

Minimize the Randomness in Rasta-Like Designs: How Far Can We Go?

Application to PASTA

Lorenzo Grassi, Fukang Liu, Christian Rechberger, Fabian Schmid, Roman Walch, and Qingju Wang

28.08.2024

- HE scheme \mathcal{E} is set of functions:
 - Setup, Enc, Dec, KeyGen, Eval
- Outsourcing computation on encrypted data
- lacktriangleright E introduces noise and Ciphertext Expansion
 - lacksquare Depending on $\mathcal{E}.$ Eval
- Applications are faced with complex trade-offs
 - Plaintext precision
 - Evaluation complexity
 - Security
 - Performance (Computation, Communication

- HE scheme \mathcal{E} is set of functions:
 - Setup, Enc, Dec, KeyGen, Eval
- Outsourcing computation on encrypted data
- lacktriangleright E introduces noise and Ciphertext Expansion
 - lacksquare Depending on $\mathcal{E}.$ Eval
- Applications are faced with complex trade-offs
 - Plaintext precision
 - Evaluation complexity
 - Security
 - Performance (Computation, Communication

- HE scheme \mathcal{E} is set of functions:
 - Setup, Enc, Dec, KeyGen, Eval
- Outsourcing computation on encrypted data
- lacktriangleright Expansion $\mathcal E$ introduces noise and Ciphertext Expansion
 - Depending on \mathcal{E} .Eval
- Applications are faced with complex trade-offs
 - Plaintext precision
 - Evaluation complexity
 - Security
 - Performance (Computation, Communication

- HE scheme \mathcal{E} is set of functions:
 - Setup, Enc, Dec, KeyGen, Eval
- Outsourcing computation on encrypted data
- lacktriangleright E introduces noise and Ciphertext Expansion
 - Depending on \mathcal{E} .Eval
- Applications are faced with complex trade-offs:
 - Plaintext precision
 - Evaluation complexity
 - Security
 - Performance (Computation, Communication)

- HE scheme \mathcal{E} is set of functions:
 - Setup, Enc, Dec, KeyGen, Eval
- Outsourcing computation on encrypted data
- lacktriangleright E introduces noise and Ciphertext Expansion
 - lacktriangle Depending on $\mathcal{E}.\mathtt{Eval}$
- Applications are faced with complex trade-offs:
 - Plaintext precision
 - Evaluation complexity
 - Security
 - Performance (Computation, Communication)

- HE scheme \mathcal{E} is set of functions:
 - Setup, Enc, Dec, KeyGen, Eval
- Outsourcing computation on encrypted data
- lacktriangleright E introduces noise and Ciphertext Expansion
 - Depending on \mathcal{E} .Eval
- Applications are faced with complex trade-offs:
 - Plaintext precision
 - Evaluation complexity
 - Security
 - Performance (Computation, Communication)

- HE scheme \mathcal{E} is set of functions:
 - Setup, Enc, Dec, KeyGen, Eval
- Outsourcing computation on encrypted data
- lacktriangleright Eintroduces noise and Ciphertext Expansion
 - lacktriangle Depending on $\mathcal{E}.\mathtt{Eval}$
- Applications are faced with complex trade-offs:
 - Plaintext precision
 - Evaluation complexity
 - Security
 - Performance (Computation, Communication)

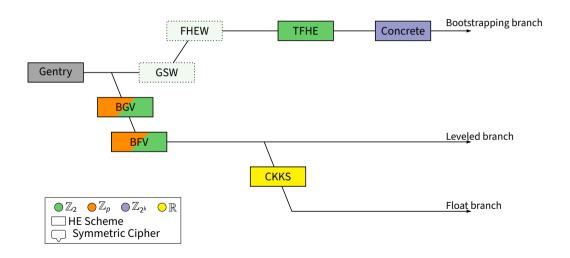
- Consider the polynomial ring $R = \mathbb{Z}[X]/(X^n + 1)$
 - Ciphertext and Plaintext spaces R_q and R_t , where q >> t
- With perfect parallelization, the expansion factor is at least $2 \cdot \lceil \frac{q}{t} \rceil$
 - lacksquare Can be ≥ 100 x for complex use cases
 - Much worse without parallelization
- Solution: Encrypt data with a symmetric cipher, expand after transmission

