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Homomorphic Encryption
s HE scheme € is set of functions:
m  Setup, Enc,Dec,KeyGen, Eval

®=  Qutsourcing computation on encrypted data
= £introduces noise and Ciphertext Expansion J ﬁ
m  Dependingon £.Eval

= Applications are faced with complex trade-offs:

m  Plaintext precision
= Evaluation complexity
= Security

m  Performance (Computation, Communication)
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Parameters and Ciphertext Expansion
= Consider the polynomial ring R = Z[X]| /(X" + 1)
= Ciphertext and Plaintext spaces R, and R;, where g >> ¢

= With perfect parallelization, the expansion factor is at least 2 - [ 7]

= Canbe > 100x for complex use cases

m  Much worse without parallelization

®  Solution: Encrypt data with a symmetric cipher, expand after transmission
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Background: Design of RASTA-like Ciphers

Randomized Stream-Ciphers
= RASTA:

m  Random invertible matrices

m  Random round constants
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m DASTA; KT}P}:H o (S P M Ky
= Improved matrix generation RasTA/ DASTA/ MASTA
= MASTA:

= RasTAstrategy applied to I,
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Background: Design of RASTA-like Ciphers

Randomized Stream-Ciphers

HERA:
m  Fixed matrices
= Randomized round keys
= Small statesize
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Background: Design of RASTA-like Ciphers

Randomized Stream-Ciphers
m  PASTA:
m  Matrices with high branch number
®=  Truncation of output

m  Geared towards HE evaluation

Randomization dominates encryption cost
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The PASTA Design Strategy - Linear Layer
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The PASTA Design Strategy - Linear Layer

key dependent
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Linear Layer:
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= Different random matrices and constants in each round.



The Birth of PASTA,5
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The PASTA,, design

= Replace some random with fixed affine layers
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The Birth of PASTA,5
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| PASTA  PASTA,,

One-time Setup - 244052
Affine Gen 23550 6200
Setup/Block 246995 13099

Table: Setup generation cost in CPU cycles



The Birth of PASTA,5

key dependent
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The PASTA,, design
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Randomized Linear Layer

= Define fixed My, and My as in PASTA

= During encryption, sample 2t random elements (31, . . ., 35t) and generate:

Mo g = Msg x diag(beyi, ..., Far)

MO.L,N.i = Mf,L X dlag(bl C ,/7)1‘)

= Only 4t random elements per encryption

= Reduced to 2t field multiplications
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Fixed Linear Layer

= We define the fixed affine layers as:
) . 21 / M(XL)+Cj7L
Alx) = [ 2. /} x [M(XR) + G

= The fixed MDS matrix M is a random cauchy matrix
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Fixed Linear Layer

= We define the fixed affine layers as:
) . 21 / M(XL)+Cj7L
Alx) = [ 2. /} x [M(XR) +Gr

= The fixed MDS matrix M is a random cauchy matrix

We provide a proof that the branch number of A;is t + 2
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The Non-Linear Layers

key dependent

K ——»

K = Ki||Kr

Ky ——»

Aos

Aor

201
121

{

201

o —

|

201
121

]

—— K,

18



The Non-Linear Layers

key dependent
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= Feistel-like S-box:

= Cube S-box:

= Low-degree = low depth =  Higher degree

(Sl = {
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Xi + (Xi-1)?

ifi=0 = Only last round

else S(x) =x°
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Security Analysis

= Randomization provides resistance against:

m  Differential, truncated differential, and impossible differential attacks

m  Cube attacks and higher order differentials
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Security Analysis

= Randomization provides resistance against:

m  Differential, truncated differential, and impossible differential attacks

m  Cube attacks and higher order differentials
m  Linear Cryptanalysis breaking PASTA,5 reduced to LWE
= High minimum of active non-linear operations
= Algebraic Attacks set up independent variables for all monomials

= Experiments showed a high number of monomials
®  Randomizing only the first linear layer suffices

m  Peeling off the first layer would affect HERA and PasTA
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PASTA,, Instances

= We specify instances with the same security level as PASTA

Instance | r | #Key Words | # Plain/Cipher Words | # random words
PASTA,»-3 | 3 256 128 512
PASTA»-4 | 4 64 32 128
PASTA-3 | 3 256 128 2048
PASTA-4 | 4 64 32 640

Table: 128 bit security instances of PASTA,» and PASTA
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Noise development
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Software Implementation - Overview

= We provide open-source implementation

= Integration with HHE benchmarking framework?
m  HE Decompression implementation in SEAL and HElib

m  C++ plaintext implementation for encryption

https://github.com/IAIK/hybrid-HE-framework/

17/18


https://github.com/IAIK/hybrid-HE-framework/

Software Implementation - Overview

= We provide open-source implementation

= Integration with HHE benchmarking framework?
m  HE Decompression implementation in SEAL and HElib

m  C++ plaintext implementation for encryption
= More complex use case evaluation in the paper

= Similar results for respective PASTA and PASTA,5 instances

m  Lessnoise leads to smaller parameters and better performance

https://github.com/IAIK/hybrid-HE-framework/
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Summary

®m  PASTA,, improves PASTA

m  Faster Encryption and slightly faster Homomorphic decompression
m  Provably high branch number in fixed linear layers

m  Same security level for a fraction of required random words

18/18



Summary

®m  PASTA,, improves PASTA

m  Faster Encryption and slightly faster Homomorphic decompression
m  Provably high branch number in fixed linear layers

m  Same security level for a fraction of required random words

®  This strategy can be applied to RASTA

18/18



Summary

®m  PASTA,, improves PASTA
m  Faster Encryption and slightly faster Homomorphic decompression
m  Provably high branch number in fixed linear layers
m  Same security level for a fraction of required random words
®  This strategy can be applied to RASTA
®  We minimize randomness in PASTA,2
= We encourage further cryptanalysis of PASTA,

= Additional analysis helps understanding RAsTA-like designs
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