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Goal



Goals

1 Protect confidentiality of relatively short blocks of data

• e.g., encryption of external memory, fields in databases, . . .

• authentication is not required or solved with a separate MAC

• . . . so stream encryption will do C ← P + Z with Z = SCK (D)

2 With low latency: in particular

• short time between availability of diversifier (nonce) D

• keystream block Z

• should be just a few cycles with a multi GHz clock

• aproximate the latency with the gate type and depth

3 With 128 bits of security for any (plausibly limited) adversary
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Contenders

• AES [Daemen/Rijmen, 1998] in counter mode
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Standard stream encryption: AES [Daemen/Rijmen, 1998] in counter mode

AESK AESK AESK AESK· · ·

D∥⟨1⟩r D∥⟨2⟩r D∥⟨3⟩r D∥⟨ℓ⟩r· · ·

P1 P2 P3 Pℓ

C1 C2 C3 Cℓ· · ·

Problem: it is not low latency

• Due to long critical path in AES

• AES 8-bit Sbox has a gate depth of 16

• Mainly due to heavy S-box
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Contenders

• AES [Daemen/Rijmen, 1998] in counter mode

• Prince[Borghoff et al., 2012] in counter mode
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Low-latency alternative: Prince[Borghoff et al., 2012] in counter mode

PrinceK PrinceK PrinceK PrinceK· · ·

D∥⟨1⟩r D∥⟨2⟩r D∥⟨3⟩r D∥⟨ℓ⟩r· · ·

P1 P2 P3 Pℓ

C1 C2 C3 Cℓ· · ·

Problem: it does not offer 128 bits of security

• Distinguishing blocks ZD,i = PrinceK (D||⟨i⟩) from fully random blocks:

• Random blocks will have a collision when M ≈ 2n/2, blocks ZD,i never collide

• Prince has block length n = 64 so security strength is about 32
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Contenders

• AES [Daemen/Rijmen, 1998] in counter mode

• Prince[Borghoff et al., 2012] in counter mode

• Orthros[Banik et al. ToSC 2021] or

• Gleeok[Anand et al. CHES 2024]
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Orthros[Banik et al. ToSC 2021]

OrthrosK OrthrosK OrthrosK OrthrosK· · ·

D∥⟨1⟩r D∥⟨2⟩r D∥⟨3⟩r D∥⟨ℓ⟩r· · ·

P1 P2 P3 Pℓ

C1 C2 C3 Cℓ· · ·

This is it!

• Dedicated low-latency design, like Prince

• Security objective: instead of pseudorandom permutation (PRP) like block ciphers

• . . . pseudorandom function (PRF)
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Orthros block diagram

Plaintext M
Key K

Branch1 Branch2

128-bit
128-bit128-bit

128-bit

Key K

Ciphertext C

• 128-bit output is sum of two 128-bit block ciphers each applied to the same input

• Paradigm: sum of (pseudo)random permutations

• Kind of suboptimal: two block cipher computations per keystream block
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Gleeok block diagram

• 128/256-bit output is sum of three 128/256-bit block ciphers each applied to the

same input

• Paradigm: sum of (pseudo)random permutations

• Kind of suboptimal: three block cipher computations per keystream block
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First attempt at doing better



Our take on doing better: the low-latency stream cipher called LoLaSub

subtK subtK subtK subtK· · ·

D∥⟨1⟩r D∥⟨2⟩r D∥⟨3⟩r D∥⟨ℓ⟩r· · ·

P1 P2 P3 Pℓ

C1 C2 C3 Cℓ· · ·

• subt is 257-bit permutation of Subterranean 2.0 [Daemen et al., 2019] with 8 rounds

• subtK is subt in the Even-Mansour construction

• subtK is invertible: security limited by s ≤ 258− log2Mmax, so no worries

• But is it low-latency?
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The Subterranean 2.0 round function
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Critical path: 3 XORs and 1 (N)AND
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Attack vectors for LoLaSub

• Differential cryptanalysis (DC)

• try to find differentials over 7 or 6 rounds with high DP

• . . . via differential trails with low weight (DP ≤ 2−78 for 6 round trails)