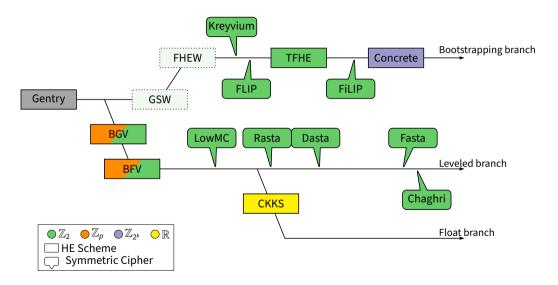
- Consider the polynomial ring $R = \mathbb{Z}[X]/(X^n + 1)$
 - Ciphertext and Plaintext spaces R_q and R_t , where q >> t
- With perfect parallelization, the expansion factor is at least $2 \cdot \lceil \frac{q}{t} \rceil$
 - lacksquare Can be ≥ 100 x for complex use cases
 - Much worse without parallelization
- Solution: Encrypt data with a symmetric cipher, expand after transmission

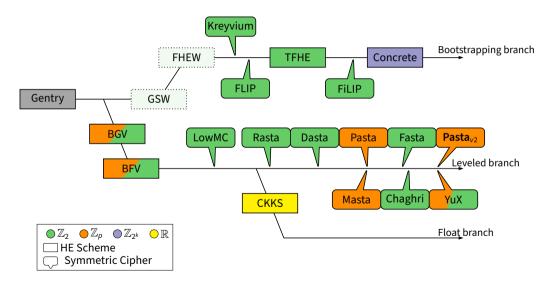
- Consider the polynomial ring $R = \mathbb{Z}[X]/(X^n + 1)$
 - Ciphertext and Plaintext spaces R_q and R_t , where q >> t
- With perfect parallelization, the expansion factor is at least $2 \cdot \lceil \frac{q}{t} \rceil$
 - Can be $\geq 100x$ for complex use cases
 - Much worse without parallelization
- Solution: Encrypt data with a symmetric cipher, expand after transmission

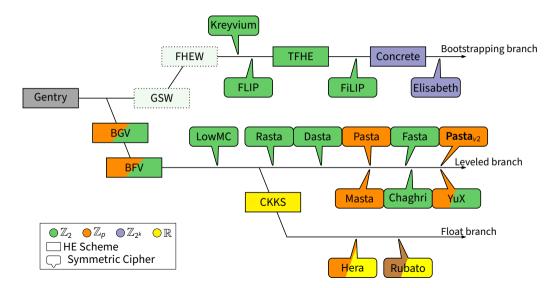
- Consider the polynomial ring $R = \mathbb{Z}[X]/(X^n + 1)$
 - Ciphertext and Plaintext spaces R_q and R_t , where q >> t
- With perfect parallelization, the expansion factor is at least 2 \cdot $\lceil rac{q}{t} \rceil$
 - Can be $\geq 100x$ for complex use cases
 - Much worse without parallelization
- Solution: Encrypt data with a symmetric cipher, expand after transmission

Ciphers for HHE





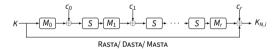




Design of Pasta_{v2}

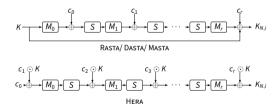
Randomized Stream-Ciphers

- RASTA:
 - Random invertible matrices
 - Random round constants
- DASTA:
 - Improved matrix generation
- MASTA:
 - RASTA strategy applied to \mathbb{F}_p



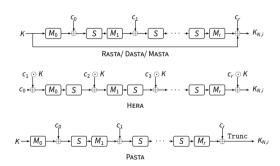
Randomized Stream-Ciphers

- HERA:
 - Fixed matrices
 - Randomized round keys
 - Small statesize



Randomized Stream-Ciphers

- PASTA:
 - Matrices with high branch number
 - Truncation of output
 - Geared towards HE evaluation



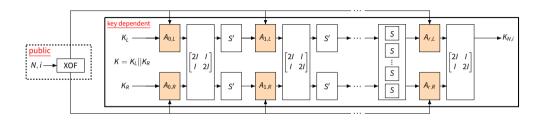
Randomized Stream-Ciphers

- PASTA:
 - Matrices with high branch number
 - Truncation of output
 - Geared towards HE evaluation

