Kelong Congl, Robin Geelen?, Jiayi Kang?, and Jeongeun Park3 | 28 Aug 2024
1Zama « 2COSIC,KU Leuven = SNTNU

Revisiting Oblivious Top-k
Selection with Applications to
Secure k-NN Classification

SAC 2024

ZAMA

<
2
E=]
©
o
=
I3
2]
=
o
2
Z
<
[
4
3
o
Q
0
T
c
©
c
<}
S
o
2
[}
"
¥
]
[
1]
=
2
2
=
(s}

Client

x——ofercn]

sk

Server

homomorphically
evaluate f

y =) +—{decrypt jei————

<« ek

Program expansion happens when converting input-dependent plaintext
programs into ciphertext programs

Example of program expansion:

<
2
s
®©
(4]
=
7]
7]
8
o
2
<
=~
[
4
3
o
Q
(72]
k]
c
L
c
o
]
o
2
Q
(7]
¥
S
[
7]
3
2
2
]
o

<
2
=}
®©
(4]
=
7]
7]
8
o
2
g
=~
[
4
3
o
Q
(72]
k]
c
L
c
o
]
o
2
Q
(7]
¥
S
[
7]
3
2
2
]
o

Program expansion happens when converting input-dependent plaintext
programs into ciphertext programs

Example of program expansion:

Homomorphically compute branch
b=1(X<a)

Homomorphically evaluate
Y=(1-b)-y1+b-y2

<
2
=}
®©
(4]
=
7]
7]
8
o
2
g
=~
[
4
3
o
Q
(72]
k]
c
L
c
o
]
o
2
Q
(7]
¥
S
[
7]
3
2
2
]
o

Program expansion happens when converting input-dependent plaintext
programs into ciphertext programs

Example of program expansion:

Homomorphically compute branch
b=1(X<a)

Homomorphically evaluate
Y=(1-b)-y1+b-y2

Both child nodes need to be visited

(Data-)oblivious programs are algorithms whose sequence of operations and
memory accesses are independent of inputs.

<
2
s
®©
(4]
=
7]
7]
8
o
2
g
x
[
i
3
o
Q
(72]
T
c
L
c
o
]
o
2
Q
(7]
¥
S
[
7]
3
2
2
]
o

(Data-)oblivious programs are algorithms whose sequence of operations and
memory accesses are independent of inputs.

Example: sorting d elements

Quicksort has complexity O(d log d) but is not oblivious
Practical oblivious sorting methods have complexity O(d log? d)

<
2
s
®©
(4]
=
7]
7]
8
o
2
g
=~
[
i
3
o
Q
(72]
k]
c
L
c
o
]
o
2
Q
(7]
¥
S
[
7]
3
2
2
]
o

<
2
s
®©
(4]
=
7]
7]
8
o
2
g
=~
[
i
3
o
Q
(72]
k]
c
L
c
o
]
o
2
Q
(7]
¥
S
[
7]
3
2
2
]
o

(Data-)oblivious programs are algorithms whose sequence of operations and
memory accesses are independent of inputs.

Example: sorting d elements

Quicksort has complexity O(d log d) but is not oblivious
Practical oblivious sorting methods have complexity O(d log? d)

Oblivious programs are visualized as networks

mo min(mo, m1)

—1—
ma max(mg, m1) I

Figure: Comparator Figure: Sorting 4 elements obliviously

Built from recursive sortings followed by merge

]
]
]
]
]
]
sorting merge

<
2
s
®©
(4]
=
7]
7]
8
o
2
g
x
[
i
3
o
Q
(72]
T
c
L
c
o
]
o
2
Q
(7]
¥
S
[
7]
3
2
2
]
o

Built from recursive sortings followed by merge

I

I

]

I

sorting merge

Batcher’s odd-even sorting network has

<
2
s
®©
(4]
=
7]
7]
8
o
2
g
=~
[
i
3
o
Q
(72]
k]
c
L
c
o
]
o
2
Q
(7]
¥
S
[
7]
3
2
2
]
o

Complexity S(d) = O(dlog? d)
Depth O(log? d)

<
2
E=]
©
o
=
I3
2]
=
o
2
Z
<
[
4
3
o
Q
0
T
c
©
c
<}
S
o
2
[}
"
¥
]
[
1]
=
2
2
=
(s}

A Top-k algorithm selects the k smallest elements from an array of d elements.

