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What is quantum cryptography?

* Classical cryptography:

* Information processing in the presence of an adversary.
* Quantum cryptography:

* Information processing in the presence of an adversary
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Lecture Notes in Physics

Intfroduction to

QUANTUM
CRYPTOGRAPHY

Thomas Vidick | Stephanie Wehner

GE R

Quantum Key
Distribution

An Introduction With Exercises

@ Springer

https://ramonawolf.com
/gkdtextbook/

Des. Codes Cryptogr. (2016) T8:351-382 @ CroasMark
DOT 1001007/10623-015-0157-4

https://www.cambridge.org/highere
ducation/books/introduction-to-
Quantum cryptography beyond quantum key distribution quantum-cryptography

Anne Broadbent' . Christian Schaffner?

https://arxiv.org/abs/1510.06120



Information is physical

ol [+

ebit: can be equantum bit (qubit): can

represented by an be represented by

electrical voltage in an | electron spin, photon

electronic circuit. polarization, quantum dot,
etc.

*Obeys the laws of
classical physics *Obeys the laws of
quangum physis




In this tutorial:

* How to use quantum information to build cool stuff
e unforgeable money

. perfectly secure communication

e ..and more!



Quantum States Canft be Cloned

“Quantum no-cloning theorem”
Park (1970); Dieks & Wootters-Zurek (1982)



Quantum Information

Can be tasted, but this leaves a mark.

Can be shared, but there is a total of
1 item to be shared.

Cannot be copied.

el
ok "T T

FEEOE

Conventional Information

Can be observed without changing it.

Can be shared at will.

Can be copied.



But first, some basics



Qubits (“quantum states”)

A pure qubit can be in one of the basis states:

It can also be in a superposition,

alo)+ 1) = (§)
where

a, B €Clal* +87 =1



Measurements: qubits — bits

 measurement outcomes:

o 0 with probability |al|?
— —
‘¢> @ ‘O> + 0 ‘1> < 1 with probability |3]?

\
e.g. measure |0) — 0
Let [+) = 75 [0) + —5 [1).
0, prob. =
e.g. measure |+) — . :
1, prob. 5

Measuring a quantum system will not, in general, give a
complete description of the state.

Measurement destroys the quantum state.



Measurement destroys the quantum state.

Sounds Annoying!
Can this principle be useful?

Answer: YES!
But first, let’s see another related principle.



Transformations

Postulate: quantum evolutions are linear
—transformations are given by matrix multiplication.

Q: Which types of matrices are valid quantum transformations?
A: Those that map quantum states to quantum states!

e.g. Suppose U(a|0) + 3 |1)) =’ |0) + 8" |1)

Then [J is avalid quantum operation if:
2 2 __ /|2 12 _
al*+ 87 =1 = ||+ [B']" =1
Definition: A matrix is unitary if it preserves the Euclidean norm. Thus

unitary matrices are the valid guantum transformations

Claim: A matrix U/ over Cis unitary if and only if UUT — ]
where [T = (UT) .



Multi-qubit systems

Systems of qubits are combined with the tensor product:

109 0
07 Q2| _ 04152 e.g. |0 1 =10 11) = [01) — 1
(51)@)(52)_ B1ao 8- 10) @ 1) =10) |1) = [01) 8

152

More generally, an n-qubit system can be in an arbitrary
superposition of 2" basis states,[00---0),]|00---1),...,]11---1)

Zﬂfe{oal}" g |T), 2, o [* =1

Once more, unitary matrices are the valid quantum transformations.
For an n-qubit system, we have a 2"-dimensional vector, therefore the unitaries are
matrices of size 2" X 2".



Examples of 1-qubit unitaries

Identity

Lo

Not (aka Pauli-X)

X:<O 1> X|0)

1 0

Hadamard

. (1 1
H_E<1 —1

HIO) = L 10) + L |1) = |+)
HIL) = 2 10) - L 1) = |-
Pauli-Z

16



The Quantum-No-cloning Theorem




The Quantum No-cloning Theorem

Theorem: No 2-qubit unitary U exists such that
for all single-qubit state |v), U [1) |0) = |¥) [1).

Proof by contradiction.
Suppose such a U exists.

Let 1)) = ]0) + 8 |1).

Ul)[0) = [4) |4)
= (a|0) + 8[1)) ® (a|0) + 5[1))

= a”]00) + aB|01) + aB 10) + B |11)

Buy U also clones |0) and |1):

U [00) = |00)
U [10) = |11)

By linearity, U(a|0) + 8]1)) |0) = aU |00) + U |10) =
This contradicts (*) (e.g., take a = 8 = %)

a |00) + B |11)

18



In general, it is not possible to copy an unknown quantum state.

Sounds Annoying!
Can this principle be useful?



