

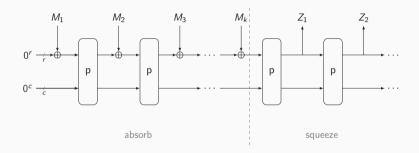
Generic Security of the Ascon Mode: On the Power of Key Blinding

<u>Charlotte Lefevre</u>, Bart Mennink

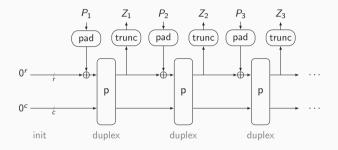
Radboud University (The Netherlands)

Selected Areas in Cryptography

30 August 2024



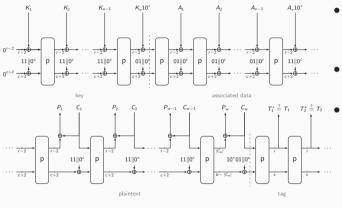
Authenticated Encryption with Associated Data


Conventional security: confidentiality (indistinguishability of ciphertexts) and authenticity (unforgeability)

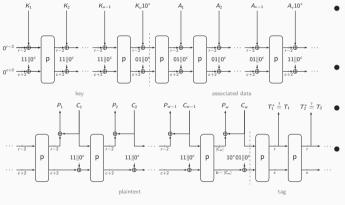
The Sponge Construction [BDPV07]

- State of size b = r + c
- $M_1 \| \cdots \| M_k$ is the message injectively padded into r-bit blocks

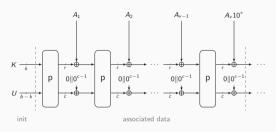
The Duplex Construction [BDPV11]


Interleaved absorption and squeezing phases

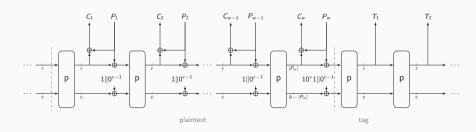
Application: SpongeWrap [BDPV11]


- Key, associated data, plaintext fed into duplex with domain separators
- Encryption: outer parts used as one-time pad

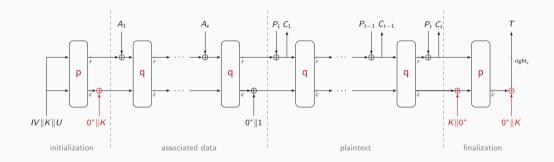
Application: SpongeWrap [BDPV11]


- Key, associated data, plaintext fed into duplex with domain separators
- Encryption: outer parts used as one-time pad
- Decryption: ciphertext overwrites outer part of the state

Application: SpongeWrap [BDPV11]



- Key, associated data, plaintext fed into duplex with domain separators
- Encryption: outer parts used as one-time pad
- Decryption: ciphertext overwrites outer part of the state
 - Security derived from the indifferentiability of the sponge [BDPV08]


Application: MonkeySpongeWrap [Men23]

- Closer to modern duplex-based AEADs
- State initialized with key and nonce
- Security follows from a generic analysis done in [DMV17]

Ascon-AEAD Mode

- Additional key blindings at initialization and finalization
- Outer and inner permutations p and q differ

• Generic results on the duplex [DMV17] do not cover Ascon-AEAD mode

Generic results on the duplex [DMV17] do not cover Ascon-AEAD mode

This Work

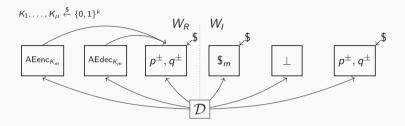
- Multi-user analysis of confidentiality of Ascon-AEAD mode
- Multi-user analysis of authenticity of Ascon-AEAD mode:
 - Nonce-respecting setting
 - Nonce-misuse setting

Generic results on the duplex [DMV17] do not cover Ascon-AEAD mode

This Work

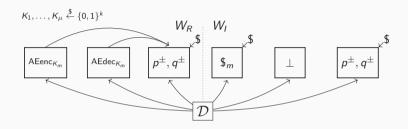
- Multi-user analysis of confidentiality of Ascon-AEAD mode
- Multi-user analysis of authenticity of Ascon-AEAD mode:
 - Nonce-respecting setting
 - Nonce-misuse setting
 - Under state recovery with a tailored security model