Randomization dominates encryption cost

$$K \longrightarrow M_0 \longrightarrow S \longrightarrow M_1 \longrightarrow S \longrightarrow M_r \longrightarrow S \longrightarrow M_r \longrightarrow Trunc \longrightarrow K_N$$
PASTA

The Pasta Design Strategy – Linear Layer

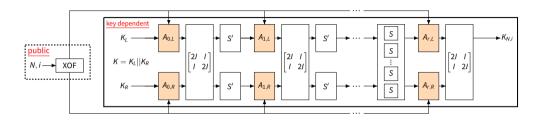


Linear Layer:

$$\begin{bmatrix} \vec{y}_L \\ \vec{y}_R \end{bmatrix} = \begin{bmatrix} 2 \cdot I & I \\ I & 2 \cdot I \end{bmatrix} \times \begin{bmatrix} M_{j,L,N,i}(\vec{x}_L) + c_{j,L,N,i} \\ M_{j,R,N,i}(\vec{x}_R) + c_{j,R,N,i} \end{bmatrix}$$

Different random matrices and constants in each round

The Pasta Design Strategy – Linear Layer

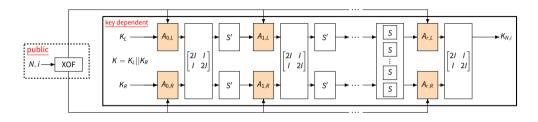


Linear Layer:

$$\begin{bmatrix} \vec{y}_L \\ \vec{y}_R \end{bmatrix} = \begin{bmatrix} 2 \cdot I & I \\ I & 2 \cdot I \end{bmatrix} \times \begin{bmatrix} M_{j,L,N,i}(\vec{x}_L) + c_{j,L,N,i} \\ M_{j,R,N,i}(\vec{x}_R) + c_{j,R,N,i} \end{bmatrix}$$

Different random matrices and constants in each round

The Pasta Design Strategy – Linear Layer

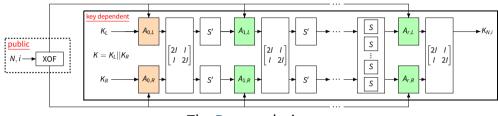


Linear Layer:

$$\begin{bmatrix} \vec{y}_L \\ \vec{y}_R \end{bmatrix} = \begin{bmatrix} 2 \cdot I & I \\ I & 2 \cdot I \end{bmatrix} \times \begin{bmatrix} M_{j,L,N,i}(\vec{x}_L) + C_{j,L,N,i} \\ M_{j,R,N,i}(\vec{x}_R) + C_{j,R,N,i} \end{bmatrix}$$

Different random matrices and constants in each round.

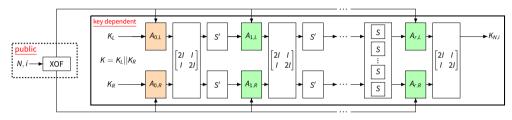
The Birth of PASTA_{v2}



The ${\sf PASTA}_{\tt v2}$ design

Replace some random with fixed affine layers

The Birth of PASTA_{v2}

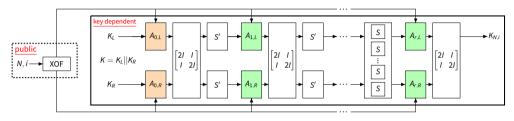


The PASTA_{v2} design

	Pasta	$PASTA_{v2}$
One-time Setup	-	244 052
Affine Gen	23 550	6 200
Setup/Block	246 995	13 099

Table: Setup generation cost in CPU cycles

The Birth of PASTA_{v2}



The PASTA_{v2} design

$$\mathsf{PASTA}_{v2} - \pi(x, N, i) = A_r \circ S \circ A_{r-1} \circ S' \circ \cdots \circ A_1 \circ S' \circ A_{0,N,i}(x)$$