Unclonable Authenticity

Quantum Money

Wiesner (ca. 1969)



Submitted to IEEE, Information Theory

This paper treats a class of codes made possible by
restrictions on measurement related to the uncertainty
principai. Two concrete examples and some general

results are given. .

Written in 1968

*
Conjugate Coding

Published 1983

Stephen Wiesner

" Columbia University, New York, N.Y¥.
Department of Physics

Thé:EEEEEEéinty priEEEEEE:;mpcses restrictions on the

capacity of certain types of communication channels. This

- paper will show that in compensation this "guantum noise",

guantum mechanics allows us(novel forms of coding without
analogue in communication channels adequately described by °

classical physicé.

¥ Reseaxrch sﬁpported in part by the National Science Foundation.




Wiesner’s conjugate coding
pickbasis 0 € (0,1} | N NN AT

Pick bit b € {0,1}.

0 0

let |b)g = H®|b)
0 1 |1)
1 0 |+)
1 1 |—)

Given a single copy of |b)g for uniform b, 6:

 Can easily verify |b)g if b, 8 are known.

* Intuitively: without knowledge of the encoding basis, and given
|b)g, no third party can create two quantum states that both
pass this verification with high probability.




For bit-strings 8 = 6,0, ...0,,,b = b1 b, ... by, define
|bYo=|b1)e, @ |b2)g, - & |bn)e,

A quantum banknote is |b)g for random b, 0 € {0,1}" :

A quantum banknote, containing particles in a secret set
of quantum states, cannot be copied by counterfeiters, who
would disturb the particles by attempting to observe them.

©OAAAS (1992)




Wiesner’s security argument

Could there be some way oE:EEEiicatiEE:Ehe money without

learning the sequence Ni? No, becausa(lf:§ne coég:ﬁhn be

made (so that there are two pieces of the money) then many

<:§§§E§E:can be made by making copies OE:E§§E§§) Now given

an unlimited supply of systems in the same state, that state

can be determined. Thus, the sequence Ni could be recovered.

But this is impossible.




Security of Wiesner’s qguantum money

0y  RIPPED
| CRERE
EPERD

o FREE  —— Verify
'*',:“?:z @

ﬁ@"m-@nen
| CRIRE

E‘ P verify

How does the difficulty of cloning quantum
money scale with the number of qubits, n?

For a single gubit, one possible attack is to guess a basis 8 uniformly, measure in 8, and
re-send two identical qubits encoded in 8 that correspond to this measurement outcome.
What is the success prob. of this attack?

* If the basis is correct (prob= %), the attack succeeds with prob. 1.

* If the basis is incorrect, the attack success with prob. 1/4 since the
attack prepares qubits in the complementary basis, and the
probability that both verifiers accept is /2*V: = .

Success prob. of attack =% + %:*% = 5/8.

Can actually achieve % (and this is optimal). 25




Security of Wiesner’s qguantum money

verify

“attack”

verify

How does the difficulty of

CI(_)n Ing quantum money_ scale Optimal counterfeiting attacks and generalizations for
with the number of qubits, n? Wiesner’s quantum money

Abel Molina,* Thomas Vidick," and John Watrous*

February 20, 2012
Answer: d

Abstract

We present an analysis of Wiesner's quantum money scheme, as well as some natural gen-

eralizations of it, based on semidefinite programming. For Wiesner’s original scheme, it is

n determined that the optimal probability for a counterfeiter to create two copies of a bank note

from one, where both copies pass the bank's test for validity, is (3/4)" for n being the number

of qubits used for each note. Generalizations in which other ensembles of states are substituted

for the ane considered by Wiesner are also discussed, including a scheme recently proposed by

Pastawski, Yao, Jiang, Lukin, and Cirac, as well as schemes based on higher dimensional quan-

tum systems. In addition, we introduce a variant of Wiesner’s quantum money in which the

verification protocol for bank notes involves only classical communication with the bank. We

show that the optimal probability with which a counterfeiter can succeed in two independent

verification attempts, given access to a single valid n-qubit bank note, is (3/4 + \,5/8}”_ We
also analyze extensions of this variant to higher-dimensional schemes. 26




Quantum Money “revival’

» Noise-tolerant (' ) quantum money
»  Pastawski, Yao, Jiang, Lukin, Cirac (2012)

* Quantum Money with classical verification
*  Gavinsky (2012)

* Public-key quantum money (can be verified by any user)
*  Farhi, Gosset, Hassidim, Lutomirski, and Shor (2012)
*  Aaronson and Christiano (2012)
*  Zhandry (2019)
*  Schmueli (2022)



Unclonable Information




Charles
Bennett
Physicist
IBM, USA

el ’r—\ ) b1 -
> i \‘\ 3
X/\//_\/

® Christopher Fuchs

Gilles
Brassard
Computer
Scientist
Université
de Montréal,
Canada

29



Ultimate goal:
Information-theoretic security

AES ?
No !
RSA?

No !



