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Introduction

A Feistel scheme is a symmetric structure used to construct block ciphers such as 3DES,
Twofish . . .

Motivations:

• Gap between attacks on Feistel with internal functions/permutations

• Enhance attacks using the power of quantum computers

Our contributions:

• Classical attack on 6 rounds Feistel networks with internal permutations

• Detailed analysis for Child’s and Eisenberg quantum algorithm time complexity

• Quantum attack on 6 rounds Feistel networks
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6-round Feistel scheme (Ψ6)

1 round:

{
R

L⊕ f1(R) = X

2 rounds:

{
X

R ⊕ f2(X ) = Y

3 rounds:

{
Y

X ⊕ f3(Y ) = Z

4 rounds:

{
Z

Y ⊕ f4(Z ) = U

5 rounds:

{
U

Z ⊕ f5(U) = S

6 rounds:

{
S

U ⊕ f6(S) = T
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Distinguishing attack
Goal: differentiate between Feistel schemes/random permutations

• [L,R]

[S,T]

[L,R]

[S,T]

Feistel Random

• Advantage: Adv(A) = |Pr[A(F ) = 1]− Pr[A(G ) = 1]|
• F : Feistel scheme
• G : Random permutation
• A: Probabilistic algorithm
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State of the art - Feistel with internal functions

KPA CPA CCA QCPA QCCA

Ψ1 1 1 1 1 1

Ψ2 2n/2 2 2 2 2

Ψ3 2n/2 2n/2 3 n 3

Ψ4 2n 2n/2 2n/2 2n/2 n

Ψ5 23n/2 2n 2n 22n/3 22n/3

Ψ6 22n 22n 22n 28n/5 28n/5

Table: Number of computations to distinguish Feistel schemes with random internal functions from
random permutations (best-known attacks)

ll : New (this work) 28n/5 instead of 22n for the best known attack before us
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State of the art - Feistel with internal permutations

KPA CPA CCA QCPA QCCA

Ψ1 1 1 1 1 1

Ψ2 2n/2 2 2 2 2

Ψ3 2n(+) 2n/2 3 n 3

Ψ4 2n 2n/2 2n/2 2n/2 n

Ψ5 23n/2 2n 2n 22n/3 22n/3

Ψ6 22n 22n 22n 28n/5 28n/5

Table: Number of computations to distinguish Feistel schemes with random internal permutations from
random permutations (best-known attacks)

ll : New (this work) instead of 23n everywhere for the best known attack before us
+: Worse complexity than for Feistel with internal functions
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Classical attack on Ψ6 with internal permutations

Assume the following system

(S)



R1 = R3

R2 = R4

S1 = S2
S3 = S4
L1 ⊕ L4 = L2 ⊕ L3
L1 ⊕ S1 = L3 ⊕ S3
R1 ⊕ T1 = R2 ⊕ T2

R3 ⊕ T3 = R4 ⊕ T4

Goal: number of collisions is ≈ 2× higher for Ψ6
perm compared to random permutations

18 / 40



Classical attack on Ψ6 with internal permutations

System (S) can be geometrically represented as

3 S , R ⊕ T 4

R, L⊕ S

2S , R ⊕ T1

R, L⊕ S

(The small square in the right-hand corner below represents L1 ⊕ L2 ⊕ L3 ⊕ L4 = 0)

Note: Same system as [Patarin, 2001] for the attack of Ψ6
func

The number of collisions is ≈ 12× higher for Ψ6
func compared to random permutations
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Classical attack on Ψ6 with internal permutations

Theorem

Assume that (1)


R1 = R3

R2 = R4

S1 = S2
L1 ⊕ L4 = L2 ⊕ L3

and that (2)


X1 = X4

Y1 = Y2

Z1 = Z3

U1 = U4

Then we will necessarily have for a Ψ6 with internal permutations

(3)


S3 = S4
L1 ⊕ S1 = L3 ⊕ S3
R1 ⊕ T1 = R2 ⊕ T2

R3 ⊕ T3 = R4 ⊕ T4

=⇒ Number of collisions is ≈ 2× higher for Ψ6
perm compared to random permutations
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Classical attack on Ψ6 with internal permutations