In huge information space, only kK most important records are of interest:

Define a proper scoring function
Compute score of all d records
Return the k records with the highest scores

<
2
=]
©
o
=
I3
2]
=
o
2
Z
<
[
4
3
o
Q
0
T
c
©
c
<}
S
o
2
[}
"
¥
]
[
1]
=
2
2
=
(s}

A Top-k algorithm selects the k smallest elements from an array of d elements.

In huge information space, only kK most important records are of interest:

Define a proper scoring function
Compute score of all d records
Return the k records with the highest scores

Example applications include

k-nearest neighbors classification
Recommender systems
Genetic algorithms

First category: oblivious sorting, then discard d — k irrelevant elements

Batcher’s odd-even merge sort with complexity O(d log? d) and depth O(log? d)
Comparison matrix with complexity ©(d?) and constant depth

<
]
=}
®©
(4]
=
]
1]
8
o
2
g
=~
[]
4
3
o
(]
(72]
k]
c
L
c
o
]
o
2
Q
(7]
¥
S
[
]
3
2
2
8
o

100000
2 80000
o
a2
3 =—e= Batcher's sort
E 60000 Matrix sort
S
5 =—e= Tournament
% 400004 = Desired
2
€
2

20000

0

1 21 41 61 81 101 121 141 161 181 201 221
k

First category: oblivious sorting, then discard d — k irrelevant elements

Batcher’s odd-even merge sort with complexity O(d log? d) and depth O(log? d)
Comparison matrix with complexity ©(d?) and constant depth

Second category: compute minimum k times
Complexity O(kd) and depth O(k log d)

100000

80000

=—e= Batcher's sort
Matrix sort

=—e= Tournament

40000 { = Desired

60000

Number of comparisons

20000

<
]
=}
®©
(4]
=
]
1]
8
o
2
g
=~
[]
4
3
o
(]
(72]
k]
c
L
c
o
]
o
2
Q
(7]
¥
S
[
]
3
2
2
8
o

0

1 21 41 61 81 101 121 141 161 181 201 221
k

Revisit classical oblivious Top-k selection methods (Alekseev '69 and Yao '80)
Build upon them to build a network that performs well in all scenarios

Apply the network in k-NN

<
2
=]
©
o
=
I3
2]
=
o
2
Z
<
[
4
3
o
Q
0
T
<
©
c
[<}
S
o
2
[}
"
¥
]
[
1]
=
2
2
=
(s}

Realization using two building blocks:

Sorting network of size k
Pairwise comparison

—1 sorting

—1 sorting

<
2
E]
©
o
=
I3
2]
=
o
2
Z
<
o
4
3
o
Q
0
T
c
©
c
[<}
-1
o
2
[}
2]
¥
&
[
o
=
2
2
=
(s}

Realization using two building blocks:

Sorting network of size k
Pairwise comparison

—1 sorting

—1 sorting

Can be generalized to Top-k out of d elements

<
2
E]
©
o
=
I3
2]
=
o
2
Z
<
o
4
3
o
Q
0
T
c
©
c
[<}
-1
o
2
[}
2]
¥
&
[
o
=
2
2
=
(s}

Top-k complexity is O(d log? k) if S(k) = O(k log? k)

<

g

2

©

[4]

&

I3

12

S

0 - -
E — sorting sorting
z]

2 I

3 —_—

[4] .