The One-time Pad Encryption Scheme

Plaintext T e {O 1}
A2 k €p {0, 1}
Ciphertext T D k

Since the ciphertext is uniformly random (as long as k is
random, unknown and used only once), the plaintext is
perfectly concealed.



The Washington-Moscow Hot Line
(est.1963)




Conjugate coding to the rescuel

QUANTUM CRYPTOGRAPHY: PUBLIC KEY DISTRIBUTION AND COIN TOSSING

Charles H. Bennett (IBM Research, Yorktown Heights NY 10598 USA)
Gilles Brassard (dept. IRO, Univ. de Montreal, H3C 3J7 Canada)

“BB84 quantum key distribution”

38



BB34 QKD

* Version 1
* A very high-level



Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

Bennett and Brassard (1984)




Quantum Key Distribution

{Eavesdropping} { Errors J { Detection J

e Use quantum channel to send a random key
* If no eavesdropping detected, use the
established key in the one-time pad scheme.




BB34 QKD

* \Version 2
* A high-level



« BB84 » Protocol (Bennett & Brassard, 1964)
Alice

, 4-1-» e e x<-1-> X"i" <-I-> B Coding basis

© Philippe G#angier



4-1-» s g X"I" X"I" 4-1-> B Coding basis

fl \1 /g )g — ); fl = Kl Bit value

© Philippe Grangier



« BB84 » Protocol (Bennett & Brassard, 1984)

<—I-> e X<-I-> x4-1-> <-i-> B Coding basis

t \1 )o' )g —e )3 fl - \1 Bit value

% )

© Philippe Grangier



<-I-> 0 e X<-I-> x"I" <-I-> B Coding basis

4 X A _,())’ f —>O\ Bit value
11 o Co 0 1 !

© Philippe Grangier



« BB84 » Protocol (Bennett & Brassard, 1984)

fl \1 )O' )g —» )3 ?1 = \1 Bit value

G~ 3

—
_; f?s' 4—1—»4—I—>X<—i—>x oo 4-1—» 4-1-» X&  Decoding basis

— )' f \ /' f = \ Read out
Bob

© philippe Grangier



|

« BB84 » Protocol (Bennett & Brassard, 1984)

fl \1 )O' )g —» )3 ?1 = \1 Bit value

S

G~ 3

—l
_; 5” <—I—><—i—>X<—i—>X o 4-1-» 4{-» X&  Decoding basis

- )' f \ / f —> \ Read out
Bob

© Philippe Gramgier



|

« BB84 » Protocol (Bennett & Brassard, 1984)

fl \1 )O' )g —» )3 ?1 = \1 Bit value

S

G~ 3

—l
_; 5” 4—1—»4{-»}{«}»}{ o 4-1-» 4{-» X&  Decoding basis

- )' f \ / f —> \ Read out
Bob

© philippe Grangier



|

« BB84 » Protocol (Bennett & Brassard, 1984)

fl \1 )O' )g —» )3 ?1 = \1 Bit value

S

G~ 3

—l
_; 5” 4—1—»4—}»}{«}»}{ o 4-1-» 4{-» X&  Decoding basis

- )' f \ / f —> \ Read out
Bob

© philippe Grangier



|

« BB84 » Protocol (Bennett & Brassard, 1984)

fl \1 )O' )g —» )3 ?1 = \1 Bit value

S

G~ 3

—l
_; 5” 4—1—»4{-»}{«}»}{ o 4-1-» 4{-» X&  Decoding basis

- )' f \ / f —> \ Read out
Bob

© Philippe Grsmgier



|

« BB84 » Protocol (Bennett & Brassard, 1984)

<—I—> 0 e X<-I-> x4-1-> <-I-> B Coding basis

t \1 )o' )g e )3 fl > \1 Bit value

S

'
4-1-» 4{-» X<-i-> o Al oA 4_1.> 4{.» 3 Decoding basis

- )' f \ / f —> \ Read out

© Philippe Grangier



\\

« BB84 » Protocol (Bennett & Brassard, 1984)

4—1—» x i X«-I-» Xq-i-» 4-1-» X Coding basis

e - Bit value
h A e T Wi

'
4-1-» 4{-» x4-¢-> on o q_I.> <_I.> % Decoding basis

t - )O’ t \1 )O' fl —> \1 Read out

—.‘CI

5%

1 —> VS Discussion

© Philippe Grangier
59



|

« BB84 » Protocol (Bennett & Brassard, 1984)

