Weightwise (almost) perfectly balanced functions based on total orders

Pierrick MÉAUX

Luxembourg University, Luxembourg

Montreal — Canada Thursday August 29th

Summary

Introduction

Orders and new constructions

Instantiations

Conclusion

Boolean functions:

$$f\colon \mathbb{F}_2^n \to \mathbb{F}_2$$

- common object in symmetric cryptography,
- also called predicates in other areas.

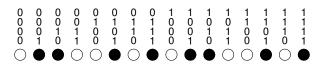
Example:

$$f\colon \mathbb{F}_2^4 \to \mathbb{F}_2$$

$$\bigcirc = 0$$
 $\bigcirc = 1$

Example:

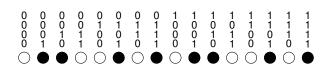
$$f\colon \mathbb{F}_2^4 \to \mathbb{F}_2$$



Balanced

Example:

$$f \colon \mathbb{F}_2^4 \to \mathbb{F}_2$$



$$E_{2,4}$$

$$E_{3,4}$$

$$\mathsf{E}_{k,n} = \{ x \in \mathbb{F}_2^n \, | \, \mathsf{w}_\mathsf{H}(x) = k \}$$

Weightwise perfectly balanced functions

Weightwise Perfectly Balanced function (WPB) [CMR17]

Let $n \in \mathbb{N}^*$, f is called WPB if:

• for all $k \in [1, n-1]$:

$$|\operatorname{supp}(f) \cap \mathsf{E}_{k,n}| = |\mathsf{E}_{k,n}|/2,$$

• $f(\mathbf{0}) = 0, f(\mathbf{1}) = 1.$

Weightwise perfectly balanced functions

Weightwise Perfectly Balanced function (WPB) [CMR17]

Let $n \in \mathbb{N}^*$, f is called WPB if:

• for all $k \in [1, n-1]$:

$$|\operatorname{supp}(f) \cap \mathsf{E}_{k,n}| = |\mathsf{E}_{k,n}|/2,$$

• $f(\mathbf{0}) = 0, f(\mathbf{1}) = 1.$

Weightwise Almost Perfectly Balanced:

$$\forall k \in [0, n], \quad \big| |\operatorname{supp}(f) \cap \mathsf{E}_{k,n}| - |\operatorname{supp}(f+1) \cap \mathsf{E}_{k,n}| \big| \leq 1$$

Weightwise perfectly balanced functions

Weightwise Perfectly Balanced function (WPB) [CMR17]

Let $n \in \mathbb{N}^*$, f is called WPB if:

• for all $k \in [1, n-1]$:

$$|\operatorname{supp}(f) \cap \mathsf{E}_{k,n}| = |\mathsf{E}_{k,n}|/2,$$

• $f(\mathbf{0}) = 0, f(\mathbf{1}) = 1.$

Weightwise Almost Perfectly Balanced:

$$\forall k \in [0, n], \quad \big| |\operatorname{supp}(f) \cap \mathsf{E}_{k,n}| - |\operatorname{supp}(f+1) \cap \mathsf{E}_{k,n}| \big| \leq 1$$

Motivations:

- cipher FLIP [MJSC16],
- properties on Boolean functions on restricted sets [CMR17],
- link with side channels: leakage of $w_H(x)$ and f(x).

State of the art

Various constructions:

CMR17, LM19, TL19, LS20, MS21, MSL21, Su21, ZS21, GM22b, GS22, MCL22, MPJDL22, MSLZ22, DM23, YCLXHJZ23, ZS23, ZJZQ23, ZLCQZ23, DM24, GM24,...

Study of main cryptographic parameters:

- Nonlinearity [GM23a],
 - -> minimum distance between f and an affine function.
- · Weightwise nonlinearity [GM22a],
 - -> minimum distance between f and an affine function considered only on the slice.
- Algebraic immunity [GM23b].
 - -> minimum degree of g such that fg = 0 (or (f + 1)g = 0).

State of the art

Main issues:

- · mostly WPBs,
- · difficult to implement,
- some low parameters.

Contributions:

- new families of WPB and WAPB functions,
- · easier to implement,
- · good nonlinearities, high algebraic immunities.

Summary

Introduction

Orders and new constructions

Instantiations

Conclusion

Orders on binary strings

Order

Let X be a set, the binary relation \leq is called partial order if it is:

- reflexive, $\forall a \in X$, $a \leq a$
- transitive, $\forall a, b, c \in X$, $a \leq b$ and $b \leq c \Rightarrow a \leq c$
- antisymmetric, $\forall a, b \in X$ $a \leq b$ and $b \leq a \Rightarrow a = b$.

It is a total order if $\forall a, b \in X$ it holds $a \leq b$ or $b \leq a$.

