Classical and Quantum Attacks on

6-round Feistel Schemes
Selected Areas in Cryptography (SAC) 2024

Maya Chartouny, Benoit Cogliati, Jacques Patarin

Thales DIS, Université Paris-Saclay - LMV

29 August 2024

uvsQe

THALES

1/40



Overview

1. Introduction

2. Feistel Schemes
2.1 Definition
2.2 Distinguishing Attack
2.3 State of the Art

3. Classical Generic Attacks on 6-round Feistel with Internal Permutations

3.1 Classical attack
3.2 Computer Simulations

4. Quantum Generic Attacks on 6-round Feistel
4.1 Ambainis's Algorithm for Distinctness Problem
4.2 Childs and Eisenberg Algorithm for Subset Finding
4.3 Application to 6-round Feistel Schemes

2/40



Plan

1. Introduction

3/40



Introduction

A Feistel scheme is a symmetric structure used to construct block ciphers such as 3DES,
Twofish ...

Motivations:
® Gap between attacks on Feistel with internal functions/permutations

® Enhance attacks using the power of quantum computers
Our contributions:
® (lassical attack on 6 rounds Feistel networks with internal permutations
® Detailed analysis for Child's and Eisenberg quantum algorithm time complexity

® Quantum attack on 6 rounds Feistel networks
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2. Feistel Schemes
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2.3 State of the Art
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Feistel schemes on 2n bits

1-round
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Feistel schemes on 2n bits

1-round
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Feistel schemes on 2n bits

1-round

\T:L@ fl(R)\
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Feistel schemes on 2n bits

1-round

S=R [T=LaA(R)]
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Feistel schemes on 2n bits

1-round

S=R [T=LaA(R)]

S \ T

fi,--- ,f, are internal random functions or internal random permutations on n bits 1040



6-round Feistel scheme (V°)

R Z

1 round: 4 rounds:
Lo A(R)=X YO h(Z)=U
X

2 rounds: 5 rounds: v
R&hH(X)=Y Zok(U)=S

3 rounds: Y 6 rounds: S
Xeh(Y)=Z U f(S)=T
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Distinguishing attack

Goal: differentiate between Feistel schemes/random permutations
o [L,R] [L.R]

[S,T] [S,T]
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Distinguishing attack

Goal: differentiate between Feistel schemes/random permutations
o [L,R] [L.R]

[S,T] [S,T]
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Distinguishing attack

Goal: differentiate between Feistel schemes/random permutations
o [L,R] [L.R]

[5.T] [5.T]
e Advantage: Adv(A) = |Pr[A(F) = 1] — Pr[A(G) = 1]|

® F: Feistel scheme
® G: Random permutation
® A: Probabilistic algorithm
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State of the art - Feistel with internal functions

| KPA | CPA | CCA | QCPA | QCCA

vl

W2 2n/2
w3 | on/2
asiivi
\US) 23n/2
Yo | 22n

1

2
on/2
on/2
on
22n

1

2

3
2n/2
on
22n

1

2

n
on/2
22n/3

28n/5

1
2
3
n
22n/3

28n/5

Table: Number of computations to distinguish Feistel schemes with random internal functions from

random permutations (best-known attacks)

: New (this work) 287/5 instead of 22" for the best known attack before us
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State of the art - Feistel with internal permutations

| KPA | CPA | CCA | QCPA | QCCA

vl 1 1 1 1
w2 | 2n/2 | D 2 2 2
W3 | 27(4) | 272 | 3 n 3
wi | on on/2 on/2 on/2 n

& 23n/2 on on 22n/3 22n/3
Wb | [92n 22n 22n 28n/5 28n/5

Table: Number of computations to distinguish Feistel schemes with random internal permutations from
random permutations (best-known attacks)

: New (this work) instead of 23" everywhere for the best known attack before us
+: Worse complexity than for Feistel with internal functions
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3. Classical Generic Attacks on 6-round Feistel with Internal Permutations
3.1 Classical attack
3.2 Computer Simulations
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Classical attack on V° with internal permutations

Assume the following system

( Ry =Rs
Ry =R,
$51=5
S3 =54

LiodLly=L& L3
Li® S =L3D S5
RieTi=RaoT
RzDT3=Ry4D Ty

6

Goal: number of collisions is ~ 2 higher for Wy .,

compared to random permutations
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Classical attack on V° with internal permutations