<—I—> 0 e X<-I-> x4-1-> <-I-> B Coding basis

t \1 )o' )g e )3 fl > \1 Bit value

S

'
4-1-» 4{-» X<-i-> o Al oA 4_1.> 4{.» 3 Decoding basis

- )' f \ / f —> \ Read out

Kf Discussion

\ Sifted key

© Philippe Grangier



4—1—» 0 e X«I—» X<-I-> <-I-> B Coding basis

t \1 )o' )g e )3 fl —> \1 Bit value

'
4-1-» 4{-» X<-i-> o Al oA 4_1.> 4{.» 3 Decoding basis

- )' f \ / f —> \ Read out

Kf Discussion

\ Sifted key

© Philippe Gmangier



« BB84 » Protocol (Bennett & Brassard, 1984)
aliee

i <—I-> x x x<—}> :x 4—}» 4—}» x Coding basis
A 5

N
= QoE

)Ov )1 — Dol f = \ Bit value

0

éx%a%»%»%%»x X

= -1

]

Lol e
£ & o
'y -

=
"

© Philippe Gmangier



« BB84 » Protocol (Bennett & Brassard, 1984)

<—I—> ool XQ'X%’ <-I-> B Coding basis

11 y\l /: ); — ); fl . \1 Bit value

PR PpPpepb PR K

?\ P, 1‘1 T1 \1 \1

0

4-1-»4-1-»}{4{-»}(‘ o <_I.> <_I.> % Decoding basis

t - X fl '\1 { fl fl \1 Read out

1

T
ik
. 3
: .
Tl o
!

© Philippe Grangier



« BB84 » Protocol (Bennett & Brassard, 1984)

<—I—> > oe X«I-»X 4-1-» <-I-> B Coding basis

t \1 )o' )g e )3 fl = \1 Bit value

PR P KX

?1 \1 R, = ?1 ?1 \1 \1

: ¥
¥ .‘4 |
: =
& b ¢

4-1-><-I->x<-i->x o <_I.> 4_1.> 3 Decoding basis

t - % ?1 \1 /0' fl fl \1 Read out

1

L) S ’ ?1 fl \] Discussion

0

© Philippe Grangier



« BB84 » Protocol (Bennett & Brassard, 1984)

<—I—> > oe X«I-»X 4-1-» <-I-> B Coding basis

t \1 )o' )g e )3 fl = \1 Bit value

PR P KX

?1 \1 R, = ?1 ?1 \1 \1

: ¥
¥ .‘4 |
: =
& b ¢

4-1-><-I->x<-i->x o <_I.> 4_1.> 3 Decoding basis

t - % ?1 \1 /0' fl fl \1 Read out

1

fl \1 )O' ? ; fl \1 Discussion
A T

© Philippe Grangier



« BB84 » Protocol (Bennett & Brassard, 1984}

4—3» » » x«I-.x <-}> «i-. B Coding basis

f)\/q’_,ﬂf—b\ﬁll

Aliee

QKD Assumes authenticated classical

communication 1
@ b Xepdebbb X X E?

— Information-theoretic authentication can %; b, B s B 1 B
be achieved with a short initial shared - IR
. . t w5t NT 4 4 X, Readout
secret (Wegman-Carter authentication) Bob

t O N®® 7 1 X picusion
— Thus, QKD is more accurately described L I AR TR

as a key expansion protocol.

* From a sifted key to a private key (in a nutshell)

— Publicly compare half of the sifted bits to obtain an estimate of the
error rate. Abort if the error rate is too high (specific rate depends
on parameter choice; approx. 11% is the theoretical maximum)

— Information Reconciliation (aka Error Correction): corrects the
remaining strings so that they agree in all positions with high
probability.

* Can be done via a series of parity checks, or more generally, using error
correcting codes.

— Privacy amplification: Eve has some information about the key
(from eavesdropping and Information Reconciliation).

« Alice and Bob apply a random hash function {0, 1}" — {0,1}! (I < n)



Security of BB84 Quantum Key
distribution?

e Security of QKD is often informally attributed
to the no-cloning theorem.

e Actual proofs (which appeared 15 years later
or more) use much more sophisticated
techniques

— Quantum error correcting codes
— De Finetti reductions

— Entropic uncertainty relations

— Sampling



QKD Firsts

e 1989: First Experimental demonstration
e 1998-2000: First proofs of security for QKD
e 2004: First bank transfer using QKD

e 2008: First network secured with QKD
(200km, 6 nodes)

e 2016: First quantum satellite for space-to-
ground quantum communication.

QKD Commercial Products

dBa . € EEEZ /@ o
Magi() |IKETS)




Practicality of BB84 Quantum Key

e Alice only needs to prepare & send single qubits.

* Bob only needs to measure single qubits in a
random basis

* Error correction is integrated into the protocol so
that under a small amount of noise:

— The protocol does not abort

— The noise is corrected and the final keys agree.

Noise-tolerant, single-qubit prepare-and-measure
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Recent Direction in QKD

Device-independent and one-sided device-
independent QKD

— See Qcrypt 2019 Tutorial by Rotem Arnon
Friedman (https://youtu.be/5KsW0d9JeqQ)

Continuous-Variable QKD
Finite-size effects in QKD
Side-channel attacks



Certified Deletion



Certified Deletion

A “physical” type of encryption:
. N

oF
&

Alice inserts a message
into a safe, closes it and
sends it to Bob.

