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ECDSA (Elliptic Cureve Digital Signiture Algorithm)

Used for SSH, SSL/TLS, Bitcoin, etc.

ECDSA key recovery

Solving ECDSA from only public key is reduced to solve the discrete
logarithm problem known as ECDLP

It is believed that exponential time is required to solve.

By using a part of the secret information called nonce (Number used
only ONCE) and a number of ECDSA signatures, the secret key is
recovered.
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ECDSA signature generation algorithm

Algorithm 1 ECDSA signature generation

Input: prime number q, secret key sk ∈ Zq, message msg ∈ {0, 1}∗, base
point G, and hash function H : {0, 1}∗ → Zq

Output: valid signature (r, s)
1: k = $ Zq

2: R = (rx, ry)← kG; r ← rx mod q
3: s ≡ (H (msg) + r · sk) /k mod q
4: return (r, s)

If the fully nonce is leaked or reused, the secret key is recovered.

If a part of the nonce is leaked, it is known that the secret key can be
recovered by solving HNP.

Consider a situation where the top l bits of nonces k are leaked with
an error (error rate ε) due to a side-channel attack
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Previous Studies and Research Goals

Several security evaluations have been performed assuming partial
leakage of the nonce

By reducing this leakage to the Hidden Number Problem (HNP), the
secret key can be recovered using lattice-based attacks or
Bleichenbacher’s Fourier analysis-based attacks

Fourier analysis-based attacks can recover the secret key even when
the nonce error rate is high or the length of the leaked bits is short

In the previous studies [Ble00] [MHMP13] [AFGKTZ14] [TTA18]
[ANTTY20] [OK23], if the leaked MSBs are uniform, they collect
nonces which top bits are same to get biased nonces.

Research Goals

Reduce the number of signatures to recover the secret key by using all
signatures.
To reduce, we generate biased samples from uniform samples.
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Summary of our contributions

Contribution 1

Correct the estimate the number of samples which are outputs of
4-list sum algorithm.

Contribution 2

Reduce the number of signatures to recover the secret key

Successfully recovered secret keys with fewer signatures and the same
runtime and computational resources as previous studies

50% reduction with 1 bit leakage
75% reduction with more than 2 bits leakage
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Translation to Hidden Number Problem (HNP)

Consider the situation where the most significant bits of the nonces are
leaked

Function MSBn (x) returns the top n bits of x for a x ∈ N
Let ki = zi + hi · sk mod q, for each i = 1, . . . ,M .

HNP is the problem of finding sk for i = 1, . . . ,M , given
{hi, zi,MSBn (ki)}

Transforming the equation for signature generation yields

H (msg) /s = k − r · sk/s mod q

Let z := H (msg) /s mod q，h := r/s mod q, then

k = z + h · sk mod q

If MSBs of k is leaked, we get a sample of HNP
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How to solve HNP

Two methods for solving are known:

Lattice-based attack

+ Dozens of signatures

+ Laptop

+ Less than an hour

- The nonces do not contain high
errors

Fourier analysis-based attack

- Hundred of millions signatures

- Workstation

- A few days or a week

+ The nonces can contain high
errors

Lattice for errors [GWHH24]

Recover secret key with hundred of millions signatures

They show that recovery is possible with an error rate up to 0.1.

But the number of signatures required is higher than with the Fourier
analysis-based attack

[GWHH24]Gao et al., “Attacking ECDSA with Nonce Leakage by Lattice Sieving:
Bridging the Gap with Fourier Analysis-based Attacks”, ePrint 2024
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Bias function

Definition 1

Sample bias for the set K = {kj ∈ Zq}Mj=1 is given by

Bq (K) :=
1

M

M∑
j=1

exp

(
2πkj
q

i

)

We can compute the function by Fast Fourier Transformation.

If each ki is random, the aboslute value is 1/
√
M .

From [TTA18] the absolute value of the sample bias is:

lim
q→∞

|Bq (K) | → 2l

π
· sin

( π

2l

)
.

when the top l bits of all ki are fixed to a constant.

