbb{F}_q$.
- Security based on truncated outputs.
- $ightharpoonup p_C$ and p_E permutations of \mathbb{F}_q^3 .
- $\triangleright p_C = f_{r_C} \circ \cdots \circ f_1.$
- $ightharpoonup f_i$: quadratic round function.

8/17

Security analysis of the designers

▶ Quadratic round function. $p_E \circ p_C$ of degree $2^{r_C + r_E}$.

Security against interpolation attacks

- \triangleright $E_{K_1,K_2}(N)$ of degree $d = 2^{r_C + r_E 1}$.
- ▶ Possible to interpolate with d + 1 data.
- ► Not applicable if the attacker can query < *d* data.

The limited-data variant of Ciminion

Maximum \sqrt{q} data queries for the attacker. r_C chosen such that $d=2^{r_C+r_E-1}\approx q^{\frac{3}{4}}$.

Security analysis of the designers

▶ Quadratic round function. $p_E \circ p_C$ of degree $2^{r_C + r_E}$.

Security against interpolation attacks

- ► $E_{K_1,K_2}(N)$ of degree $d = 2^{r_C + r_E 1}$.
- ▶ Possible to interpolate with d + 1 data.
- Not applicable if the attacker can query < d data.</p>

The limited-data variant of Ciminion

Maximum \sqrt{q} data queries for the attacker. r_C chosen such that $d = 2^{r_C + r_E - 1} \approx q^{\frac{3}{4}}$.

▶ Observation: the inverse round function also quadratic.

Our attack builds a polynomial the other way around.

- The attacker queries S_1 and S_2 under the nonce N.
- 2 Set the truncated value to an unknown variable *X* and interpret outputs as polynomials.
- The attacker computes $T_0(X)$, $U_0(X)$, $V_0(X) = p_C^{-1} \circ p_E^{-1}(S_1, S_2, X)$.
 - ightharpoonup Evaluate the inverse round function on polynomials of $\mathbb{F}_q[X]$.
- The attacker solves $T_0(X) N = 0$ (degree $\approx q^{\frac{3}{4}}$).
- **5** The attacker recovers X and computes $K_1 = U_0(X)$ and $K_2 = V_0(X)$.

- The attacker queries S_1 and S_2 under the nonce N.
- \mathbf{Z} Set the truncated value to an unknown variable \mathbf{X} and interpret outputs as polynomials.
- The attacker computes $T_0(X)$, $U_0(X)$, $V_0(X) = p_C^{-1} \circ p_E^{-1}(S_1, S_2, X)$.
 - ightharpoonup Evaluate the inverse round function on polynomials of $\mathbb{F}_q[X]$.
- The attacker solves $T_0(X) N = 0$ (degree $\approx q^{\frac{3}{4}}$).
- The attacker recovers X and computes $K_1 = U_0(X)$ and $K_2 = V_0(X)$.

- 1 The attacker queries S_1 and S_2 under the nonce N.
- \mathbf{Z} Set the truncated value to an unkown variable X and interpret outputs as polynomials.
- The attacker computes $T_0(X)$, $U_0(X)$, $V_0(X) = p_C^{-1} \circ p_E^{-1}(S_1, S_2, X)$.
 - ightharpoonup Evaluate the inverse round function on polynomials of $\mathbb{F}_q[X]$.
- The attacker solves $T_0(X) N = 0$ (degree $\approx q^{\frac{3}{4}}$).
- The attacker recovers X and computes $K_1 = U_0(X)$ and $K_2 = V_0(X)$.

$$N = T_0(X) \leftarrow C$$

$$K_1 = U_0(X) \leftarrow C$$

$$K_2 = V_0(X) \leftarrow C$$

$$P_C \leftarrow C$$

$$V_{r_C}(X) \leftarrow C$$

$$V_{r_C}(X) \leftarrow C$$

$$P_E \leftarrow C$$

$$V_{r_C+r_E}(X)$$

$$V_{r_C+r_E}(X)$$

- 1 The attacker queries S_1 and S_2 under the nonce N.
- \mathbf{Z} Set the truncated value to an unknown variable \mathbf{X} and interpret outputs as polynomials.
- **3** The attacker computes $T_0(X)$, $U_0(X)$, $V_0(X) = \rho_C^{-1} \circ \rho_E^{-1}(S_1, S_2, X)$.
 - \blacktriangleright Evaluate the inverse round function on polynomials of $\mathbb{F}_q[X]$.