" @D
Bob decides

» return the closed safe before the
combination is revealed as a proof that
message was not read

XOR

» Keep the safe and when the combination

Is available, open & read the contents

Can we achieve this in a digital world?

Broadbent, Islam (2020)



Can we achieve this in a digital world?
No!

Proof by contradiction..

E ! Encodey (msg) Encodey (msg) .
>
hd Encode (msg

Bob can:
« Convince Alice that he did not read the message(use copy #1)
AND
« Using combination, open & read the content (use copy #2)



Certified Deletion
-application

® 5K

Last Will and Testament

1. Alice can use Certified Deletion to store her will with a lawyer.
« When she wants to update to a new will, the lawyer first proves deletion.



Quantum Encryption with

Certified Deletion

Quantum mechanics enables the best of the
physical and digital worlds:
( I’ « Encoding (encrypting) a classical message

“ into a quantum state
« Bob can prove that he deleted the message

by sending Alice a classical string




Basic prepare-and-measure certified deletion scheme by example:

T 0 1 1 0

r random
Wiesner encoding I7)e |0) |—) |1) |+)
Teomp: SUbstring of r where § = 0 Teomp 0 1
Tgiag: Substring of r where 6 = 1 Tdiag 1 0

To encrypt m € {0,1}%, send |r)g, m D Tcomp

To delete the message, measure all qubits in diagonal basistogety =+ 1 % 0.
To verify the deletion, check that the 6 = 1 positions of d equal ;4.

6

To decrypt using key 6, measure qubits in position where 6 = 0, to get 7.5y,
then use m @ 7,4y, to compute m.



Proof intuition

T 0 1 1 0

)6 0) =) 1) |+)

Teomp 0 1

Tdiag 1 0

As the probability of predicting 74;,, INCreases

(Le. adversary produces convincing “proof of

deletion”) 1
HX)+H(Z) > logz

The probability of guessing 7,4, decreases

(Le. adversary Is unable to decrypt, even given
the key) Maassen & Uffink, 1988



Certified Deletion Security Game

Accept © yis
consistent with Tdiag
(looking only at

positions where § = 1)
b=0m= 0" O
b=1:m =msg ,

Key 6,7 ( ’

beg {0,1)

n ), M D Teomp
msg €40,1} win < Accept AND (b’ = b)

0

—
memory ' memory

»
»

Certified Deletion:
P(win) <=+ negl(d).




Proof OUtl.i ne 1. Consider Entanglement-based game

2. Use Entropic uncertainty relation (Tomamichel & Renner 2011):

Measure _ X: outcome if Alice measures n qubits in computational basis
A system in 6 9 ?g;fgn?wﬁrr‘e Z: outcome if Alice measures n qubits in diagonal basis
basis - 7 — 0 =1is Z':outcome of Bob who measures n qubits in diagonal basis
" /,r consistent with
A y Tdiag Hre;lin(X | E) + Hrenax(Z | Z’) = n,
" PABE c
' B H;,.,,(X | E) : average prob. that Eve guesses X correctly
, < ' HE . (Z | Z"): # of bits that are required to reconstruct Z from Z’.
B Measure .
B system in
diagonal basis
-y By giving an upper bound on the max-entropy, we obtain a lower

bound on the min-entropy.

Refinements of the basic protocol:
-reduce and make uniform E’s advantage: Use privacy amplification (2-universal hash
function) to make 1,1, exponentially close to uniform from E’s point of view:

: 1
P(win) < >+ negl(d).
-noise tolerance: Accept y if less than ké bits are wrong; use error correction.

Kundu, Tan (2020) : Composably secure device-independent encryption with certified deletion

. Quantum Encryption with Certified Deletion, Revisited: Public Key, Attribute-Based, and Classical Communication
Taiga Hiroka; Tomoyuki Morimae; Ryo Nishimaki; Takashi Yamakawa




2. Unclonable Encryption

When encryption is classical:

[ ! m € {0,1}" Enck(m)

Gottesman (2002)
Broadbent, Lord (2020)



Figure of merit is how well two adversaries can predict m (different from quantum cloning)

4>m1

mEg {0, 1}n |¢> = Enck’(m)

8 k er {0, 1}p0m) \ '
e m
“ Optimal Security: k.,

Pr(mi = ms =m) < 5= + negl(k)

Conjugate-encoding based scheme (in the Quantum Random Oracle Model (QROM):
[Broadbent, Lord 2020]

Pr(m; = mg =m) < 95~ + negl(x)

117. Limitations on Uncloneable Encryption and Simultaneous One-Way-to-Hiding
Christian Majenz (CWI, QuSoft); Christian Schaffner (University of Amsterdam, QuSoft); Mehrdad Tahmasbi (University of Amsterdam, QuSoft)

» Bound could be tightened, but not below 9/8.