Proof. Suppose we have (1) and (2), let us show that (3) is verified

• X1 = X4 ⇐⇒ L1⊕ f1(R1) = L4⊕ f1(R4) ⇐⇒
L1⊕L4=L2⊕L3

L3⊕ f1(R3) = L2⊕ f1(R2) ⇐⇒ X3 = X2

• Y1 = Y2 ⇐⇒ R1 ⊕ f2(X1) = R2 ⊕ f2(X2) ⇐⇒ R3 ⊕ f2(X4) = R4 ⊕ f2(X3) ⇐⇒ Y3 = Y4

• Z1 = Z3 ⇐⇒ X1 ⊕ f3(Y1) = X3 ⊕ f3(Y3) ⇐⇒ X4 ⊕ f3(Y4) = X2 ⊕ f3(Y2) ⇐⇒ Z4 = Z2

• U1 = U4 ⇐⇒ Y1 ⊕ f4(Z1) = Y4 ⊕ f4(Z4) ⇐⇒ Y2 ⊕ f4(Z2) = Y3 ⊕ f4(Z3) ⇐⇒ U2 = U3

• S1 = S2 ⇐⇒ Z1 ⊕ f5(U1) = Z2 ⊕ f5(U2) ⇐⇒ Z3 ⊕ f5(U3) = Z4 ⊕ f5(U4) ⇐⇒ S3 = S4
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Classical attack on Ψ6 with internal permutations

Moreover, we have

• T1 = U1 ⊕ f6(S1),T2 = U2 ⊕ f6(S2) =⇒ U1 ⊕ U2 = T1 ⊕ T2

• U1 = Y1⊕ f4(Z1),U3 = Y3⊕ f4(Z3) =⇒ U1⊕U3 = Y1⊕Y3 =⇒ U1⊕U2 = Y1⊕Y3

• Y1 = R1⊕ f2(X1),Y4 = R4⊕ f2(X4) =⇒ Y1⊕Y4 = R1⊕R4 =⇒ Y1⊕Y3 = R1⊕R2

Hence T1 ⊕ T2 = R1 ⊕ R2

• T3 = U3⊕ f6(S3),T4 = U4⊕ f6(S4) =⇒ U3⊕U4 = T3⊕T4 =⇒ T3⊕T4 = U1⊕U2

So R3 ⊕ R4 = T3 ⊕ T4
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Classical attack on Ψ6 with internal permutations

• S1 = Z1⊕ f5(U1),S4 = Z4⊕ f5(U4) =⇒ S1⊕S4 = Z1⊕Z4 =⇒ S1⊕S3 = Z1⊕Z2

• Z1 = X1 ⊕ f3(Y1),Z2 = X2 ⊕ f3(Y2) =⇒ Z1 ⊕ Z2 = X1 ⊕ X2

• X1 = L1⊕ f1(R1),X3 = L3⊕ f1(R3) =⇒ X1⊕X3 = L1⊕ L3 =⇒ X1⊕X2 = L1⊕ L3

Hence S1 ⊕ S3 = L1 ⊕ L3
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Computer simulations for n = 8 with 10 000 trials

Nb of Random Feistel with Feistel with
solutions permutations internal permutations internal functions

0 7 756 6 023 530
2 1 980 3 069 1 570
4 242 754 2 198
6 21 133 2 154
8 1 19 1 670
10 0 1 980
12 0 1 510
14 0 0 224
16 0 0 99
18 0 0 40
20 0 0 17
22 0 0 5
24 0 0 3
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Computer simulations for n = 8 with 10 000 trials

AdvΨ6
perm

= 0.1733 and AdvΨ6
func

= 0.7636

Moreover we have

• Nrand ≈ 0.5062

• NΨ6
perm

≈ 1.0126

• NΨ6
func

≈ 6.0098

Therefore NΨ6
perm

≈ 2Nrand and NΨ6
func

≈ 12Nrand
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Classical attack on Ψ6 with internal permutations