Orders on binary strings

Order

Let X be a set, the binary relation \leq is called partial order if it is:

- · reflexive,
- · transitive,
- · antisymmetric,

It is a total order if $\forall a, b \in X$ it holds $a \leq b$ or $b \leq a$.

Examples:

• Lexicographic: $a, b \in \mathbb{F}_2^n$, $a = (a_1, \dots, a_n)$, $b = (b_1, \dots, b_n)$

$$a \leq b \Leftrightarrow a_i < b_i$$
 on the first index such that $a_i \neq b_i$, or $a = b$.

$$000 \le 001 \le 010 \le 011 \le 100 \le 101 \le 110 \le 111$$

- Cool: choose a first element, apply successive rule:
 - i minimum value such that $(a_i, a_{i+1}) = (1, 0)$ and i > 1.
 - If *i* exists, rotate *i* bits, otherwise flip a_1 and rotate n-1 bits.

$$000 \le 001 \le 011 \le 111 \le 110 \le 101 \le 010 \le 100$$

Description:

- $n = 2^m$
- *m* orders: order \leq_i on $\mathbb{F}_2^{2^i}$, for $i \in [0, m-1]$
- Recursive definition:

$$z = 0$$

$$\rightarrow f_m(z) = 0$$

Description:

- $n = 2^m$
- m orders: order \leq_i on $\mathbb{F}_2^{2^i}$, for $i \in [0, m-1]$
- Recursive definition:

$$Z = 1$$

$$\rightarrow f_m(z) = 1$$

Description:

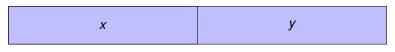
- $n = 2^m$
- m orders: order \leq_i on $\mathbb{F}_2^{2^i}$, for $i \in [0, m-1]$
- Recursive definition:

 $X \prec_{m-1} y$

$$\to f_m(x,y)=0$$

Description:

- $n = 2^m$
- m orders: order \leq_i on $\mathbb{F}_2^{2^i}$, for $i \in [0, m-1]$
- Recursive definition:



$$y \prec_{m-1} x$$

$$\to f_m(x,y)=1$$

Description:

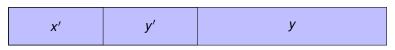
- $n = 2^m$
- m orders: order \leq_i on $\mathbb{F}_2^{2^i}$, for $i \in [0, m-1]$
- Recursive definition:

x' y'	У
-------	---

$$x=y=(x',y') \qquad \qquad \rightarrow f_m(x,y)=f_{m-1}(x',y')$$

Description:

- $n = 2^m$
- m orders: order \leq_i on $\mathbb{F}_2^{2^i}$, for $i \in [0, m-1]$
- Recursive definition:



$$x = y = (x', y')$$
 $\to f_m(x, y) = f_{m-1}(x', y')$

Intuition WPB property:

In a slice $E_{k,n}$:

$$(x,y) \in \mathsf{E}_{k,n} \Rightarrow (y,x) \in \mathsf{E}_{k,n}$$

- If $x \neq y$, one is in supp(f_m) one is not,
- if x = y, $f_m(x, x)$ from $f_{m-1}(x)$ which is WPB.

Description:

- $n = 2^m$
- 2 orders: \leq and \leq' on $\mathbb{F}_2^{2^{m-1}}$, \leq' such that u is the 2^{m-2} -th element in this order, and half elements of each slice are smaller than u.
- Definition:

$$g_m(\mathbf{0}) = 0, \ g_m(\mathbf{1}) = 1,$$

$$g_m(x, y) = \begin{cases} 0 & \text{if } x < y, \\ 1 & \text{if } y < x, \\ 0 & \text{if } x \le y. \end{cases}$$

Description:

- $n = 2^m$
- 2 orders: \leq and \leq' on $\mathbb{F}_2^{2^{m-1}}$, \leq' such that u is the 2^{m-2} -th element in this order, and half elements of each slice are smaller than u.
- Definition:

$$g_{m}(\mathbf{0}) = 0, g_{m}(\mathbf{1}) = 1,$$

$$g_{m}(x, y) = \begin{cases} 0 & \text{if } x < y, \\ 1 & \text{if } y < x, \\ 0 & \text{if } x \le y. \end{cases}$$

Intuition WPB property:

In a slice $E_{k,n}$:

$$(x,y) \in \mathsf{E}_{k,n} \Rightarrow (y,x) \in \mathsf{E}_{k,n}$$

- If $x \neq y$, one is in supp(f_m) one is not,
- if x = y, by definition of \leq' half of (x, x) sent to 0.