Uncloneable Encryption
-application

1. Alice uses uncloneable encryption and distributes an encrypted movie
ahead of the movie release date.

2. The day of release, she the key.

3. Thanksto , She Is sure that at most one recipient” can
decrypt the movie.

*assuming no communication after key reveal

12



Uncloneable Encryption Basic Protocol

~ . o
“ Measure received

To encrypt m € {0,1}", qubits in basis 9;
Prepare |b @ m)g for random Let the result be y.
b,0 € {0,1}"

b @ m), Outputy @ b =m



Uncloneable Encryption Scheme + Security

®

9 .
To encrypt m € {0,1}71 ’ /
Prepare |b)g for random

b,6 € {0,1}"
|b)9,mEBb '

9 L




Measures qubits in a random basis

9 € {0,1)" to obtain b. How well can Bob and
Charlie simultaneously
guess b?

PABC

New lournal of Physics

A monogamy-of-entanglement game with

applications to device-independent l ‘|’
quantum cryptography Optimal winning probability: 2 2

Marco Tomamichel', Serge Fehr’?, Jedrzej Kaniewski'
and Stephanie Wehner'

! Centre for Quantum Technologies (CQT), National University of Singapore, > 1 2 n
Singapore .

2 Centrum Wiskunde and Informatica (CWI), Amsterdam, The Netherlands

E-mail: cqtmarco@nus.edu.sg and serge.fehr@cwi.nl Id ea : a m p I ify t h is u Si ng a QRO M .

New Journal of Phvsics 15 (2013) 103002 (24op)

‘H
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Intuitive security argument:

Producing m is equivalent to producing
QROM(y), which ‘should™ require full knowledge
of y; Bob and Charlie can simultaneously

A
produce y with probability at most G + %)

‘formally proved using a novel simultaneous
one-way-to-hiding” lemma.

To encrypt m € {0,1}",
Prepare |b)g for random
b,0 € {0,1}*

To decrypt:
Let QROM be a quantum-secure random oracle Measure received qubits in basis 6;
QROM: {0,1}*— {0,1}" Let the result be y.
Output:
Output
[b)e , m ® QROM (b) :

QROM(b) & (m @ QROM (b)) =m

16



Open Questions:
« Security for uncloneable encryption without the QROM.,
« Show security for a indistinguishability-based definition
« Instead of asking that Bob and Charlie simultaneously
guess m(given the key) ask that they not both be able to

« Solvethe” problem:

...

b € {0,1}
k €, {0,1}"

.>

¢
o ®
.\'
-

4,b1

T b

-

Find a scheme where

Pr(b1=b2=b)—>§ asn — oo



Delegated Quantum
Computation




What are quantum computers good for?

* Factoring and Discrete Log (Shor’s algorithm)
 Simulating Quantum Systems

* Approximating the Jones polynomial

* Solving Pell’s equation

oUnsorted search (Grover’s algorithm) [quadratic speedup over brute-
force search]

0...7

» Current world-wide effort to build a quantum computer!



(l

Rewateutzropstations

*online data storage
web-based email
*online income tax software



Homomorphic Encryption

Foundations of Secure Computation (1978)

ON DATA BANKS AND PRIVACY HOMOMORPHISMS

Ronald L. Rivest
Len Adleman
Michael L. Dertouzos

Massachusetts Institute of Technology
Cambridge, Massachusetts

I. INTRODUCTION

Encryption is a well-known technique for preserving the
privacy of sensitive information. One of the basic, apparently
inherent, limitations of this technique is that an information
system working with encrypted data can at most store or retrieve
the data for the user; any more complicated operations seem to
require that the data be decrypted before being operated on.
This limitation follows from the choice of encryption functions
used, however, and although there are some truly inherent
limitations on what can be accomplished, we shall see that it
appears likely that there exist encryption functions which permit
encrypted data to be operated on without preliminary decryption
of the operands, for many sets of interesting operations. These
special encryption functions we call "privacy homomorphisms'';
they form an interesting subset of arbitrary encryption schemes
(called '"privacy transformations').

/Plain RSA is multiplicatively
homomorphic:

server can compute
¢y (mod m) = (z - y)¢ (mod m).

)

Given z¢ (mod m) and y° (mod m),

>

4

“Fully Homomorphic
Encryption Using Ideal
Lattices”

by Craig Gentry (STOC
2009)
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Delegating Private Quantum Computations

Applications

Shor’s factoring algorithm:
*Server helps client crack an
RSA public key without finding
out the key.

Processing quantum data
*Processing quantum money.

Very relevant given current
challenges in building quantum
computers!