Conclusion of the first result:

• 4 points classical attack on Ψ6
perm

• For Ψ6
perm the nb of collisions is ≈ 2× higher compared to random permutations

• Complexity is in O
(

q4

28n

)
since we have 8 equations on 4 indices

=⇒ Complexity reduced to O(22n) from O(23n)
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Ambainis’ algorithm overview

Problem: Given N values x1, . . . , xN from a set X where |X | = M, are there k distinct
indices 1 ≤ i1 < i2 < · · · < ik ≤ N such that xi1 = xi2 = · · · = xik?

Ambainis’ result [Ambainis, 2004]

Let r ≥ k , r = o(N)

There is a quantum algorithm that solves element k-distinctness with

• Time: Õ
(
max

(
Nk/2

r (k−1)/2 , r
))

• Queries: O
(
max

(
Nk/2

r (k−1)/2 , r
))

• Memory: Õ(r)

31 / 40



Ambainis’ algorithm overview

Problem: Given N values x1, . . . , xN from a set X where |X | = M, are there k distinct
indices 1 ≤ i1 < i2 < · · · < ik ≤ N such that xi1 = xi2 = · · · = xik?

Ambainis’ result [Ambainis, 2004]

Let r ≥ k , r = Nk/(k+1)

There is a quantum algorithm that solves element k-distinctness with

• Time: Õ
(
Nk/(k+1)

)
• Queries: O

(
Nk/(k+1)

)
• Memory: Õ

(
Nk/(k+1)

)
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Childs and Eisenberg algorithm overview

Problem: Given f : X → Y where

• X ,Y are finite sets

• |X | = M

• R a relation in (X × Y)k

are there some k-subset {x1, · · · , xk} ⊂ X such that ((x1, f (x1)), · · · , (xk , f (xk))) ∈ R?
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Childs and Eisenberg algorithm overview

Childs and Eisenberg algorithm [Childs - Eisenberg, 2005]

Let r ≥ k , r = o(N)

There is a quantum algorithm that solves the k-subset problem with

• Queries: O
(
max

((
N
r

)k/2
(
√
r + g(r)), r

))
• Memory: Õ(r)

g is related to R and the data structures (more details in the paper)
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Our revised analysis of Childs and Eisenberg

Our revised analysis on Childs and Eisenberg algorithm

Let r ≥ k , r = o(N)

There is a quantum algorithm that solves the k-subset problem with

• Time: Õ
(
max

((
N
r

)k/2
(
√
r + f (r)), r

))
• Queries: O

(
max

((
N
r

)k/2
(
√
r + g(r)), r

))
• Memory: Õ(r)

f and g are related to R, but in our case, they are negligible compared to
√
r
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Our revised analysis of Childs and Eisenberg

Our revised analysis on Childs and Eisenberg algorithm

Let r ≥ k , r = Nk/(k+1)

There is a quantum algorithm that solves the k-subset problem with
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Quantum attack on Ψ6

For Ψ6 we need to find

(S)



R1 = R3

R2 = R4

S1 = S2
S3 = S4
L1 ⊕ L4 = L2 ⊕ L3
L1 ⊕ S1 = L3 ⊕ S3
R1 ⊕ T1 = R2 ⊕ T2

R3 ⊕ T3 = R4 ⊕ T4

Child and Eisenberg’s algorithm will find solutions to this system with a complexity of
O(28n/5) since k = 4 and N = 22n
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Conclusion

• First result:
• 4 points classical attack on Ψ6 with internal permutations

• Complexity reduced to O(22n) from O(23n)

• Detailed analysis on Ψ6 with internal functions

• Second result:
• Detailed analysis on Childs and Eisenberg quantum algorithm time complexity

• Quantum attack on Ψ6

• Complexity reduced to O(28n/5)

• Open problem: Complexity worse for Ψ3, Ψ9, Ψ12, Ψ15 . . . with internal
permutations than for internal functions, but not for Ψ6 as explained here
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Conclusion

Thank You

Questions?
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