If l = 1, the value is 0.637 (= 2/π); if l = 2, the value is 0.900
(
= 2
√
2π

)
.
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Image of bias function

Average of vectors on the unit circumference of the complex plane

The more biased the nonces, the larger the absolute value of the bias

Use the fact that the computed bias is larger for the correct secret
key as an attack

Re

Im

Bias in the random case

Re

Im

Bias in the case of
MSB1 (k) = 1

Re

Im

Bias in the case of
MSB2 (k) = 10
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If top l bits of nonces leak with errors

From [OK23] when the top l bits of the nonces leak with errors, the
absolute value of the bias function can be expressed as:

|Bq (K) | =

√√√√ l∏
j=1

(
1− 4εj (1− εj) sin

2 π

2j

)
×
{(

2l

π

)
· sin

( π

2l

)}

If the error rate of each bit of nonces are same, we can use εj = ε.

If l = 1, the result is equal to that of Aranha et al.

Let α and β be error rates where α < β. |Bq (K)| for ε1 = α, ε2 = β
is larger than |Bq (K)| for ε1 = β, ε2 = α
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Naive key search method

Perform an exhaustive secret key search and obtain the w with the largest
bias as the correct secret key

Algorithm 2 Naive method

Input: (hi, zi)
M
i=1 : Nonce biased HNP samples on Zq

Output: Correct secret key sk
1: for w = 1 to q − 1 do
2: Compute the set Kw = {zi + hiw mod q}Mi=1

3: Compute |Bq (Kw) |
4: end for
5: return w that maximizes |Bq (Kw) |

The naive method is inefficient because it performs an exhaustive secret
key search

After taking linear combinations of the samples, efficiency is improved by
computing the bias
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Peak bias using linear combinations

Peak bias before linear combinations Peak bias after linear combinations

Before linear combinations, the bias is large only for the secret key

After linear combinations, the bias is large near the secret key.
However, the peak goes down.
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Reduce the search range using linear combinations

De Mulder et al. and Aranha et al. proposed a method to avoid the full
search for the secret key using linear combinations of samples

Attack strategy (linear combinations)

M ′:Number of samples after linear combination,
LFFT (< q): FFT table size

Take linear combinations of the input samples {(hi, zi)}Mi=1 and new

samples
{(

h′j , z
′
j

)
= (

∑
i ωi,jhi,

∑
i ωi,jzi)

}M ′

j=1
with h′j < LFFT are

generated, where ωi,j ∈ {−1, 0, 1}, Ωj :=
∑

i |ωi,j |
The peak width extends from 1 to about q/LFFT. Candidate secret
key to be examined decreases from q to LFFT.
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Constraints on linear combinations

Sparse linear combinations

Distinguishable if the value of the bias corresponding to the correct
secret key is much larger than the average of the noise 1/

√
M ′

By taking many linear combinations, it is easy to make small h′j
However, by taking many linear combinations, the aboslute value of
the bias corresponding to the correct secret key decreases
exponentially, as in |Bq (K) |Ωj

To find M ′ that is |Bq (K) |Ωj ≫ 1/
√
M ′, it is sufficient to estimate

|Bq (K)| exactly
It is important to compute the bias function rigorously to find
parameters such as the number of signatures needed to perform
Fourier analysis-based attack
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How to take linear combinations

[ANTTY20] takes linear combinations by using 4-list sum algorithm.

4-list sum algorithm can be used to increase the number of samples
while decreasing the value by taking a linear combination

They make linear programming problem to estimate signatures.
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Constraints on linear programming problem

Table: Linear programming problem based on the Iterative HGJ 4-list sum
algorithm. Each column is a constraint to optimize [ANNTY20]

Time Space Data

minimize t0 = . . . = tr−1 m0 = . . . = mr−1 min

subject to — ti ≤ tmax ti ≤ tmax

subject to mi ≤ mmax — mi ≤ mmax

subject to

mi+1 = 3ai + vi − ni i ∈ [0, r − 1]
ti = ai + vi i ∈ [0, r − 1]
vi ≤ ai i ∈ [0, r − 1]
mi = ai + 2 i ∈ [0, r − 1]
mi+1 ≤ 2ai i ∈ [0, r − 1]
min = m0 + f

ℓ ≤ ℓFFT + f +
∑r−1

i=0 ni

mr = 2 (logα− 4r log (|Bq (K) |))
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4-list sum algorithm [ANTTY20]

Input: |L1| = · · · = |L4| = 2a, v ≤ a, n

Output:
|L′| = 2a+a−(n−a)+v = 23a+v−n

|L′1| = |L′2| = 2a+a−a = 2a

1

1

2

Shunsuke Osaki (NEC Corp.) SAC2024 Aug 29 2024 19 / 34



4-list sum algorithm [ANTTY20]