The attacker solves $T_0(X) - N = 0$ (degree $\approx q^{\frac{3}{4}}$).

$$N = T_0(X) \leftarrow \qquad \qquad T_{r_C}(X) \leftarrow \qquad \qquad S_1 = T_{r_C+r_E}(X)$$

$$K_1 = U_0(X) \leftarrow \qquad U_{r_C}(X) \leftarrow \qquad \qquad S_2 = U_{r_C+r_E}(X)$$

$$K_2 = V_0(X) \leftarrow \qquad V_{r_C}(X) \leftarrow \qquad \qquad X = V_{r_C+r_E}(X)$$

- The attacker queries S_1 and S_2 under the nonce N.
- ${\bf Z}$ Set the truncated value to an unkown variable ${\bf X}$ and interpret outputs as polynomials.
- The attacker computes $T_0(X)$, $U_0(X)$, $V_0(X) = \rho_C^{-1} \circ \rho_E^{-1}(S_1, S_2, X)$.
 - \blacktriangleright Evaluate the inverse round function on polynomials of $\mathbb{F}_q[X]$.
- **1** The attacker solves $T_0(X) N = 0$ (degree $\approx q^{\frac{3}{4}}$).
- The attacker recovers X and computes $K_1 = U_0(X)$ and $K_2 = V_0(X)$.

$$N = T_0(X) \leftarrow \qquad \qquad T_{r_C}(X) \leftarrow \qquad \qquad S_1 = T_{r_C+r_E}(X)$$

$$K_1 = U_0(X) \leftarrow \qquad U_{r_C}(X) \leftarrow \qquad \qquad S_2 = U_{r_C+r_E}(X)$$

$$K_2 = V_0(X) \leftarrow \qquad V_{r_C}(X) \leftarrow \qquad X = V_{r_C+r_E}(X)$$

- The attacker queries S_1 and S_2 under the nonce N.
- \mathbf{Z} Set the truncated value to an unknown variable \mathbf{X} and interpret outputs as polynomials.
- The attacker computes $T_0(X)$, $U_0(X)$, $V_0(X) = \rho_C^{-1} \circ \rho_E^{-1}(S_1, S_2, X)$.
 - Evaluate the inverse round function on polynomials of $\mathbb{F}_q[X]$.
- The attacker solves $T_0(X) N = 0$ (degree $\approx q^{\frac{3}{4}}$).
- **5** The attacker recovers X and computes $K_1 = U_0(X)$ and $K_2 = V_0(X)$.

Solving polynomial systems: the univariate case

One univariate equation of degree d in \mathbb{F}_q :

$$\mathcal{P} = \left\{ P(X) = 0. \right.$$

General idea [BBLP, ToSC'22]

▶ The field equation $X^q - X$ cancels all elements in \mathbb{F}_q :

$$X^q - X = \prod_{\omega \in \mathbb{F}_q} (X - \omega).$$

- ► Compute $R(X) = \gcd(P(X), X^q X)$ efficiently with fast polynomial operations.
- \triangleright R(X) is of low degree and has the same roots in \mathbb{F}_q as P(X). Recover the roots.

Univariate solving: more details

Operation cost on polynomials of degree d [CK, AI'91; Moenck, ACMSTC'73; Strassen, TCS'75]

- ▶ Multiplication, euclidian division: $O(d \log(d) \log(\log(d)))$.
- ► GCD: $\mathcal{O}(d \log(d)^2 \log(\log(d)))$

Algorithm for univariate solving (P(X) = 0)

- ► Compute $Q(X) = X^q \mod P(X)$ using fast exponentiation (log(q) steps).
- $\qquad \qquad \mathsf{Compute} \ R(X) = \gcd(Q(X) X, P(X)).$
- $ightharpoonup R(X) = \gcd(X^q X, P(X))$ is of small degree. Recover its roots (e.g. with factoring).
- ► Solving complexity quasi-linear in d: $\mathcal{O}(d \log(q) \log(d) \log(\log(d)))$ operations.
- ► Cheaper than factoring which costs $\mathcal{O}(d^{1.815}\log(q))$.

