BUFFing FALCON without Increasing the Signature Size

Samed Düzlü¹ Rune Fiedler² Marc Fischlin²

Presentation for the SAC Workshop in Montréal, Québec August, 28th 2024

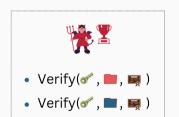
¹University of Regensburg ²TU Darmstadt

Beyond UnForgeability Features

Security of Signature Schemes

- Existential UnForgeability (EUF) is the standard security assumption
 - no adversary can in a reasonable amount of time, create signatures to new messages
- In practice, signatures may be used in ways that EUF is not sufficient
 - An adversary may use maliciously generated public keys
- Beyond UnForgeability Features (BUFF) formalize this defect
 - Message-Bound Signatures (MBS)
 - Exclusive Ownership (EO)
 - Non-Resignability (NR)

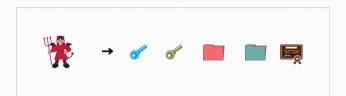
Message-Bound Signatures (MBS)



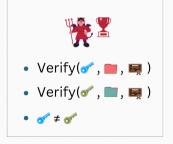
An adversary produces a public key, two distinct messages, and a signature.

The adversary wins if both messages verify.

Malicious-Strong-Universal Exclusive Ownership (M-S-UEO)



An adversary outputs two public keys, two messages, and one signature.

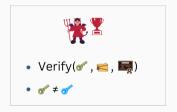


The adversary wins if two respective verifications hold and the public keys are distinct.

Non-Resignability (NR)

An adversary sees a public key and a signature, but not the message itself.

Additionally, the adversary gets auxiliary information about the message.



The adversary wins if the public key is *new* and the verification with the unknown message holds.

(Why) should we care about anything Beyond UnForgeability?

- Requiring BUFF security helps secure protocol designs
- NIST acknowledges the benefit of BUFF security
 - NIST declares BUFF as desirable features for the additional signatures round.

FALCON's BUFF security

FALCON has been analyzed in [CDFFJ21] regarding the BUFF security:

Scheme	M-S-UEO	MBS	NR	Size (B)
FALCON	×	✓	X	1280

The BUFF Transform

Generic transformation to achieve all BUFF notions: The BUFF transform [CDFFJ21]

$$\begin{tabular}{lll} $KGen^*()$ & $Sign^*(sk,msg)$ & $Verify^*(pk,msg,(sig,$$h$$\,))$ \\ \hline $(sk,pk)\leftarrow KGen()$ & $h\leftarrow H(msg,pk)$ & $\overline{h}\leftarrow H(msg,pk)$ \\ \hline $return\ (sk,pk)$ & $sig\leftarrow Sign(sk,$h$$\,)$ & $v\leftarrow Verify(pk,$$\overline{h}$\,,sig)$ \\ \hline $return\ (sig,$h$$)$ & $return\ (v=1\land h=\overline{h}$\,) \\ \hline \end{tabular}$$

$$\textbf{Figure:} \ (\texttt{H}, \Sigma = (\texttt{KGen}, \texttt{Sign}, \texttt{Verify})) \xrightarrow{\texttt{BUFF}} \texttt{BUFF}[\texttt{H}, \Sigma] = (\texttt{KGen}^*, \texttt{Sign}^*, \texttt{Verify}^*)$$

- \Rightarrow Increased signature size by a hash digest h
- ⇒ Efficiency overhead due to hashing of msg, pk

BUFFed FALCON

Using the generic BUFF transform, FALCON achieves BUFF security:

Scheme	M-S-UEO	MBS	NR	Size (B)	Increase
FALCON	X	✓	X	1280	-
FALCON-BUFF	✓	✓	√	1344	5%

BUFFed FALCON

Using the generic BUFF transform, FALCON achieves BUFF security:

Scheme	Sig. target	Sig. format	M-S-UEO	MBS	NR	Size (B)	Increase
FALCON	H(r m)	(r,s)	X	✓	X	1280	-
FALCON-BUFF	H(r pk m)	(r, s, H(r pk m))	✓	✓	√	1344	5%

BUFFed FALCON

- The FALCON Team announced that they would incorporate the BUFF transform in future versions
- Increasing the signature size by a hash digest is the main disadvantage

Research Question

Is it possible to ensure FALCON's BUFF security without increasing the signature size?