Input: |L1| = · · · = |L4| = 2a, v ≤ a, n

Output:
|L′| = 2a+a−(n−a)+v = 23a+v−n

|L′1| = |L′2| = 2a+a−a = 2a

1

1

2

Shunsuke Osaki (NEC Corp.) SAC2024 Aug 29 2024 19 / 34



4-list sum algorithm [ANTTY20]

Input: |L1| = · · · = |L4| = 2a, v ≤ a, n

Output:
|L′| = 2a+a−(n−a)+v = 23a+v−n

|L′1| = |L′2| = 2a+a−a = 2a

1

1

2

Shunsuke Osaki (NEC Corp.) SAC2024 Aug 29 2024 19 / 34



4-list sum algorithm [ANTTY20]

Input: |L1| = · · · = |L4| = 2a, v ≤ a, n

Output:
|L′| = 2a+a−(n−a)+v = 23a+v−n

|L′1| = |L′2| = 2a+a−a = 2a

1

1

2

Shunsuke Osaki (NEC Corp.) SAC2024 Aug 29 2024 19 / 34



4-list sum algorithm [ANTTY20]

Input: |L1| = · · · = |L4| = 2a, v ≤ a, n

Output:
|L′| = 2a+a−(n−a)+v = 23a+v−n

|L′1| = |L′2| = 2a+a−a = 2a

1

1

2

Shunsuke Osaki (NEC Corp.) SAC2024 Aug 29 2024 19 / 34



Issue 1: 4-list sum algorithm of [ANTTY20]

Issue 1: Carry is not considered

Let λ = 5, n = 4, a = 2 and then let
x1 = 17 (1 0001) , x2 = 18 (1 0010) , x3 = 15 (1111) , x4 = 17 (1 0001)

x′1 = 35 (10 0011) , x′2 = 32 (10 0000) then
MSB2 (x

′
1) = MSB2 (x

′
2) = 2 (10)

MSB4 (|x′1 − x′2|) = 0 then |x′1 − x′2| = 3 (11)

Since λ− n = 1, the output result is expected to be less than 1 bit, but it
is 2 bits.

The carry that occurs with a probability of 1/2 is not considered.

|L′| = 23a+n should be modified to |L′| = 23a+n−2

M ′ = 23a+v+n−2. Previous study estimated more than 4 times
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Issue 2: 4-list sum algorithm of [ANTTY20]

Issue 2: The assumption about the distribution is not appropriate.

Estimation of [ANTTY20] is uniform distribution, but the actual biased.

Figure: Distribution assumed
in [ANTTY20]

Figure: Real distribution
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Our 4-list sum algorithm

Input: |L1| = · · · = |L4| = 2a, v ≤ a+ 1, n

Output: |L′| =
(
22a+v − 2a+2v−1 + 23v−2

3 − 22v−2 + 7·2v
6

)
2−(n−a)

1

1

2
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Attack experiment

60-bit ECDSA

To check the distribution, it is not necessary to recover the key

It is sufficient to confirm that the number of samples output does not
depend on a

Table: Parameters and results of the experiment

Parameter a0 v0 n0 a1 v1 n1 Original M ′ Our M ′

l = 1, ε = 0 8 5 14 14 2 16 0 229.43

l = 2, ε = 0.1 8 5 15 14 2 15 0 227.34

Original algorithm cannot recover the secret key

Our algorithm recovers the secret key
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Proposed attack using bias due to linear combination

Previous studies issue

In previous studies, attacks were conducted using only signatures
corresponding to biased nonces

When 1 bit was leaked, twice the number of signatures were needed
for the attack; when 2 bits were leaked, 4 times were needed; and
when l bits were leaked, 2l times were needed.

Out of the collected signatures, only 1/2l were used, while the
remaining 1− 1/2l were not used

Trick of our new attacks

By taking linear combinations based on hi from the set

{(ki, hi, zi)}Mi=1, we obtain a new set
{(

k′j , h
′
j , z
′
j

)}M ′

j=1
.

Here, it is sufficient if
{
k′j

}M ′

j=1
are biased, because the bias

calculation is performed after the linear combinations.
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Bleichenbacher’s attack framework

Algorithm Bleichenbacher’s attack framework

Input: (hi, zi)
M
i=1: Samples of HNP over Zq , M ′: Number of linear combinations to find,

LFFT: FFT table size
Output: MSB (sk)logLFFT

1: Range reduction
2: For all j ∈ [1,M ′], the coefficients are ωi,j ∈ {−1, 0, 1}, and the linear combination pairs

are denoted as
(
h′
j , z

′
j

)
=

(∑
i ωi,jhi,

∑
i ωi,jzi

)
. In this case, we generate M ′ samples{(

h′
j , z

′
j

)}M′

j=1
that satisfies the following two conditions.

