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Homomorphic Encryption
HE scheme E is set of functions:

Setup, Enc, Dec, KeyGen, Eval

Outsourcing computation on encrypted data
E introduces noise and Ciphertext Expansion

Depending on E .Eval

Applications are faced with complex trade-offs:

Plaintext precision

Evaluation complexity

Security

Performance (Computation, Communication)
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Parameters and Ciphertext Expansion

Consider the polynomial ring R = Z[X]/(Xn + 1)

Ciphertext and Plaintext spaces Rq and Rt, where q >> t

With perfect parallelization, the expansion factor is at least 2 · ⌈qt ⌉

Can be ≥ 100x for complex use cases

Much worse without parallelization

Solution: Encrypt data with a symmetric cipher, expand after transmission
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Ciphers for HHE
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A Zoo of Ciphers for HHE

Gentry GSW

FHEW

BGV

BFV

Bootstrapping branch

Leveled branch

TFHE Concrete

CKKS

Float branch

Kreyvium

FLIP FiLIP

LowMC Rasta Dasta Fasta

Chaghri

Z2 Zp Z2k R
HE Scheme
Symmetric Cipher
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Design of PASTAv2
�



Background: Design of RASTA-like Ciphers

Randomized Stream-Ciphers
RASTA:

Random invertible matrices

Random round constants

DASTA:

Improved matrix generation

MASTA:

RASTA strategy applied to Fp

K M0 M1 MrS S S· · ·⊕ ⊕ ⊕

c0 c1 cr

RASTA/ DASTA/ MASTA

KN,i
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Background: Design of RASTA-like Ciphers

Randomized Stream-Ciphers
HERA:

Fixed matrices

Randomized round keys
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Background: Design of RASTA-like Ciphers

Randomized Stream-Ciphers
PASTA:

Matrices with high branch number

Truncation of output

Geared towards HE evaluation

Randomization dominates encryption cost

K M0 M1 MrS S S· · ·⊕ ⊕ ⊕

c0 c1 cr
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The PASTA Design Strategy – Linear Layer

XOFN, i

public
KL A0,L

K = KL||KR

KR A0,R

[
2I I
I 2I

] S′

S′

A1,L

A1,R

[
2I I
I 2I

] S′

S′

. . .

. . .

S

S
...
S

S

Ar,L

Ar,R

[
2I I
I 2I

] KN,i

key dependent

. . .

. . .

Linear Layer: [
y⃗L
y⃗R

]
=

[
2 · I I
I 2 · I

]
×

[
Mj,L,N,i(⃗xL) + cj,L,N,i
Mj,R,N,i(⃗xR) + cj,R,N,i

]
Different random matrices and constants in each round.
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The Birth of PASTAv2

XOFN, i
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. . .

. . .

The PASTAv2 design

Replace some random with fixed affine layers
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The PASTAv2 design

PASTA PASTAv2
One-time Setup - 244 052

Affine Gen 23 550 6 200
Setup/Block 246 995 13 099

Table: Setup generation cost in CPU cycles
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The Birth of PASTAv2

XOFN, i

public
KL A0,L

K = KL||KR

KR A0,R
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. . .
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S
...
S

S

Ar,L

Ar,R

[
2I I
I 2I

] KN,i

key dependent

. . .

. . .

The PASTAv2 design

PASTAv2-π(x,N, i) = Ar ◦ S ◦ Ar−1 ◦ S′ ◦ · · · ◦ A1 ◦ S′ ◦ A0,N,i(x)
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Randomized Linear Layer

Define fixedMf ,L andMf ,R as in PASTA
During encryption, sample 2t random elements (β1, . . . , β2t) and generate:

M0,L,N,i = Mf ,L × diag(b1, . . . , βt)

M0,R,N,i = Mf ,R × diag(bt+1, . . . , β2t)

Only 4t random elements per encryption
Reduced to 2t field multiplications

10 / 18



Randomized Linear Layer

Define fixedMf ,L andMf ,R as in PASTA
During encryption, sample 2t random elements (β1, . . . , β2t) and generate:

M0,L,N,i = Mf ,L × diag(b1, . . . , βt)

M0,R,N,i = Mf ,R × diag(bt+1, . . . , β2t)

Only 4t random elements per encryption
Reduced to 2t field multiplications

10 / 18



Randomized Linear Layer

Define fixedMf ,L andMf ,R as in PASTA
During encryption, sample 2t random elements (β1, . . . , β2t) and generate:

M0,L,N,i = Mf ,L × diag(b1, . . . , βt)

M0,R,N,i = Mf ,R × diag(bt+1, . . . , β2t)

Only 4t random elements per encryption
Reduced to 2t field multiplications

10 / 18



Fixed Linear Layer

We define the fixed affine layers as:

Aj(x) =
[

2 · I I
I 2 · I

]
×
[
M(xL) + cj,L
M(xR) + cj,R

]

The fixed MDS matrix M is a random cauchy matrix
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We define the fixed affine layers as:

Aj(x) =
[

2 · I I
I 2 · I

]
×
[
M(xL) + cj,L
M(xR) + cj,R

]

The fixed MDS matrix M is a random cauchy matrix

We provide a proof that the branch number of Aj is t + 2
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The Non-Linear Layers

XOFN, i

public
KL A0,L

K = KL||KR

KR A0,R

[
2I I
I 2I

] S′

S′

A1,L

A1,R

[
2I I
I 2I

] S′

S′

. . .

. . .

S

S
...
S

S

Ar,L

Ar,R

[
2I I
I 2I

] KN,i

key dependent

. . .

. . .

Feistel-like S-box:

Low-degree ⇒ low depth

[S′(⃗x)]i =

{
x0 if i = 0
xi + (xi−1)

2 else

Cube S-box:

Higher degree

Only last round

S(x) = x3
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Security Analysis

Randomization provides resistance against:

Differential, truncated differential, and impossible differential attacks

Cube attacks and higher order differentials

Linear Cryptanalysis breaking PASTAv2 reduced to LWE

High minimum of active non-linear operations

Algebraic Attacks set up independent variables for all monomials

Experiments showed a high number of monomials

Randomizing only the first linear layer suffices

Peeling off the first layer would affect HERA and PASTA
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PASTAv2 Instances

We specify instances with the same security level as PASTA

Instance r # Key Words # Plain/Cipher Words # random words

PASTAv2-3 3 256 128 512
PASTAv2-4 4 64 32 128

PASTA-3 3 256 128 2048
PASTA-4 4 64 32 640

Table: 128 bit security instances of PASTAv2 and PASTA

14 / 18
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Overall Performance
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Noise development
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Software Implementation - Overview

We provide open-source implementation

Integration with HHE benchmarking framework1

HE Decompression implementation in SEAL and HElib

C++ plaintext implementation for encryption

More complex use case evaluation in the paper

Similar results for respective PASTA and PASTAv2 instances
Less noise leads to smaller parameters and better performance

1https://github.com/IAIK/hybrid-HE-framework/
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Summary

PASTAv2 improves PASTA

Faster Encryption and slightly faster Homomorphic decompression

Provably high branch number in fixed linear layers

Same security level for a fraction of required random words

This strategy can be applied to RASTA
We minimize randomness in PASTAv2

We encourage further cryptanalysis of PASTAv2
Additional analysis helps understanding RASTA-like designs
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