Our Scenario
«Information-theoretic security
Interactive

*Client is almost-classical




Client’s power

Client only needs to:

« Encrypt quantum data
* Decrypt quantum data
» Classical processing

« Send random qubits

e
il

<

ST
117]

7
»,

|

i

Same

technology
¥ : used for
ceferandom qubits <
e quantum key
distribution

« Broadbent, A. (2015). Delegating private quantum computations. Canadian
Journal of Physics, 93(9), 941-946.




The One-time Pad Encryption Scheme

1. The classical one-time pad

Plaintext = {0 1}
Key k €R {07 1}
Ciphertext T ® k

Since the ciphertext is uniformly random (as long as k is random and unknown), the

plaintext is perfectly concealed.

2. The quantum one-time pad [Ambainis, Mosca, Tapp, de Wolf 2000]

Plaintext |¢> =« |()> + 8 |1>
Key (CL, b) €R {07 1}2
Ciphertext Z7axb |¢>

=

01
10

1 0
2={p 4
Pauli gates

Without knowledge of the key, the ciphertext always appears as the

maximally mixed state,5.



The protocol / /

CLl,bl!T\ aj,bi o a3, m al, bi—arbi W;z%,b})
. a?,b? Lt el i Pout
111 | — L 3 3
a 713’F| a?7b%r aan s a%,bg |7| 47b4 ;(15,b5
R L£] :

At each slice of time, applying the
decryption key would produce the same

(unencrypted) system that we would get
in the execution of the original circuit.

To hide the computation, use a universal circuit.



Protocol for single-qubit preparation

0,0
)

Protocol for single-qubit measurement

a,b

? - 24



Protocols for Clifford group gates

o]

1 0 0 -1 The Clifford Group is the set of operators that
Pauli gates conjugate Pauli operators into Pauli operators.
_ (1 0 . (1 1
_(0 z) H_\/§<1 —1)
100 0 a,b a,b
X
01 00
CNOT = 00 0 1
\\ 0 010 ik b
Clifford group gates Z
a,b 5 b, a al?bl al?b1®bg
aQ?bQ ’Lal @CLQ?Z)Q
!
a,b a,a @b




Protocol for non-Clifford group gate

-

1 0
R= (O eiﬂ'/4>

~

\_ Non-Clifford group gate -

Applying the R gate on encrypted data causes
a Clifford error in the key:

Xazb __ X z00bpa

R

Main ldea: the client makes the server
“correct” this error by making him apply a
hidden P correction.

!’.F.!FJ

e
I a®c,alcdydl)obdddy

— [

R
Server
' pr
{ r=a@$y —
Client
1 +) —PY Az
(y,d er {0.1})

7. Server sends measurement result to client;
Client uses this to update the encryption key.




Correctness Of the R-gate protocol (Circuit derivation techniques inspired by

[Childs, Leung, Nielsen, PRA 2005])

1. Start with X-teleportation W;) = €
circuit of Zhou, Leung and Chuang

(PRA 2000): < Xe Jab)
2. modify the input: X*Z"|) —R T A=
+) XRXAZP[p) = Xa&eZa@bPaR| )
3. add rotations on the X2Z%) —{R] A= ¢
bottom wire: ) - S |
4. Since P and Z commute with control, the output is:
pa®y _ 7a-ypaty /P=PZ:P2=7 PX = XZP

Paﬂ%yzdpyxa%czaﬂ%bpﬂﬁ: h’} — zaypa-l—yzd/éyxﬂﬁczﬂﬁbpﬂth,-]}
7p — p7- P2 _ 7 — Zdﬂ%a-yﬂ%ypaxﬂECzﬂEbPﬂ Rh&’}
’ . .
_ Zdn;laa-y&l;uyxan:lacza{a;cjPazﬂ;bpa R|L>

R P S .
= Xabezddaydyda’Gaczbp )

_ KQSCZQ(C%yEPl]%bEBdEEyR

¥)



Security definition

How to formalize that “the server learns nothing from its interaction with the client”?
pinEC®S meC@S

- AN

-

B
~ T ;'"
~— 4 |

| O, G

Let S’ be any deviating server.

A simulator S¢ for S is any general quantum circuit that agrees with S’ on the
input and output dimensions.

We say that a protocol for delegated quantum computation is secure if for
every S’ there exists a simulator S such that the channels and ® are W
indistinguishable.



Indistinguishability of channels

The diamond norm is a measure of indistinguishability of two quantum
channels.

Operational Definition:

Suppose quantum channels ® and ¥ agree their input and output spaces. Given
that ® or ¥ is applied with equal probability, the optimal procedure to determine
the identity of the channel with only one use succeeds with probability

1 H(I) _ \IJHO

s T

1@ — ¥flo = max{[[(® @ 1w)(p) = (Y@ Iw)(p)ll1 : p € D(X¥ @ W)}



Pn€ECBS Pn€CB®S

Proot Outline .'.__.. c3
| 0

Main Idea: change the client’s protocol such that: |

1. The server cannot notice the change
2. The protocol is easily proven secure

Method: allow the client to share entanglement with the server

1. Instead of sending encrypted qubits, client sends half-EPR pairs
2. Instead of sending auxiliary qubits, client sends half-EPR pairs
3. The client delays inserting her actual input until the after the
interaction with the server is complete: the protocol is trivially

secure!