(1) Small: 0 ≤ h′
j < LFFT

(2) Sparse: |Bq (K) |Ωj ≫ 1/
√
M ′, where Ωj :=

∑
i |ωi,j | for all j ∈ [1,M ′]

3: Bias Computation
4: Z :=

(
Z0, . . . ZLFFT−1

)
← (0, . . . , 0)

5: for j = 1 to M ′ do

6: Zh′
j
← Zh′

j
+ exp

(
2πiz′j/q

)
7: end for
8: Let wi = iq/LFFT, {Bq (Kwi )}

LFFT−1
i=0 ← FFT (Z)

9: Find i that maximizes |Bq (Kwi ) |
10: return MSB (wi)logLFFT

bits
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Methods to reduce the number of collected signatures

It is sufficient that MSBs of
{
k′j

}M ′

j=1
are biased.

It is sufficient to efficiently perform linear combinations while making
bias

Approach

Employ the 4-list sum algorithm

Ensure that the top bits of the nonce corresponding to each element
in the lists are biased according to the HNP samples.

Taking linear combinations to the lists,
{
k′j

}M ′

j=1
be biased
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Preprocessing for 2 bits leakage

HNP samples are assigned to lists by MSBs value

Apply the 4-list sum algorithm using the obtained set of lists {Li}2
l

i=1

When 1 bit is leaked, split the obtained 2 lists into 4 lists each

When 3 or more bits are leaked, group the obtained lists into sets of 4
and run the 4-list sum algorithm on each set.
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Distribution by linear combinations with 1 leakage

-

Figure: Biased distribution

-

Figure: Uniform distribution
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Distribution by linear combinations with 2 leakage

-

Figure: Biased distribution

-

Figure: Uniform distribution
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Distribution by linear combinations with 3 leakage; 8 lists

Perform 4-list sum algorithm for {0, 1, 2, 3} and {4, 5, 6, 7}, then get same
distribution

- -

Figure: Uniform distribution

After 2nd round, input is all output

Using more time, decreasing the numnber of collected signatures to
1/2(l+6)/4
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Experimental Overview

We attacked 131-bit ECDSA and confirmed that the secret key can
be recovered in a uniform case just as it can in a biased case

Ubuntu 20.04 LTS, Intel Xeon Silver 4214R ×2, total 24 cores and 48
threads, DDR4 256GB

Experimental Details

In each case, the experiment is as follows

1 The 1 bit contains no error

2 The 2 bits contain no error

3 The error rate for each of the 2 bits is about 0.11. a

4 The 3 bits contain no error

Using only 4 lists
Using all 8 lists

a0.11 is the error rate at which 2 bits can be recovered with an equal number of
signatures if 1 bits are leaked with no errors
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Experimental Results

Table: Experimental results with bias

l ε Number of collected signatures M ′ Sec. Recovered bits

1 0 224 226.90 1186 29

2
0 225 223.99 504 29

0.11 225 226.89 1201 29

3 0 220 27.93 90 29

Table: Experimental results without bias

l ε
Number of

collected signatures
M ′ Sec. Recovered bits

Combinations of
lists top l bits

1 0
223 226.90 1210 29 {0, 0, 1, 1}
223 226.90 1223 29 {1, 0, 1, 0}

2
0 223 223.98 530 29 {00, 01, 10, 11}

0.11 223 226.89 1190 29 {00, 01, 10, 11}

3 0
218 27.80 87 29 {000, 010, 101, 001}

216 27.77 829 29
{000, 001, 010, 011,
100, 101, 110, 111}
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Conclusion

Modifying of 4-list sum algorithm

Find and solve the issues about carry and distribution

Takeaways: Attack for uniform nonces

In previous studies, the signatures which nonces are biased only used,
so the others are discarded

Decreasing the number of signatures to recover the secret key

50% decrease with 1 bit, using the same time and computational
resources
75% decrease with more than 2 bits, using the same time and
computational resources
1/2(l+6)/4 decreases for more time if more than l ≥ 3 bits leakage by
using 2l lists
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