Nonlinearity bounds

Nonlinearity

$$\mathsf{NL}(f) = \min_{g, \ \deg(g) \leq 1} \{ \mathsf{d_H}(f,g) \} = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} \big| \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + a \cdot x} \big|.$$

Nonlinearity bounds

Nonlinearity

$$\mathsf{NL}(f) = \min_{g, \ \deg(g) \leq 1} \{ \mathsf{d_H}(f,g) \} = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} \big| \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + a \cdot x} \big|.$$

Theorem:

 $m \in \mathbb{N}^*$, $n = 2^m$ and f be any function from Constructions 1 and 2:

$$NL(f) \geq 2^{n-2} - 2^{n/2-1}$$
.

Nonlinearity bounds

Nonlinearity

$$\mathsf{NL}(f) = \min_{g, \ \deg(g) \leq 1} \{ \mathsf{d_H}(f,g) \} = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} |\sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + a \cdot x} |.$$

Theorem:

 $m \in \mathbb{N}^*$, $n = 2^m$ and f be any function from Constructions 1 and 2:

$$NL(f) \ge 2^{n-2} - 2^{n/2-1}$$
.

Weightwise nonlinearity:

$$\mathsf{NL}_k(f) = \min_{g, \deg(g) \le 1} \{ \mathsf{d}_{\mathsf{H}, \mathsf{E}_{k, n}}(f, g) \} = \frac{|\mathsf{E}_{k, n}|}{2} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} |\sum_{x \in \mathsf{E}_{k, n}} (-1)^{f(x) + a \cdot x} |.$$

ightarrow lower bound on the NL $_k$ using Krawtchouk polynomials.

Extending to WAPB, Construction 3

Description:

- n ∈ N, n ≥ 2
- $\lfloor \log_2(n) \rfloor$ orders: order $\leq_{\lfloor n/(2^i) \rfloor}$ on $\mathbb{F}_2^{2^{\lfloor n/(2^i) \rfloor}}$, for $i \in [1, \lfloor \log_2(n) \rfloor]$
- Recursive definition:

Let f_n be the n-variable function defined as:

- if n = 1, $f_1(0) = 0$ and $f_1(1) = 1$,
- if n is odd, $f_n(x_1, \ldots, x_n) = f_{n-1}(x_1, \ldots, x_{n-1})$,
- write $z \in \mathbb{F}_2^n$ as (x, y) where $x, y \in \mathbb{F}_2^{n/2}$,

$$f_n(x,y) = \left\{ \begin{array}{ll} f_{n/2}(x) & \text{ if } x = y, \\ 0 & \text{ if } x \prec_{n/2} y, \\ 1 & \text{ if } y \prec_{n/2} x. \end{array} \right.$$

Extending to WAPB, Construction 3

Description:

- $n \in \mathbb{N}, n \ge 2$
- $\lfloor \log_2(n) \rfloor$ orders: order $\leq_{\lfloor n/(2^i) \rfloor}$ on $\mathbb{F}_2^{2^{\lfloor n/(2^i) \rfloor}}$, for $i \in [1, \lfloor \log_2(n) \rfloor]$
- Recursive definition:

Let f_n be the n-variable function defined as:

- if n = 1, $f_1(0) = 0$ and $f_1(1) = 1$,
- if n is odd, $f_n(x_1, \ldots, x_n) = f_{n-1}(x_1, \ldots, x_{n-1})$,
- write $z \in \mathbb{F}_2^n$ as (x, y) where $x, y \in \mathbb{F}_2^{n/2}$,

$$f_n(x,y) = \begin{cases} f_{n/2}(x) & \text{if } x = y, \\ 0 & \text{if } x \prec_{n/2} y, \\ 1 & \text{if } y \prec_{n/2} x. \end{cases}$$

Intuition WAPB property:

- n even: split in 2 sets as for Construction 1,
- *n* odd: using Siegenthaler's decomposition.

Summary

Introduction

Orders and new constructions

Instantiations

Conclusion

Common orders

Tries with Lexicographic and Cool order, *n* up to 16.

 \rightarrow low parameters.

Common orders

Tries with Lexicographic and Cool order, *n* up to 16.

 \rightarrow low parameters.

Proposition:

 $n=2^m$, $m\geq 2$ and f be any BF from Construction 1 or 2 with Lexicographic order on $\mathbb{F}_2^{2^{m-1}}$:

$$AI(f) = 2$$
, and $\forall k \in [1, 2^m - 1] AI_k(f) \le 2$.

 \rightarrow worst possible AI.

Weightwise orders

Weightwise order

Order \leq such that for all $x \in \mathbb{F}_2^n$ and $y \in \mathbb{F}_2^n$:

$$w_H(x) < w_H(y) \Rightarrow x \prec y$$
.