Generic results on the duplex [DMV17] do not cover Ascon-AEAD mode


This Work

- Multi-user analysis of confidentiality of Ascon-AEAD mode
- Multi-user analysis of authenticity of Ascon-AEAD mode:
 - Nonce-respecting setting
 - Nonce-misuse setting
 - Under state recovery with a tailored security model

Independent Work


• Chakraborty et al. [CDN23]: tight bound on confidentiality and authenticity in the nonce-respecting case (p=q)

Security Model: Nonce-Based AE Security

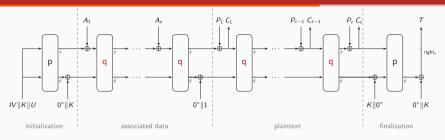
ullet Distinguishing advantage: $\mathbf{Adv}^{\mu\text{-ae}}_{\mathrm{Ascon}}(\mathcal{D})$

Security Model: Nonce-Based AE Security

- Distinguishing advantage: $\mathbf{Adv}^{\mu\text{-ae}}_{\mathrm{Ascon}}(\mathcal{D})$
- Resources of the adversary:
 - Q_E encryption queries with M_E blocks
 - Q_D decryption queries with M_D blocks
- $M = M_E + M_D$
- N primitive queries

Security Model: Separation into Confidentiality and Authenticity

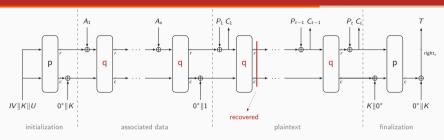
- Confidentiality: remove oracle access to $(AEdec_{K_m})_m / \bot$
- $\bullet \ \, \mathsf{Authenticity:} \ \, \mathbf{Pr} \left(\mathcal{D} \left[\left(\mathsf{AEenc}_{K_m}^{p,q} \right)_m, \left(\mathsf{AEdec}_{K_m}^{p,q} \right)_m, \left(p^\pm, q^\pm \right) \right] \ \, \mathsf{forges} \right)$


Security Model: Separation into Confidentiality and Authenticity

- Confidentiality: remove oracle access to $(AEdec_{K_m})_m/\bot$
- $\bullet \ \, \mathsf{Authenticity:} \ \, \mathbf{Pr} \left(\mathcal{D} \left[\left(\mathsf{AEenc}_{\mathcal{K}_m}^{p,q} \right)_m, \left(\mathsf{AEdec}_{\mathcal{K}_m}^{p,q} \right)_m, \left(p^{\pm}, q^{\pm} \right) \right] \ \, \mathsf{forges} \right)$
- We have

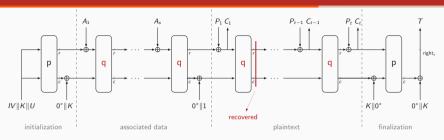
$$\mathsf{Adv}^{\mu\text{-ae}}_{\mathrm{Ascon}}(\mathcal{D}) \leq \mathsf{Adv}^{\mu\text{-conf}}_{\mathrm{Ascon}}(\mathcal{D}') + \mathsf{Adv}^{\mu\text{-auth}}_{\mathrm{Ascon}}(\mathcal{D}'')$$

with \mathcal{D}' and \mathcal{D}'' having similar complexities than \mathcal{D}


Security Model: Authenticity Under State Recovery (1)

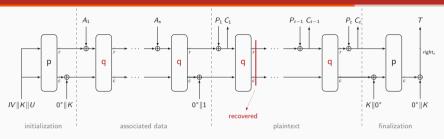
Attack Setting

• Adversary may somehow recover any inner state


Security Model: Authenticity Under State Recovery (1)

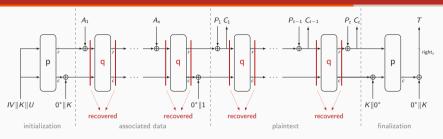
Attack Setting

• Adversary may somehow recover any inner state


Security Model: Authenticity Under State Recovery (1)