BUFF Transform vs. PS-3 Transform

The more lightweight PS-3 transform [PS05] in comparison with the $\frac{\mathsf{BUFF}}{\mathsf{F}}$ transform

$$\textbf{Figure:} \ (\texttt{H}, \Sigma = (\texttt{KGen}, \texttt{Sign}, \texttt{Verify})) \xrightarrow{\mathrm{PS-3}} \mathrm{PS-3} [\texttt{H}, \Sigma] = (\texttt{KGen}^*, \texttt{Sign}^*, \texttt{Verify}^*)$$

- \Rightarrow Increased signature size by a hash digest h
- ⇒ Efficiency overhead due to hashing of msg, pk

Generically, $\operatorname{PS-3}$ transform does not ensure BUFF security

FALCON-PS-3's BUFF security – Main Result

For FALCON, the PS-3 transform *does* ensure BUFF security:

Scheme	Sig. target	Sig. format	M-S-UEO	MBS	NR	Size (B)	Increase
FALCON	H(r m)	(r,s)	X	√	X	1280	-
FALCON-BUFF	H(r pk m)	(r, s, H(r pk m))	√	✓	✓	1344	5%
FALCON-PS-3	H(r pk m)	(r,s)	√	√	✓	1280	0%

Description of FALCON

FALCON **Setup**

FALCON makes use of NTRU lattices and the GPV framework

- Two parameter sets for n = 512 and 1024, respectively
- ullet ϕ an integer polynomial of degree n
- q an integer, q = 12289
- Elements are in $\mathbb{Z}[x]/(q,\phi)$
- Bound β
 - $[\beta]^2 = 34\,034\,726$ and 70 265 242, respectively

FALCON Key Pairs

- Public key $pk = h \in \mathbb{Z}[x]/(q, \phi)$
- Idea of the secret key: a (kind of) trapdoor of multiplication with h
- Secret key sk = (B, T), where
 - $lacksymbol{B} = egin{bmatrix} g & -f \\ G & -F \end{bmatrix}$, with $f,g \in \mathbb{Z}[x]/(q,\phi)$ short and $h = gf^{-1}$
 - T is a FalconTree

FALCON Signature

Given a public key pk = h and a message m, a signature sig is a pair (r, s), where

- r is a random salt
- $s \in \mathbb{Z}[x]/(q,\phi)$, such that

$$\|(\mathbf{H}(r\|m) - hs, s)\|^2 \le \lfloor \beta \rfloor^2 \qquad \qquad \text{ falcon}$$

$$\|(\mathbf{H}(r\|h\|m) - hs, s)\|^2 \le \lfloor \beta \rfloor^2 \qquad \qquad \text{ falcon-ps-3}$$

Details of the signing procedure is not important for BUFF security

FALCON Verification

Given a public key pk = h, a message m, and a signature sig = (r, s), the verification

• Computes
$$c = \begin{cases} H(r||m) & \text{# FALCON} \\ H(r||h||m) & \text{# FALCON-PS-3} \end{cases}$$

• Checks, if $\|(c-hs,s)\|^2 \leq \lfloor \beta \rfloor^2$ holds

FALCON Sign and Verifiv in Pseudocode

Sign(sk, pk, m)

```
21: h \leftarrow pk
22: (\hat{\mathbf{B}}, T) \leftarrow sk
23: r \leftarrow s \{0, 1\}^{320}
24: c \leftarrow H(r||m) // FALCON
          c \leftarrow H(r||h||m) // FALCON-PS-3 34: s_2 \leftarrow \text{Decompress}(s)
25: \mathbf{t} \leftarrow (\mathsf{FFT}(c), \mathsf{FFT}(0)) \cdot \hat{\mathbf{B}}^{-1}
26: \mathbf{s} \leftarrow \mathbf{s} \; \mathsf{FFSampling}(\mathbf{t}, T, |\beta^2|)
27: (s_1, s_2) \leftarrow FFT^{-1}(s)
28: s \leftarrow \text{Compress}(s_2)
29: \operatorname{sig} \leftarrow (r, s)
30: return sig
```

Verify(pk, m, sig)

```
31: h \leftarrow pk
32: (r,s) \leftarrow \text{sig}
33: c \leftarrow H(r||m) // FALCON
        c \leftarrow \mathsf{H}(r||h||m) // FALCON-PS-3
```

- 35: $s_1 \leftarrow c s_2 h$
 - 36 : **return** $[\|(s_1, s_2)\|^2 \le \lfloor \beta^2 \rfloor]$

BUFF Security of FALCON-PS-3

Suppose $n = 2^k$.

Theorem

Assuming H is a random oracle, for any adversary $\mathcal A$ against M-S-UEO security of FALCON-PS-3 that makes q_H queries to the random oracle, the advantage satisfies

$$Adv_{\sf FALCON-PS-3,A}^{\sf M-S-UEO} \le (q_{\sf H}+2)^2 \cdot 2^{(5-k)\frac{n}{2}}.$$

For the two parameter sets of FALCON, the bounds are thus $(q_H + 2)^2 \cdot 2^{-1024}$ for security level I and $(q_H + 2)^2 \cdot 2^{-2560}$ for security level V, respectively.