• exploit the differential as a distinguisher to determine bits of whitening keys

• Linear cryptanalysis (LC)

• try to find linear approximations over 7 or 6 rounds with high correlation

• . . . via linear trails with low weight

• exploit the linear approximation to determine bits of whitening keys

• Refinements and combinations of DC and LC

• Integral attacks AKA cube attack AKA higher-order differential attacks

. . . this appear to be the most powerful attacks against LoLaSub
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Integral attacks on LoLaSub

• Round function has degree 2, r rounds have degree (at most) 2r

• Basic attack on r -round version recovering input whitening key

• Find a set leading to zero sum dependent of t-bit key

• Sum over the set for all 2t possible key

• Guess the right t-bit key

• Find another set depending on different key bit and restart.

• Basic attack on r -round version has data complexity 22
r−1 blocks

• 5 round LoLaSub: pratical 2-bit key-recovery attack (data comlpexity 232)

• 6-round LoLaSub: attack with data complexity 263 blocks and maybe 7-round

• 8 rounds: thin security margin

• And there are other attack variants . . .
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Strengthening LoLaSub: Koala



The Subterranean 2.0 round function
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Strengthening LoLaSub via the permutation

1 Changing the parameters of the linear layer

• different offsets in θ and different multiplication factor in π

2 Rephasing the round function moving the non-linear layer to the end

• linear layer between last non-linear layer and key addition has no added value

• linear layer before the first non-linear layer does have added value (against

integral attacks)

3 We call the result Koala-P

These changes reduce the probability that the basic attack can be extended by one

(or) two rounds
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The Koala-P permutation
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Strengthening LoLaSub via the input

• Reducing the input length from 257 bits to 64 bits

• Demultiplexer-like input injection

• 64-bit input D parses into a sequence of 2-bit integers ei = d2i + 2d2i+1

• each index i has 4 associated positions in the state p0, p1, p2 and p4
• an input ei complements the bit in position pei

• Properties of demultiplexer

• input set after injection has affine subspaces of dimension at most 32

• demultiplexer layer has latency only 1 (N)AND and algebraic degree 2

• These changes strongly reduce the degrees of freedom of the attacker

Our analysis suggests there is no exploitable integral distinguisher based on algebraic

representation above 5 rounds
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i + 0 i + 32 i + 64 i + 96

128-bit

wi

int(wi )

wi → int(wi )

00 → 1000

01 → 0100

10 → 0010

11 → 0001
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Extending it



Compensating for the 64-bit input block: Kirby

• Limitation to 64-bit input may be restrictive

• Therefore we introduce iteration to support multiple 64-bit blocks

• we replace Even-Mansour by secret initial state and feedforward

• we impose prefix-free encoding

• We relax the low-latency requirement to last input block

Ps

E1

P

E2

P

E3

zPK||id

We call it Kirby and in combination with Koala-P and input encoding: Koala

21/26



Kirby

Ps

E1

P

E2

P

E3

zPK||id

• Arbitrary number of input blocks

• Feedforward gives some level of leakage resilience

• We prove an upper bound on PRF advantage in random permutation model

• If inputs E form prefix-free set (and if ids are unique also multi-user):

AdvPRF <
3M2

2b
+

NM

2b
+

N

2|K | .
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Kirby: example of prefix-free encoding

Solution that costs 1 bit per block:

P

D3||1

Z1

PS

D0||0

P

D1||0

P

D2||1

Z0PK
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Building it



Hardware architecture for Koala

init
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Performance comparison

Table: Synthesis results for the Nangate 15nm library.

Cipher Output width Area Latency MaxTp MaxTp/Area

[bits] [µm2] [GE] [ps] [Gbits/s] [Mbits/(s× µm2]

Koala 257 4175 21236 395 651 156

Kirby+sub 257 4167 21196 399 644 155

Prince 64 1696 8627 482 133 78.4

Orthros 128 5993 30482 400 320 53.4

Gleeok-128 128 9887 50291 400 320 32.4

Gleeok-256 256 26043 132462 550 465 17.8
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Thanks for your attention!
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