Revisiting Oblivious Top-*k*Selection with Applications to Secure *k*-NN Classification

SAC 2024

FHE supports secure computation outsourcing

Program expansion in homomorphic branching

- Program expansion happens when converting input-dependent plaintext programs into ciphertext programs
- Example of program expansion:

Program expansion in homomorphic branching

- Program expansion happens when converting input-dependent plaintext programs into ciphertext programs
- Example of program expansion:

- Homomorphically compute branch b = 1(X < a)
- Homomorphically evaluate $Y = (1 b) \cdot y_1 + b \cdot y_2$

Program expansion in homomorphic branching

- Program expansion happens when converting input-dependent plaintext programs into ciphertext programs
- Example of program expansion:

- Homomorphically compute branch b = 1(X < a)
- Homomorphically evaluate $Y = (1 b) \cdot y_1 + b \cdot y_2$
- Both child nodes need to be visited

Oblivious programs and their network realization

Definition

(Data-)oblivious programs are algorithms whose sequence of operations and memory accesses are independent of inputs.

Oblivious programs and their network realization

Definition

(Data-)oblivious programs are algorithms whose sequence of operations and memory accesses are independent of inputs.

- Example: sorting d elements
 - lacksquare Quicksort has complexity $\mathcal{O}(d\log d)$ but is not oblivious
 - Practical oblivious sorting methods have complexity $\mathcal{O}(d\log^2 d)$

Oblivious programs and their network realization

Definition

(Data-)oblivious programs are algorithms whose sequence of operations and memory accesses are independent of inputs.

- Example: sorting d elements
 - Quicksort has complexity $\mathcal{O}(d \log d)$ but is not oblivious
 - Practical oblivious sorting methods have complexity $\mathcal{O}(d\log^2 d)$
- Oblivious programs are visualized as networks

$$m_0 \longrightarrow \min(m_0, m_1)$$

 $m_1 \longrightarrow \max(m_0, m_1)$

Figure: Comparator

Figure: Sorting 4 elements obliviously

Example: Batcher's odd-even sorting network

Built from recursive sortings followed by merge

Example: Batcher's odd-even sorting network

Built from recursive sortings followed by merge

- Batcher's odd-even sorting network has
 - Complexity $S(d) = \mathcal{O}(d \log^2 d)$
 - Depth $\mathcal{O}(\log^2 d)$

Motivation for Top-k selection problem

Definition

A Top-k algorithm selects the k smallest elements from an array of d elements.

- In huge information space, only k most important records are of interest:
 - Define a proper scoring function
 - Oompute score of all *d* records
 - Return the k records with the highest scores

Motivation for Top-k selection problem

Definition

A Top-k algorithm selects the k smallest elements from an array of d elements.

- In huge information space, only *k* most important records are of interest:
 - Define a proper scoring function
 - Compute score of all d records
 - Return the k records with the highest scores
- Example applications include
 - k-nearest neighbors classification
 - Recommender systems
 - Genetic algorithms

Oblivious Top-*k* methods from prior work

- First category: oblivious sorting, then discard d k irrelevant elements
 - Batcher's odd-even merge sort with complexity $\mathcal{O}(d \log^2 d)$ and depth $\mathcal{O}(\log^2 d)$
 - Comparison matrix with complexity $\mathcal{O}(d^2)$ and constant depth

Oblivious Top-k methods from prior work

- First category: oblivious sorting, then discard d k irrelevant elements
 - Batcher's odd-even merge sort with complexity $\mathcal{O}(d \log^2 d)$ and depth $\mathcal{O}(\log^2 d)$
 - Comparison matrix with complexity $\mathcal{O}(d^2)$ and constant depth
- Second category: compute minimum *k* times
 - Complexity $\mathcal{O}(kd)$ and depth $\mathcal{O}(k \log d)$

Our contribution

- Revisit classical oblivious Top-k selection methods (Alekseev '69 and Yao '80)
- Build upon them to build a network that performs well in all scenarios
- Apply the network in k-NN

Alekseev's oblivious Top-k for 2k elements

- Realization using two building blocks:
 - Sorting network of size k
 - Pairwise comparison

Alekseev's oblivious Top-k for 2k elements

- Realization using two building blocks:
 - Sorting network of size k
 - Pairwise comparison

Can be generalized to Top-k out of d elements

Alekseev's oblivious Top-k for d elements

■ Top-k complexity is $\mathcal{O}(d \log^2 k)$ if $S(k) = \mathcal{O}(k \log^2 k)$