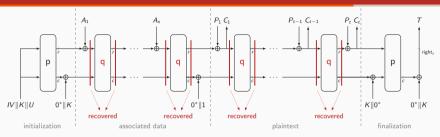
Attack Setting

- Adversary may somehow recover any inner state
- Ascon-AEAD designed to still achieve authenticity in this setting


Authenticity Under State Recovery (2)

Model

• Model inspired by permutation-based leakage resilience [DM19a, DM19b]


Authenticity Under State Recovery (2)

Model

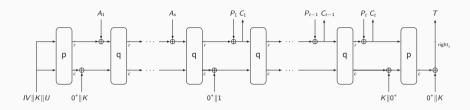
- Model inspired by permutation-based leakage resilience [DM19a, DM19b]
- Without loss of generality: every encryption/decryption query leaks the entire b-bit state of all evaluations of inner permutation q

Authenticity Under State Recovery (2)

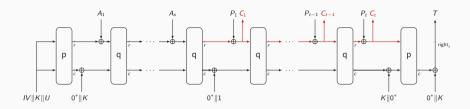
Model

- Model inspired by permutation-based leakage resilience [DM19a, DM19b]
- Without loss of generality: every encryption/decryption query leaks the entire b-bit state of all evaluations of inner permutation q
- MonkeySpongeWrap-style AEAD does not guarantee security in this setting

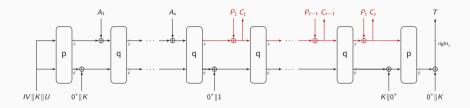
Security Results

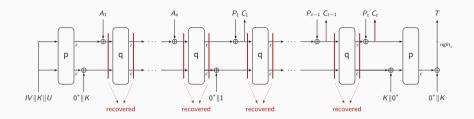

Property	Setting	Security bound (simplified)
Confidentiality	nonce-respecting	$\mathcal{O}\left(rac{\mu(N+\mu)}{2^k}+rac{N^2}{2^b}+rac{N}{2^c} ight)$
	nonce-misuse state recovery	_
Authenticity	nonce-respecting	$\mathcal{O}\left(\frac{Q_D}{2^t} + \frac{\mu(N+\mu)}{2^k} + \frac{M_EN}{2^b} + \frac{M_DN}{2^c}\right)$
	nonce-misuse	$\mathcal{O}\left(\frac{Q_D}{2^{\mathrm{F}}} + \frac{\mu(N+\mu)}{2^k} + \frac{M_EN}{2^b} + \frac{M_DN}{2^c}\right)$ $\mathcal{O}\left(\frac{Q_D}{2^{\mathrm{F}}} + \frac{\mu(N+\mu)}{2^k} + \frac{MN}{2^c}\right)$ $\mathcal{O}\left(\frac{Q_D}{2^{\mathrm{F}}} + \frac{\mu(N+\mu)}{2^k} + \frac{N^2}{2^c}\right)$
	state recovery	$\mathcal{O}\left(\frac{Q_D}{2^t} + \frac{\mu(N+\mu)}{2^k} + \frac{N^2}{2^c}\right)$

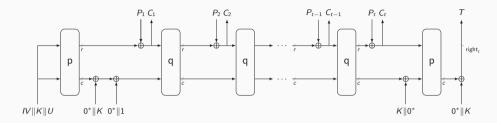
• Nonce-misuse and state recovery authenticity degrade in the last terms