Univariate solving: more details

Operation cost on polynomials of degree d [CK, AI'91; Moenck, ACMSTC'73; Strassen, TCS'75]

- ▶ Multiplication, euclidian division: $O(d \log(d) \log(\log(d)))$.
- ► GCD: $\mathcal{O}(d \log(d)^2 \log(\log(d)))$

Algorithm for univariate solving (P(X) = 0)

- ► Compute $Q(X) = X^q \mod P(X)$ using fast exponentiation (log(q) steps).
- $ightharpoonup R(X) = \gcd(X^q X, P(X))$ is of small degree. Recover its roots (e.g. with factoring).
- ► Solving complexity quasi-linear in d: $\mathcal{O}(d \log(q) \log(d) \log(\log(d)))$ operations.
- ► Cheaper than factoring which costs $\mathcal{O}(d^{1.815} \log(q))$.

Univariate solving: more details

Operation cost on polynomials of degree d [CK, AI'91; Moenck, ACMSTC'73; Strassen, TCS'75]

- ▶ Multiplication, euclidian division: $\mathcal{O}(d \log(d) \log(\log(d)))$.
- ► GCD: $\mathcal{O}(d \log(d)^2 \log(\log(d)))$

Algorithm for univariate solving (P(X) = 0)

- ► Compute $Q(X) = X^q \mod P(X)$ using fast exponentiation (log(q) steps).
- $\qquad \qquad \textbf{Compute } R(X) = \gcd(Q(X) X, P(X)).$
- $ightharpoonup R(X) = \gcd(X^q X, P(X))$ is of small degree. Recover its roots (e.g. with factoring).
- ► Solving complexity quasi-linear in d: $\mathcal{O}(d \log(q) \log(d) \log(\log(d)))$ operations.
- ► Cheaper than factoring which costs $\mathcal{O}(d^{1.815} \log(q))$.

Our new univariate attack: complexity

Asymptotic complexity of the attack:

$$\tilde{\mathcal{O}}(2^{r_C+r_E-1})=\tilde{\mathcal{O}}(q^{3/4}+7).$$

- ► Security level claimed: q.
- ► This attack breaks the security claims for q > 93.
- Overwhelming constant & logarithmic terms for small q.

Comparision with other attacks

Attack type	Generic r_C , r_E		Full-instance attacks		Reference
	Data	Time	Standard	Limited-data	
Gröbner basis (SKR)	8	$\mathcal{O}(2^{4\omega r_E})$	<i>q</i> ≥ 587	<i>q</i> ≥ 587	[BBLP, ToSC'22]
Integral (dist.)	$\mathcal{O}(2^{r_C+r_E})$	$\mathcal{O}(2^{r_C+r_E})$	-	-	[ZLLL, ISC'23']
Univariate (SKR)	2	$\tilde{\mathcal{O}}(2^{r_C+r_E})$	-	$q \ge 93$	[This work]

- ▶ 2.41 $\leq \omega \leq$ 3 is the linear algebra exponent.
- SKR denotes subkey recovery.

Mitigation of the attack: a costless example

Conclusion & takeaways

- Attack against the full limited-data variant of Ciminion.
- Polynomial solving attacks often only require a few data samples.
- Finding the roots in \mathbb{F}_q of a polynomial is quasi-linear in its degree.

Thank you for your attention.

Conclusion & takeaways

- Attack against the full limited-data variant of Ciminion.
- Polynomial solving attacks often only require a few data samples.
- Finding the roots in \mathbb{F}_q of a polynomial is quasi-linear in its degree.

Thank you for your attention.