Weightwise orders

Weightwise order

Order \leq such that for all $x \in \mathbb{F}_2^n$ and $y \in \mathbb{F}_2^n$:

$$W_H(x) < W_H(y) \Rightarrow x \prec y$$
.

 \rightarrow better algebraic immunity

Proposition:

 $n = 2^m$, $m \ge 2$ and f be any BF from Construction 1 or 2 with a weightwise order on $\mathbb{F}_2^{2^{m-1}}$:

$$\mathsf{AI}(f) = 2^{m-1}.$$

 \rightarrow optimal AI.

Field-based orders

Field-based order

 $r \in \mathbb{N}^*$, $s \in \mathbb{N}$ such that $s \leq 2^r - 2$ and α a primitive element of \mathbb{F}_{2^r} , we call field order defined by α and s the total order over \mathbb{F}_2^r given by:

$$\alpha^{s} \prec \alpha^{s+1} \prec \ldots \prec \alpha^{2'-2} \prec 0 \prec 1 \prec \ldots \prec \alpha^{s-2} \prec \alpha^{s-1}$$
.

Field-based orders

Field-based order

 $r \in \mathbb{N}^*$, $s \in \mathbb{N}$ such that $s \leq 2^r - 2$ and α a primitive element of \mathbb{F}_{2^r} , we call field order defined by α and s the total order over \mathbb{F}_2^r given by:

$$\alpha^{s} \prec \alpha^{s+1} \prec \ldots \prec \alpha^{2^{r}-2} \prec 0 \prec 1 \prec \ldots \prec \alpha^{s-2} \prec \alpha^{s-1}$$
.

ightarrow Good parameters for both nonlinearities and algebraic immunities

Comparisons for n = 8, 10, 12, 14, 16 between the different order based.

Comparisons for n = 8, 10, 12, 14, 16 between the different order based.

Comparisons with SOTA for field based order:

n = 8

	res	deg	NL	Al	NL ₂	NL ₃	NL_4	Al_2	Al ₃	AI_4
Field based	0	7	92	4	6	15	24	2	2	3
SOTA	0	7	116	4	9	22	28	2	2	3

Comparisons for n = 8, 10, 12, 14, 16 between the different order based.

Comparisons with SOTA for field based order:

NII

n = 8

	res	deg	NL	Al	NL ₂	NL ₃	NL_4	Al_2	Al ₃	AI_4
Field based	0	7	92	4	6	15	24	2	2	3
SOTA	0	7	116	4	9	22	28	2	2	3

$$n = 16$$

	162	INL	INL ₂	INL3	INL4	INL5	11L6	INL7	INL8
FB	0	30196	40	219	765	1887	3518	5138	5875
SOTA	0	32598	40	219	765	1887	3629	5138	5875
	deg	Al	Al ₂	Al ₃	Al ₄	Al ₅	Al ₆	AI_7	Al ₈
FB	15	8	2	3	4	4	5	6	6
SOTA	15	8	2	3	4	4	5	6	6

Comparisons for n = 8, 10, 12, 14, 16 between the different order based.

Comparisons with SOTA for field based order:

n = 8

	res	deg	NL	Al	NL ₂	NL ₃	NL_4	Al_2	Al ₃	Al ₄
Field based	0	7	92	4	6	15	24	2	2	3
SOTA	0	7	116	4	9	22	28	2	2	3

n = 16

	res	INL	INL ₂	INL ₃	NL ₄	NL ₅	INL ₆	NL ₇	INL ₈
FB	0	30196	40	219	765	1887	3518	5138	5875
SOTA	0	32598	40	219	765	1887	3629	5138	5875
	deg	Al	Al ₂	Al ₃	Al ₄	Al ₅	Al ₆	AI_7	Al ₈
FB	15	8	2	3	4	4	5	6	6
SOTA	15	0	2	2	1	1	5	6	6

best known parameter, optimal value

Summary

Introduction

Orders and new constructions

Instantiations

Conclusion

Conclusion and open questions

Conclusion:

- 3 W(A)PB constructions based on the notion of total orders,
- proven bounds on relevant cryptographic parameters,
- experimental studies and improvements on the SOTA.

Conclusion and open questions

Conclusion:

- 3 W(A)PB constructions based on the notion of total orders,
- · proven bounds on relevant cryptographic parameters,
- experimental studies and improvements on the SOTA.

Open questions:

- NL bound on the entire family; better bound on a subfamily?
- Determine the maximum achievable Al_k.

Conclusion and open questions

Conclusion:

- 3 W(A)PB constructions based on the notion of total orders,
- proven bounds on relevant cryptographic parameters,
- experimental studies and improvements on the SOTA.

Open questions:

- NL bound on the entire family; better bound on a subfamily?
- Determine the maximum achievable Al_k.

Thank you!