System (S) can be geometrically represented as

1 S ReT 2

R L®S R L®S

]
3 S ReT 4

(The small square in the right-hand corner below represents Ly & Ly & L3 & Ly = 0)
Note: Same system as [Patarin, 2001] for the attack of W®

func
The number of collisions is =~ 12x higher for \Ilf?unc compared to random permutations
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Classical attack on V° with internal permutations

Theorem
Ri=Rs X1=X4
Assume that (1) fs?lz : 524 and that (2) 2 : ;32
Lidls=Ldl13 U = Uy

Then we will necessarily have for a W® with internal permutations

S53=5,

(3) Li® S5 =133 S3
RieTi=RaoT;
R3dT3=Ry P Ty

6

= Number of collisions is &~ 2x higher for W, .. compared to random permutations
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Classical attack on V° with internal permutations

Proof. Suppose we have (1) and (2), let us show that (3) is verified

e X =X; — Ll@ﬁ(Rl):L4@ﬂ(R4)L€BI_<:l_>€BL L3@f1(R3):L2@f1(R2) — X3=X,
1OLi=LDLs
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Classical attack on V° with internal permutations

Proof. Suppose we have (1) and (2), let us show that (3) is verified
e X =X; — L1EBf1(R1) = L4@f1(R4) . @lf:l?@L L3@f1(R3) = Lg@ﬂ(Rz) — X3=X,
1 4=L2 3
.Y1:Y2<:>R1@f2( ):R2®f2(X2)<:>R3®f2( ):R4@)C2(X3)<:>Y3:Y4
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Classical attack on V° with internal permutations

Proof. Suppose we have (1) and (2), let us show that (3) is verified

e X =X; — Ll@ﬁ(Rl):L4@ﬁ(R4)L€BI_<:l_>€BL L3@f1(R3):L2@f1(R2) — X3=X,
1OLi=LDLs

e Y=Y, < Rl@ﬁ( ):RQ@fz(Xg) < R3@f2( ):R4@IC2(X3) < Y3: Ya
* Z1=7 = X10h(V1)=XG0hK(V3) &= XNoh(V)=X0h(2) &= L=2
L4 U1 = U4 <~ Yl (&) ﬁl( ): (S5) ﬁ;(Z4) < Y2 D f;;(ZQ) = (S5) ﬁ;( ) < U2 = U3

e 5 =5 — @%(Ul)222@f5( )<:> @fgs( )224@7%(U4)<:> S3=5;
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Classical attack on V° with internal permutations

Moreover, we have

e Ti=U18%6(5), Ta=Uhd&f(s) = Uhaolbr=T16 T

o [ = Yl@f4( ),U3I Y3@f4( ) = U1 =YieY; — Ui =YY
* Vi=Ri®h(X),Ya=Roh(X) = Y10YVi=ROR = Y18V3=RoR
Hence 1@ Th =Ri ® R
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Classical attack on V° with internal permutations

Moreover, we have
e Ti=U18%6(5), Ta=Uhd&f(s) = Uhaolbr=T16 T

° Ulzyl@ﬁ( ),U3IY3@f4( ) = U1 =YieY; — Ui =YY
* Yi=Ri®hL(X),Ya=RdhH(X) = Y1@Vi=RieR = Y193 =Ri®R,

Hence 1@ Th =Ri ® R

® T3=Us®1f(5), Ta=UsDfe(52) =  DUs=T30Ts = T30 Ta=Ui®
So RO Ry =T3P Ty
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Classical attack on V° with internal permutations

e 5\ =719 fé( Lfl), Sa =2, fé(lj4) — 5105, =41D7y — 51953 =2L1D 7L
¢ 21 =X10hR(N),L=X0h(Y) = L1 &L=XDX
e X1 =LidhA(R),X3=LdA(R) = X106 G3=L0l; = X1®&Xo=L1®L3

Hence S1® S3=L1 D L3
O
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Computer simulations for n = 8 with 10000 trials

Nb of Random Feistel with Feistel with
solutions | permutations | internal permutations | internal functions
0 7756 6023 530