Inspiration: entanglement-based proof approach for QKD.

1
|[EPR) = NG (100) + [11))



summary:

We can use quantum information to build cool stuff
e unforgeable money

 perfectly secure communication

. ... and more!

7 M\
N

Euezme @] uOttawa
Thank you! .




Some References

Broadbent, A., Schaffner, C. Quantum cryptography beyond quantum key distribution. Des. Codes
Cryptogr. 78, 351-382 (2016). https://doi.org/10.1007/s10623-015-0157-4

Wiesner, S. (1983). Conjugate coding. ACM Sigact News, 15(1), 78-88.
https://dl.acm.org/doi/pdf/10.1145/1008908.1008920

Watrous, J. Lecture 19: Impossibility of Quantum Bit Commitment.
https://cs.uwaterloo.ca/~watrous/QC-notes/QC-notes.19.pdf

Broadbent, A. (2015). Delegating private quantum computations. Canadian Journal of Physics,
93(9), 941-946. https://doi.org/10.1139/cjp-2015-0030

Bouman, N. J., & Fehr, S. (2010, August). Sampling in a quantum population, and applications. In
Annual Cryptology Conference (pp. 724-741). https://link.springer.com/chapter/10.1007/978-3-
642-14623-7 39

Bennett, C. H., & Brassard, G. (2020). Quantum cryptography: Public key distribution and coin
tossing. https://arxiv.org/ftp/arxiv/papers/2003/2003.06557.pdf

Broadbent, A., & Islam, R. (2020, November). Quantum encryption with certified deletion. In
Theory of Cryptography Conference (pp. 92-122). https://link.springer.com/chapter/10.1007/978-3-
030-64381-2 4

Fehr, S. (2010). Quantum cryptography. Foundations of Physics, 40(5), 494-531.

James Bartusek, Dakshita Khurana. Cryptography with Certified Deletion,
https://arxiv.org/abs/2207.01754

And many more...



https://doi.org/10.1007/s10623-015-0157-4
https://link.springer.com/chapter/10.1007/978-3-030-64381-2_4
https://link.springer.com/chapter/10.1007/978-3-030-64381-2_4
https://arxiv.org/abs/2207.01754

	Quantum Cryptography
	What is quantum cryptography?
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Information is physical
	In this tutorial: 
	Quantum States Can’t be Cloned
	Slide Number 9
	But first, some basics
	Qubits (“quantum states”)
	Measurements: qubits ⟶ bits	
	Slide Number 13
	Transformations
	Multi-qubit systems
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Unclonable Authenticity
	Slide Number 21
	Wiesner’s conjugate coding
	Slide Number 23
	Wiesner’s security argument
	Slide Number 25
	Slide Number 26
	Quantum Money “revival”
	Unclonable Information
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Conjugate coding to the rescue! 
	BB84 QKD 
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	BB84 QKD 
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Security of BB84 Quantum Key distribution?
	QKD Firsts
	Practicality of BB84 Quantum Key
	Recent Direction in QKD
	Impossibility of quantum bit commitment
	Slide Number 72
	Slide Number 73
	Quantum Bit Commitment��
	Proceedings of �FOCS 1993�
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Possibilities for Bit Commitment
	See additional slides
	Delegated Quantum Computation
	What are quantum computers good for?
	Slide Number 83
	Homomorphic Encryption
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Indistinguishability of channels
	Proof Outline
	Summary: 
	Some References
	Extra slides
	Quantum sampling in QKD		
	Quantum sampling in QKD		
	Proof /1
	Proof  /2
	Proof /3
	Slide Number 104
	SAC tutorial - extra part- certified deletion, uncloneable encryption and software-cut.pdf
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Proof intuition
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Amplifying security
	Slide Number 17
			
	Uncloneable Functionality
	What is quantum copy protection?
	What is quantum copy protection?
	Quantum software is reusable
	Limitations of Quantum Copy-Protection
	Point Functions
	What is quantum copy protection?
	What is quantum copy protection?
	Honest-user Copy Protection
	Honest-Malicious Copy Protection
	What is copy protection?
	Slide Number 30
	Secure Software Leasing
	Secure Software Leasing
	Compute-and-compare functions
	Achieving Honest-Malicious Copy-Protection
	Quantum Message Authentication
	Quantum Message Authentication
	Quantum Message Authentication
	Quantum Total Authentication
	Copy Protection from Quantum Total Authentication
	Slide Number 40
	Achieving Honest-Malicious Copy-Protection