Randomized Linear Layer

- Define fixed $M_{f,L}$ and $M_{f,R}$ as in PASTA
- During encryption, sample 2t random elements $(\beta_1, \ldots, \beta_{2t})$ and generate

$$M_{0,L,N,i} = M_{f,L} \times \operatorname{diag}(b_1, \dots, \beta_t)$$

 $M_{0,R,N,i} = M_{f,R} \times \operatorname{diag}(b_{t+1}, \dots, \beta_{2t})$

- Only 4t random elements per encryption
- Reduced to 2t field multiplications

Randomized Linear Layer

- Define fixed $M_{f,L}$ and $M_{f,R}$ as in PASTA
- During encryption, sample 2t random elements $(\beta_1, \ldots, \beta_{2t})$ and generate:

$$M_{0,L,N,i} = M_{f,L} \times \operatorname{diag}(b_1, \dots, \beta_t)$$

 $M_{0,R,N,i} = M_{f,R} \times \operatorname{diag}(b_{t+1}, \dots, \beta_{2t})$

- Only 4t random elements per encryption
- Reduced to 2t field multiplications

Randomized Linear Layer

- Define fixed $M_{f,L}$ and $M_{f,R}$ as in Pasta
- During encryption, sample 2t random elements $(\beta_1, \ldots, \beta_{2t})$ and generate:

$$\begin{aligned} & \textit{M}_{0,\textit{L},\textit{N},i} = \textit{M}_{\textit{f},\textit{L}} \times \mathsf{diag}(\textit{b}_{1},\ldots,\textit{\beta}_{t}) \\ & \textit{M}_{0,\textit{R},\textit{N},i} = \textit{M}_{\textit{f},\textit{R}} \times \mathsf{diag}(\textit{b}_{t+1},\ldots,\textit{\beta}_{2t}) \end{aligned}$$

- Only 4t random elements per encryption
- Reduced to 2t field multiplications

Fixed Linear Layer

We define the fixed affine layers as:

$$A_{j}(x) = \begin{bmatrix} 2 \cdot I & I \\ I & 2 \cdot I \end{bmatrix} \times \begin{bmatrix} M(x_{L}) + c_{j,L} \\ M(x_{R}) + c_{j,R} \end{bmatrix}$$

The fixed MDS matrix M is a random cauchy matrix

Fixed Linear Layer

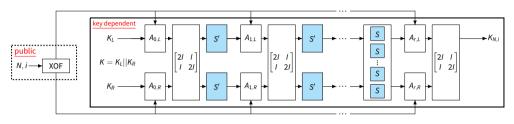
We define the fixed affine layers as:

$$A_{j}(x) = \begin{bmatrix} 2 \cdot I & I \\ I & 2 \cdot I \end{bmatrix} \times \begin{bmatrix} M(x_{L}) + c_{j,L} \\ M(x_{R}) + c_{j,R} \end{bmatrix}$$

The fixed MDS matrix M is a random cauchy matrix

We provide a proof that the branch number of A_j is t + 2

The Non-Linear Layers



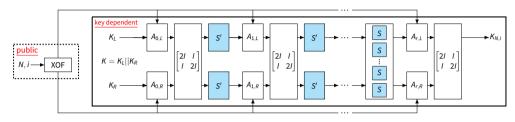
- Feistel-like S-box:
 - Low-degree ⇒ low depth

$$[S'(\vec{x})]_i = \begin{cases} x_0 & \text{if } i = 0\\ x_i + (x_{i-1})^2 & \text{else} \end{cases}$$

- Cube S-box:
 - Higher degree
 - Only last round

$$S(x) = x^3$$

The Non-Linear Layers



- Feistel-like S-box:
 - Low-degree ⇒ low depth

$$[S'(\vec{x})]_i = \begin{cases} x_0 & \text{if } i = 0\\ x_i + (x_{i-1})^2 & \text{else} \end{cases}$$

- Cube S-box:
 - Higher degree
 - Only last round

$$S(x) = x^3$$

Security Analysis

- Randomization provides resistance against:
 - Differential, truncated differential, and impossible differential attacks
 - Cube attacks and higher order differentials
- Linear Cryptanalysis breaking Pasta_{v2} reduced to LWE
 - High minimum of active non-linear operations
- Algebraic Attacks set up independent variables for all monomials
 - Experiments showed a high number of monomials
 - Randomizing only the first linear layer suffices
 - Peeling off the first layer would affect HERA and PASTA

Security Analysis

- Randomization provides resistance against:
 - Differential, truncated differential, and impossible differential attacks
 - Cube attacks and higher order differentials
- Linear Cryptanalysis breaking Pasta_{v2} reduced to LWE
 - High minimum of active non-linear operations
- Algebraic Attacks set up independent variables for all monomials
 - Experiments showed a high number of monomials
 - Randomizing only the first linear layer suffices
 - Peeling off the first layer would affect HERA and PASTA