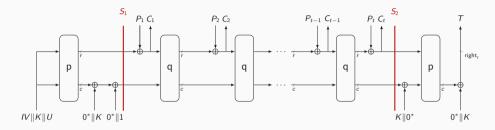

Security Results

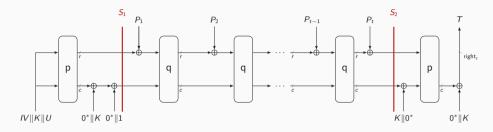
Property	Setting	Security bound (simplified)
Confidentiality	nonce-respecting	$\mathcal{O}\left(rac{\mu(N+\mu)}{2^k}+rac{NM}{2^b}+rac{N}{2^c} ight)$
	nonce-misuse	
	state recovery	
Authenticity	nonce-respecting	$\mathcal{O}\left(rac{Q_D}{2^t} + rac{\mu(N+\mu)}{2^k} + rac{MN}{2^b} + rac{N}{2^c} ight) \ \mathcal{O}\left(rac{Q_D}{2^t} + rac{\mu(N+\mu)}{2^k} + rac{MN}{2^c} ight)$
	nonce-misuse	$\mathcal{O}\left(\frac{Q_D}{2^t} + \frac{\mu(N+\mu)}{2^k} + \frac{MN}{2^c}\right)$
	state recovery	$\mathcal{O}\left(\frac{QD}{2^t} + \frac{\mu(N+\mu)}{2^k} + \frac{N^{TV}}{2^c}\right)$ $\mathcal{O}\left(\frac{QD}{2^t} + \frac{\mu(N+\mu)}{2^k} + \frac{N^2}{2^c}\right)$

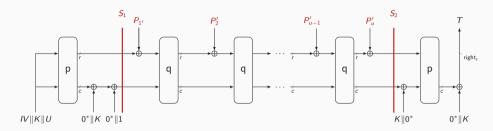

- Nonce-misuse and state recovery authenticity degrade in the last terms
- Improvement from Chakraborty et al. [CDN23] in nonce-based security

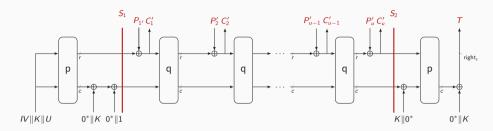

- Some bad events are kept unchanged $\implies \mathcal{O}\left(\frac{Q_D}{2^t} + \frac{\mu(N+\mu)}{2^k}\right)$
- Others are adjusted, depending on the setting:


- Some bad events are kept unchanged $\implies \mathcal{O}\left(\frac{Q_D}{2^t} + \frac{\mu(N+\mu)}{2^k}\right)$
- Others are adjusted, depending on the setting:
 - Nonce-respecting: inner states secret, but adversary has access to the outer parts $\implies \mathcal{O}\left(\frac{M_E N}{2^b} + \frac{M_D N}{2^c}\right)$


- Some bad events are kept unchanged $\implies \mathcal{O}\left(\frac{Q_D}{2^t} + \frac{\mu(N+\mu)}{2^k}\right)$
- Others are adjusted, depending on the setting:
 - Nonce-misuse: inner states secret, but adversary has access to and can overwrite the outer parts $\implies \mathcal{O}\left(\frac{MN}{2^c}\right)$


- Some bad events are kept unchanged $\implies \mathcal{O}\left(\frac{Q_D}{2^t} + \frac{\mu(N+\mu)}{2^k}\right)$
- Others are adjusted, depending on the setting:
 - State recovery: inner states fully leak, thus permutation queries may correspond later to construction queries $\Longrightarrow \mathcal{O}\left(\frac{N^2}{2^c}\right)$


Make an encryption query with empty associated data


- Make an encryption query with empty associated data
- ullet Get state after first initialization S_1 , and right before finalization S_2

- Make an encryption query with empty associated data
- Get state after first initialization S_1 , and right before finalization S_2
- View S_1 as initial state of a sponge, S_2 as a state obtained with the preimage P_1, \ldots, P_t

- Make an encryption query with empty associated data
- Get state after first initialization S_1 , and right before finalization S_2
- View S_1 as initial state of a sponge, S_2 as a state obtained with the preimage P_1, \ldots, P_t
- Apply a second preimage attack, i.e. find $P_1', \ldots, P_u' \neq P_1, \ldots, P_t$ that reaches $S_2 \implies \text{costs } 2^{c/2}$ q-evaluations