Alekseev's oblivious Top-k for d elements

■ Top-k complexity is $\mathcal{O}(d \log^2 k)$ if $S(k) = \mathcal{O}(k \log^2 k)$

Realizes k-merge as pairwise comparison + sorting: complexity k + S(k)

Improvement I: order-preserving merge

- Batcher's odd-even sorting network uses alternative merge
 - Truncate to k-merge by removing redundant comparators
 - Complexity reduction from $\mathcal{O}(k \log^2 k)$ to $\mathcal{O}(k \log k)$

(b) Our 3-merge

Improvement I: oblivious Top-k from truncation

Figure: Network realization for Top-3 of 16 elements

Improvement I: comparison

- Same asymptotic complexity as Alekseev: $\mathcal{O}(d \log^2 k)$ comparators
- Our solution contains fewer comparators in practice

Revisiting Yao's oblivious Top-k

Andrew Yao improved Alekseev's Top-k using an unbalanced recursion

Figure: Selecting Top-4 of 9 elements using Yao's method

Revisiting Yao's oblivious Top-k

Andrew Yao improved Alekseev's Top-k using an unbalanced recursion

Figure: Selecting Top-4 of 9 elements using Yao's method

- $k \ll \sqrt{d}$: complexity is $\mathcal{O}(d \log k)$, better than before
- $k \gg \sqrt{d}$: complexity is asymptotically higher than $\mathcal{O}(d \log^2 k)$

Improvement II: combining our method with Yao's

- Combined network recursively calls our or Yao's method
- Slightly improves on the better method in some cases

Introduction to *k***-Nearest Neighbors**

- Simple machine learning algorithm with broad applications
 - Plagiarism detection, image classification, intrusion detection, ...
 - Lazy learning: no training phase

Introduction to *k***-Nearest Neighbors**

- Three-step method:
 - Compute distance between target vector and d database vectors
 - Find *k* closest database vectors and corresponding labels
 - Class assignment is majority vote of these *k* labels

Secure k-NN threat model

- Client sends encrypted k-NN query to server
- Server returns encrypted classification result

Homomorphic realization of k-NN

Compute distance between target vector and *d* database vectors

Homomorphic realization of k-NN

- Compute distance between target vector and *d* database vectors
- \mathbf{Z} Find k closest database vectors and corresponding labels
 - Top-k network is built from comparators
 - Each comparator uses two programmable bootstrappings

```
(dist_0, label_0) \longrightarrow (dist_i, label_i)
(dist_1, label_1) \longrightarrow (dist_{1-i}, label_{1-i})
using i = arg min(dist_0, dist_1)
```

Homomorphic realization of k-NN

- Compute distance between target vector and *d* database vectors
- \mathbf{Z} Find k closest database vectors and corresponding labels
 - Top-k network is built from comparators
 - Each comparator uses two programmable bootstrappings

$$(dist_0, label_0) \longrightarrow (dist_i, label_i)$$

$$(dist_1, label_1) \longrightarrow (dist_{1-i}, label_{1-i})$$

$$using i = arg min(dist_0, dist_1)$$

Class assignment is majority vote of these k labels

Performance for MNIST dataset

- Implementation in tfhe-rs (https://github.com/kuleuven-cosic/ppknn)
- Difference for larger d is because [ZS21][†] uses a $O(d^2)$ algorithm

k	d	Comparators [ZS21]† Ours		Duration (s) [ZS21] [†] Ours Speedup		
3	40	780	93	30	18	1.7×
	457	104196	1136	4248	202	21.0×
	1000	499500	2493	20837	441	47.2×
[√d]	40	780	143	33	28	1.2×
	457	104196	3412	4402	530	8.3×
	1000	499500	9121	21410	1252	17.1×

 $^{^{\}dagger}$ Zuber and Sirdey: Efficient homomorphic evaluation of k-NN classifiers

Conclusion

- An oblivious Top-k algorithm with complexity
 - $\mathcal{O}(d\log^2 k)$ in general
 - $\mathcal{O}(d \log k)$ for small $k \ll \sqrt{d}$
 - By revisiting classical Top-k selection networks

Conclusion

- An oblivious Top-k algorithm with complexity
 - $\mathcal{O}(d\log^2 k)$ in general
 - $\mathcal{O}(d \log k)$ for small $k \ll \sqrt{d}$
 - By revisiting classical Top-k selection networks
- Implementation of a secure k-NN classifier in TFHE-rs
 - Feasible for database of 1000 records: 47× faster than [ZS21]

Thank you.

ZAMA

Contact and Links

ia.cr/2023/852

github.com/kuleuven-cosic/ppknn

kelong.cong@zama.ai

ZAMA