Security Analysis

- Randomization provides resistance against:
 - Differential, truncated differential, and impossible differential attacks
 - Cube attacks and higher order differentials
- Linear Cryptanalysis breaking PASTA_{v2} reduced to LWE
 - High minimum of active non-linear operations
- Algebraic Attacks set up independent variables for all monomials
 - Experiments showed a high number of monomials
 - Randomizing only the first linear layer suffices
 - Peeling off the first layer would affect HERA and PASTA

Pasta_{v2} Instances

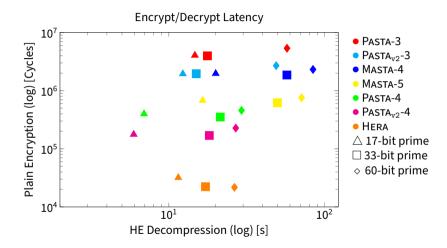
We specify instances with the same security level as PASTA

Instance	r	# Key Words	# Plain/Cipher Words	# random words
Pasta _{v2} -3	3	256	128	512
Pasta _{v2} -3 Pasta _{v2} -4	4	64	32	128
Pasta-3	3	256	128	2048
Pasta-4	4	64	32	640

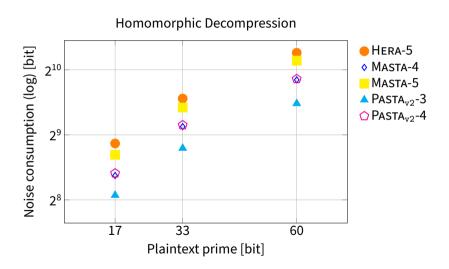
Table: 128 bit security instances of $\mathsf{PASTA}_{\mathtt{v}2}$ and PASTA

Benchmarks

Overall Performance



Noise development



Software Implementation - Overview

- We provide open-source implementation
 - Integration with HHE benchmarking framework¹
 - HE Decompression implementation in SEAL and HElib
 - C++ plaintext implementation for encryption
- More complex use case evaluation in the paper
 - Similar results for respective Pasta and Pasta_{v2} instances
 - Less noise leads to smaller parameters and better performance

https://github.com/IAIK/hybrid-HE-framework/

Software Implementation - Overview

- We provide open-source implementation
 - Integration with HHE benchmarking framework¹
 - HE Decompression implementation in SEAL and HElib
 - C++ plaintext implementation for encryption
- More complex use case evaluation in the paper
 - Similar results for respective Pasta and Pasta_{v2} instances
 - Less noise leads to smaller parameters and better performance

https://github.com/IAIK/hybrid-HE-framework/

Summary

- Pasta_{v2} improves Pasta
 - Faster Encryption and slightly faster Homomorphic decompression
 - Provably high branch number in fixed linear layers
 - Same security level for a fraction of required random words
- This strategy can be applied to RASTA
- We minimize randomness in Pasta_{v2}
 - We encourage further cryptanalysis of PASTA_{v2}
 - Additional analysis helps understanding RASTA-like designs

Summary

- PASTA_{v2} improves PASTA
 - Faster Encryption and slightly faster Homomorphic decompression
 - Provably high branch number in fixed linear layers
 - Same security level for a fraction of required random words
- This strategy can be applied to RASTA
- We minimize randomness in Pasta_{v2}
 - We encourage further cryptanalysis of Pasta_{v2}
 - Additional analysis helps understanding RASTA-like designs

Summary

- Pasta_{v2} improves Pasta
 - Faster Encryption and slightly faster Homomorphic decompression
 - Provably high branch number in fixed linear layers
 - Same security level for a fraction of required random words
- This strategy can be applied to RASTA
- We minimize randomness in Pasta_{v2}
 - We encourage further cryptanalysis of Pasta_{v2}
 - Additional analysis helps understanding RASTA-like designs

Minimize the Randomness in Rasta-Like Designs: How Far Can We Go?

Application to PASTA

Lorenzo Grassi, Fukang Liu, Christian Rechberger, Fabian Schmid, Roman Walch, and Qingju Wang

28.08.2024