3 —1 sorting

T JE—

c

©

<

g]

2

[4) . .
2 — sorting sorting
(2] —

1 l

g. —

e — sorting

2 —

H

s

o

§ Top-k complexity is O(d log? k) if S(k) = O(k log? k)
3 —

S — sorting sorting
: — 1

5 —

] — sorting

'g JE—

_

3 — sorting sorting
(2] JE—

<

. _ 1

& —1 sorting

2 —

2

g k-merge

Realizes k-merge as pairwise comparison + sorting: complexity k + S(k)

<
2
=}
®©
(4]
=
7]
7]
8
o
2
g
=~
[
4
3
o
Q
(72]
k]
c
L
c
o
]
o
2
Q
(7]
¥
S
[
7]
3
2
2
]
o

Batcher’s odd-even sorting network uses alternative merge

Truncate to k-merge by removing redundant comparators
Complexity reduction from O(k Iog2 k) to O(klogk)

(a) Alekseev’s 3-merge (b) Our 3-merge

[2]
i}
=
()
S
L)
(O]
(o}
—
Y—
o
"2
&
=
-
L
c
o
=
©
X
©
(O]
=
X
=
o
3
)
[
2
o
~
3
2
TH

<
o . .
' Same asymptotic complexity as Alekseev: O(d log? k) comparators
(¢}
] Our solution contains fewer comparators in practice
3]
2
5
=~
[400 Alekseev's
§ =@+ Ours
» 350
2 w
<:u _é 300
c ©
2 g 250
3 S
° 5 200 o o008
& : HP S S ¢

Q
L £ 150 Py 4
2 2 o g

100

3 ~
2 501 o
(=] 123456 7 8 91011121314151617 181920

k

Andrew Yao improved Alekseev’s Top-k using an unbalanced recursion

Top-4 of 7

Top-2 of 4

Figure: Selecting Top-4 of 9 elements using Yao’s method

<
2
s
®©
(4]
=
7]
7]
8
o
2
g
=~
[
i
3
o
Q
(72]
k]
c
L
c
o
]
o
2
Q
(7]
¥
S
[
7]
3
2
2
]
o

Andrew Yao improved Alekseev’s Top-k using an unbalanced recursion

Top-4 of 7

Top-2 of 4

Figure: Selecting Top-4 of 9 elements using Yao’s method

k < v/d: complexity is O(d log k), better than before

<
2
=}
®©
(4]
=
7]
7]
8
o
2
g
=~
[
4
3
o
Q
(72]
k]
c
L
c
o
]
o
2
Q
(7]
¥
S
[
7]
3
2
2
]
o

k > +/d: complexity is asymptotically higher than O(d log? k)

Combined network recursively calls our or Yao’s method

Slightly improves on the better method in some cases

<
]
=}
®©
(4]
=
]
1]
8
o
2
g
=~
[]
4
3
o
(]
(72]
k]
c
L
c
o
]
o
2
Q
(7]
¥
S
[
]
3
2
2
8
(=]

25000 ~ Z)au‘::
=o=Combined
a
£ 20000
2
2
©
£
£ 15000
S
g
(<}
@
& 10000
£
5
z
5000
0

T ™ T T T T T T T T
1 51 101 151 201 251 301 351 401 451
k

Simple machine learning algorithm with broad applications

Plagiarism detection, image classification, intrusion detection, ..
Lazy learning: no training phase

<
2
E=]
©
o
=
I3
2]
=
o
2
Z
<
[
4
3
o
Q
0
T
c
©
c
<}
S
o
2
[}
"
¥
]
[
1]
=
2
2
=
(s}

<
]
=}
®©
(4]
=
]
1]
8
o
2
g
=~
[]
4
3
o
(]
(72]
k]
c
L
c
o
]
o
2
Q
(7]
¥
S
[
]
3
2
2
8
o

Three-step method:

Compute distance between
target vector and d database
vectors

Find k closest database
vectors and corresponding
labels

Class assignment is majority
vote of these k labels

* I‘\ ! l"
iy A
A

<
2
=]
©
o
=
I3
2]
=
o
2
Z
<
[
4
3
o
Q
0
T
<
©
c
[<}
S
o
2
[}
"
¥
]
[
1]
=
2
2
=
(s}