2 1980 3069 1570

4 242 754 2198

6 21 133 2154

8 1 19 1670

10 0 1 980

12 0 1 510

14 0 0 224

16 0 0 99

18 0 0 40

20 0 0 17

22 0 0 5

24 0 0 3
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Computer simulations for n = 8 with 10000 trials

Adegerm = 0.1733 and Ade? = 0.7636
Moreover we have

® Ning =~ 0.5062
* Nys,, ~ 10126
® Nys ~6.0098
Therefore N\USW ~ 2 MNanq and N\U?un ~ 12 Myand

I
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Classical attack on V° with internal permutations

Conclusion of the first result:

6

® 4 points classical attack on W/,

® For \Ugerm the nb of collisions is ~ 2x higher compared to random permutations

4

e Complexity is in O <2an

= Complexity reduced to O(22") from O(23")

> since we have 8 equations on 4 indices

29 /40



Plan

4. Quantum Generic Attacks on 6-round Feistel
4.1 Ambainis’s Algorithm for Distinctness Problem
4.2 Childs and Eisenberg Algorithm for Subset Finding
4.3 Application to 6-round Feistel Schemes
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Ambainis’ algorithm overview

Problem: Given N values xi,...,xy from a set X where |X'| = M, are there k distinct
indices 1 <y < ip <--- < i < N such that x; =x;, =--- =X ?

Ambainis’ result [Ambainis, 2004]
Let r > k, r = o(N)
There is a quantum algorithm that solves element k-distinctness with

. y Nk/2
® Time: O (max (WJ))
. k/2
e Queries: O <max (%J))

e Memory: O(r)
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Ambainis’ algorithm overview

Problem: Given N values xi,...,xy from a set X where |X'| = M, are there k distinct
indices 1 <jj < ip <--- < i < N such that x; =x;, =--- =X, ?

Ambainis’ result [Ambainis, 2004]

Let r > k, r = NK/(k+1)
There is a quantum algorithm that solves element k-distinctness with

® Time: (5(Nk/(k+1))
® Queries: O (Nk/(k+1))
® Memory: 5(Nk/(k+1))
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Childs and Eisenberg algorithm overview

Problem: Given f : X — ) where
® XY are finite sets
o | X|=M
® R a relation in (X x V)X

are there some k-subset {xi, -+, xx} C X such that ((x1,f(x1)), -, (xk, f(xk))) € R?
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Childs and Eisenberg algorithm overview

Childs and Eisenberg algorithm [Childs - Eisenberg, 2005]
Let r > k, r = o(N)
There is a quantum algorithm that solves the k-subset problem with

® Queries: O <max ((%)k/2 (vr+g(r)), r))

e Memory: O(r)

g is related to R and the data structures (more details in the paper)
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Our revised analysis of Childs and Eisenberg

Our revised analysis on Childs and Eisenberg algorithm
Let r > k, r = o(N)
There is a quantum algorithm that solves the k-subset problem with

e Time: O <max <(¥)k/2 (\/F"i‘ f(r)), r))

* Queries: O (max (%) (V7 +g(r). "))
® Memory: (5(f)

f and g are related to R, but in our case, they are negligible compared to /r
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Our revised analysis of Childs and Eisenberg

Our revised analysis on Childs and Eisenberg algorithm

Let r > k, r = NK/(k+1)
There is a quantum algorithm that solves the k-subset problem with

e Time: (5(Nk/(k+1))
e Queries: O (Nk/(k+1))
e Memory: O (Nk/(k+1))
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Quantum attack on V°

For W we need to find

Ri=Rs
Ry =Ry
$51=5
S3 =54

Li®Lly=L® L3
Li®Si =38 S3
RieoTi=RaeT,
| RRET3=R4 @ Ty

Child and Eisenberg's algorithm will find solutions to this system with a complexity of
0(28"/%) since k = 4 and N = 22"
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Conclusion

® First result:
® 4 points classical attack on W with internal permutations

® Complexity reduced to O(22") from O(23")
® Detailed analysis on W® with internal functions
® Second result:
® Detailed analysis on Childs and Eisenberg quantum algorithm time complexity
® Quantum attack on W

® Complexity reduced to O(28"/%)

e Open problem: Complexity worse for W3, W9 w12 w15 with internal
permutations than for internal functions, but not for W® as explained here
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Conclusion

Thank You

Questions?
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