- Make an encryption query with empty associated data
- Get state after first initialization S_1 , and right before finalization S_2
- View S_1 as initial state of a sponge, S_2 as a state obtained with the preimage P_1, \ldots, P_t
- Apply a second preimage attack, i.e. find $P_1', \ldots, P_u' \neq P_1, \ldots, P_t$ that reaches $S_2 \implies \text{costs } 2^{c/2}$ *q*-evaluations
- Submit a forgery with the associated ciphertext and T

Application to Ascon-AEAD Parameters

•
$$(k, b, c, r, t) =$$

$$\begin{cases}
(128, 320, 256, 64, 128) \text{ for Ascon-}128 \\
(128, 320, 192, 128, 128) \text{ for Ascon-}128a \\
(160, 320, 256, 64, 128) \text{ for Ascon-}80pq
\end{cases}$$

- Assume number of users $\mu \ll 2^{64}$
- Assume online complexity $Q, M \ll 2^{64}$

Application to Ascon-AEAD Parameters

•
$$(k, b, c, r, t) =$$

$$\begin{cases}
(128, 320, 256, 64, 128) \text{ for Ascon-}128 \\
(128, 320, 192, 128, 128) \text{ for Ascon-}128a \\
(160, 320, 256, 64, 128) \text{ for Ascon-}80pq
\end{cases}$$

- Assume number of users $\mu \ll 2^{64}$
- Assume online complexity $Q, M \ll 2^{64}$
- \implies Ascon-128: in all cases, generic security as long as $N \ll 2^{128}/\mu$
- \implies Ascon-80pq: in all cases, generic security as long as $N \ll 2^{160}/\mu$
- \implies Ascon-128a: nonce-respecting/misusing generic security as long as $N \ll 2^{128}/\mu$, authenticity under state recovery as long as additionally $N \ll 2^{96}$

Conclusion

- General security analysis of Ascon-AEAD mode
- Main focus on role of key blindings
- Caution: the results hold in ideal permutation model (e.g. see [BCP22] for attack in nonce-misuse setting on concrete instantiation)

Conclusion

- General security analysis of Ascon-AEAD mode
- Main focus on role of key blindings
- Caution: the results hold in ideal permutation model (e.g. see [BCP22] for attack in nonce-misuse setting on concrete instantiation)

Thank you for your attention!

References i

Practical cube attack against nonce-misused ascon.

IACR Trans. Symmetric Cryptol., 2022(4):120-144, 2022.

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.

Sponge functions.

Ecrypt Hash Workshop 2007, May 2007.

🔋 Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.

On the Indifferentiability of the Sponge Construction.

In Nigel P. Smart, editor, *EUROCRYPT 2008*, volume 4965 of *Lecture Notes in Computer Science*, pages 181–197. Springer, 2008.

References ii

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.

Duplexing the Sponge: Single-Pass Authenticated Encryption and Other Applications.

In Ali Miri and Serge Vaudenay, editors, *SAC 2011*, volume 7118 of *Lecture Notes in Computer Science*, pages 320–337. Springer, 2011.

Bishwajit Chakraborty, Chandranan Dhar, and Mridul Nandi.

Exact security analysis of ASCON.

In Jian Guo and Ron Steinfeld, editors, *ASIACRYPT 2023*, volume 14440 of *Lecture Notes in Computer Science*, pages 346–369. Springer, 2023.

References iii

Leakage Resilience of the Duplex Construction.

In Steven D. Galbraith and Shiho Moriai, editors, *ASIACRYPT 2019, Part III*, volume 11923 of *LNCS*, pages 225–255. Springer, 2019.

Christoph Dobraunig and Bart Mennink.

Security of the Suffix Keyed Sponge.

IACR Trans. Symmetric Cryptol., 2019(4):223–248, 2019.

Joan Daemen, Bart Mennink, and Gilles Van Assche.
Full-State Keyed Duplex with Built-In Multi-user Support.

In Tsuyoshi Takagi and Thomas Peyrin, editors, *ASIACRYPT 2017, Part II*, volume 10625 of *LNCS*, pages 606–637. Springer, 2017.

References iv

Bart Mennink.

Understanding the Duplex and Its Security.

IACR Trans. Symmetric Cryptol., 2023(2):1–46, 2023.