Further, we show that FALCON-PS-3 satisfies S-UEO in the QROM

An adversary is supposed to find

- two distinct public keys $pk_1 = h_1$ and $pk_2 = h_2$
- two messages m_1 and m_2
- and a signature sig = (r, s)

such that, setting $c_1=\mathsf{H}(r\|h_1\|m_1)$ and $c_2=\mathsf{H}(r\|h_2\|m_2)$, both verifications hold, i.e.,

$$\|(c_1-h_1s,s)\|^2\leq \lfloor\beta\rfloor^2$$

and

$$\|(c_2-h_2s,s)\|^2\leq \lfloor\beta\rfloor^2$$

Idea. Any attack is required to output h_1 , h_2 before c_1 , c_2 are determined.

- We assume that H is a random oracle
- c_1 and c_2 are uniformly sampled after h_1 and h_2 are chosen

It suffices to check:

For any $h_1, h_2 \in \mathbb{Z}[x]/(q, \phi)$, the probability that for uniformly chosen c_1, c_2 , there exists s such that

- $||c_1 h_1 s||^2 \le \lfloor \beta \rfloor^2$
- $||c_2 h_2 s||^2 \le \lfloor \beta \rfloor^2$

holds, is negligible.

Interlude on Lattices

For h_1, h_2 , we define $\Lambda_{h_1,h_2} := \{(h_1z, h_2z) \mid z \in \mathbb{Z}[x]/(q,\phi)\}.$

With $n = 2^k$, we have

Proposition

For uniform $c = (c_1, c_2) \in (\mathbb{Z}[x]/(q, \phi))^2$, it holds

$$\mathbb{P}(\mathsf{dist}(c, \mathsf{\Lambda}_{h_1,h_2}) \leq \sqrt{2}\beta) < 2^{(5-k)\frac{n}{2}}$$

In the application, k = 9 or k = 10, hence the bound is $2^{-1.024}$ and $2^{-2.560}$

Essentially, this follows from the fact that Λ_{h_1,h_2} has rank n, but c is in rank 2n

- The bound is independent of the choice of h_1 , h_2
- An adversary making q_H queries can construct $O(q_H^2)$ pairs $c=(c_1,c_2)$ with the goal to achieve $\mathrm{dist}(c,\Lambda_{h_1,h_2})<\sqrt{2}\beta$
- For each, this bound is satisfied with probability less than $2^{(5-k)\frac{n}{2}}$

MBS and NR of FALCON-PS-3

- MBS security of FALCON-PS-3 is inherited from FALCON
- Can be shown directly for FALCON-PS-3 with the lattice techniques presented here
- NR security proceeds in two steps
 - First, a formal reduction via game hops to assume that the message is never queried to the hash oracle
 - Second, a FALCON specific lattice reduction similar to the presented one

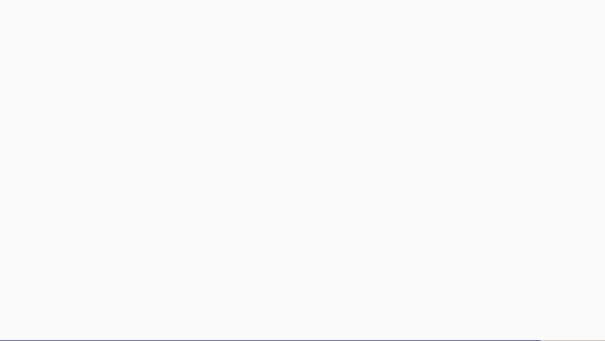
Takeaways – Questions

Scheme	Sig. target	Sig. format	M-S-UEO	MBS	NR	Size (B)
FALCON	H(r m)	(r,s)	X	√	X	1280
FALCON-BUFF	H(r pk m)	(r, s, H(r pk m))	✓	\checkmark	√	1344
FALCON-PS-3	H(r pk m)	(r,s)	✓	√	✓	1280

Questions?

Contact: samed.duzlu@ur.de

BUFFing FALCON without Increasing the Signature Size Düzlü, Fiedler, Fischlin https://ia.cr/2024/710



Use-cases of BUFF notions

MBS Repute signed messages

EO Draft of Let's Encrypt certification protocol

NR DRKey protocol

 Static part of message is publicly known (auxiliary data), the remaining part is unknown (entropy)

M-S-UEO Insecurity of FALCON

- Suppose c = H(r||m)
- ullet and $\mathtt{pk} = h$ and $\mathtt{sig} = (r,s)$ are valid public key and signature for a message m
- Then a new $h' \neq h$ can be found:
 - if s is not invertible, there is $\alpha \neq 0$ with $\alpha s = 0$; then set $h' = h + \alpha$
 - if s is invertible, set $h = cs^{-1}$

NR Insecurity of FALCON

- Suppose c = H(r||m)
- Given pk = h and sig = (r, s), without knowing m, we know c is close to hs
- Then a new $h' \neq h$ can be found:
 - if s is not invertible, there is $\alpha \neq 0$ with $\alpha s = 0$; then set $h' = h + \alpha$
 - otherwise, pick a short s' which is invertible, set $h' = hss'^{-1}$