Client sends encrypted k-NN query to server

Server returns encrypted classification result

Client

Server

X A
(target vector) - x

homomorphic
classification
using clear DB

y A
(classification result) y

<« ek

Compute distance between target vector and d database vectors

<
2
E]
©
o
=
I3
2]
=
o
2
Z
<
o
4
3
o
Q
0
T
c
©
c
[<}
-1
o
2
[}
2]
¥
&
[
o
=
2
2
=
(s}

<
2
=]
©
o
=
I3
2]
=
o
2
Z
<
[
4
3
o
Q
0
T
c
©
c
[<}
-1
o
2
[}
2]
¥
&
[
o
3
2
2
I
(s}

Compute distance between target vector and d database vectors
Find k closest database vectors and corresponding labels

Top-k network is built from comparators
Each comparator uses two programmable bootstrappings

(disto, labelp) (dist;, label;)
(disty, labely) (dist1-;, labely)

using i = arg min(distg, dist1)

<
2
=]
©
o
=
I3
2]
=
o
2
Z
<
[
4
3
o
Q
0
T
c
©
c
[<}
-1
o
2
[}
2]
¥
&
[
o
3
2
2
I
(s}

Compute distance between target vector and d database vectors
Find k closest database vectors and corresponding labels

Top-k network is built from comparators
Each comparator uses two programmable bootstrappings

(disto, labelp) (dist;, label;)
(disty, labely) (dist1-;, labely)

using i = arg min(distg, dist1)

Class assignment is majority vote of these k labels

Implementation in tfhe-rs (https://github.com/kuleuven-cosic/ppknn)

Difference for larger d is because [2S21]" uses a O(d?) algorithm

Comparators Duration (s)
k |d [zs21]" | Ours|[ZS21]" | Ours | Speedup
3 40 780 93 30 18 1.7x
457 104196 | 1136 4248 | 202 21.0x
1000 || 499500 [2493 | 20837 | 441 47.2x
Lv¥d] |40 780| 143 33| 28 1.2x
457 104196 | 3412 4402 | 530 8.3 %
1000 || 499500 | 9121 21410 | 1252 17.1x

<
2
=]
©
o
=
I3
2]
=
o
2
Z
<
[
4
3
o
Q
0
T
c
©
c
(<]
S
o
2
[}
"
¥
]
[
1]
3
2
2
I
(s}

tZuber and Sirdey: Efficient homomorphic evaluation of k-NN classifiers

https://github.com/kuleuven-cosic/ppknn

An oblivious Top-k algorithm with complexity

O(dlog? k) in general
O(dlogk) for small k < ¥d
By revisiting classical Top-k selection networks

<
2
=]
©
o
=
I3
2]
=
o
2
Z
<
[
4
3
o
Q
0
T
c
©
c
<}
S
o
2
[}
"
¥
]
[
1]
=
2
2
=
(s}

<
2
=]
©
o
=
I3
2]
=
o
2
Z
<
[
4
3
o
Q
0
T
c
©
c
<}
S
o
2
[}
"
¥
]
[
1]
3
2
2
I
(s}

An oblivious Top-k algorithm with complexity

O(dlog? k) in general
O(dlogk) for small k < ¥d
By revisiting classical Top-k selection networks

Implementation of a secure k-NN classifier in TFHE-rs

Feasible for database of 1000 records: 47x faster than [2S21]

Thank you.

ZAMA

uoneoyIsse|0 NN-Y 24nN0ag pue uonoaes y¥-dol snonqo

N

Contact - ia.cr/2023/852
and Links E —— github.com/kuleuven-cosic/ppknn

kelong.cong@zama.ai

Oblivious Top-k Selection and Secure k-NN Classification

ZAMA

ia.cr/2023/852
github.com/kuleuven-cosic/ppknn
kelong.cong@zama.ai

	Oblivious Algorithms for Secure Computation
	Oblivious Top-k Selection
	Application: Secure k-NN Classification
	Summary and Conclusion

