
Improved Algebraic Attacks on Round-Reduced LowMC with
Single-Data Complexity

Xingwei Ren1,2 Yongqiang Li1,2 Mingsheng Wang1,2

1Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, Chinese Academy of
Sciences, Beijing, China

2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

August, 2024

Contents

1 Background

2 Algorithms for Solving Multivariate Boolean Equations

3 New GnD Attacks on 2-round LowMC

4 New MITM Attacks on Round-Reduced LowMC

5 Conclusion

1 / 22

LowMC

• A family of block ciphers with flexible SPN structures.
• First designed for MPC/FHE/ZK protocols at EUROCRYPT 2015.

               

 

  1Round Key iK 

#S-boxes s

Blocksize n

S S S S

Affine Layer

Figure 1: LowMC Round Function

2 / 22

Picnic

• Proposed at CCS 2017.
• A signature scheme in the third round of NIST PQC competition.
• LowMC is as its underlying symmetric primitive.

Security
Picnic is based on the MPC-in-the-head paradigm, its security is equivalent to the
difficuly of recovering the secret key K from a single plaintext-ciphertext (P,C).

LowMCEnc(P,K) = C

Picnic3 has introduced new LowMC instances with full S-box layers.

3 / 22

Previous Work

In 2020, the LowMC cryptanalysis competitiona (with single-data) began…

• Guess-and-determine (GnD) + Meet-in-the-middle (MITM) attack
(ToSC 2020, ASIACRYPT 2021, SAC 2022)

• Polynomial method (EUROCRYPT 2021)

• Polynomial method + GnD (ToSC 2022, ePrint 2022, ToSC 2023)

ahttps://lowmcchallenge.github.io/

4 / 22

https://lowmcchallenge.github.io/

Linearization Techniques for the LowMC S-box

LowMC employs the 3-bit S-box S(x0, x1, x2) = (y0, y1, y2), where
y0 = x0 ⊕ x1x2,
y1 = x0 ⊕ x1 ⊕ x0x2,
y2 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1.

The First Method: Guess the value of any one output bit
Let x0 ⊕ x1x2 = c, the output bits can be rewritten as

y0 = c,
y1 = c ⊕ x1 ⊕ cx2,
y2 = c ⊕ x1 ⊕ x2 ⊕ cx1.

The LowMC S-box is fully linearized. (Similarly for the inverse S-box)

5 / 22

Linearization Techniques for the LowMC S-box

LowMC employs the 3-bit S-box S(x0, x1, x2) = (y0, y1, y2), where
y0 = x0 ⊕ x1x2,
y1 = x0 ⊕ x1 ⊕ x0x2,
y2 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1.

The Second Method: Guess the values of any two input bits
Let x0 = c′ and x2 = c′′, the output bits can be rewritten as

y0 = c′ ⊕ c′′x1,
y1 = c′ ⊕ x1 ⊕ c′c′′,

y2 = c′ ⊕ x1 ⊕ c′′ ⊕ c′x1.

The LowMC S-box is also fully linearized. (Similarly for the inverse S-box)

5 / 22

Fast Exhaustive Search (FES) Algorithm

How to fastly evaluate a Boolean polynomial of degree d with u variables?

FES Algorithm
1 To evaluate any f (x).

• An initialization phase O(u2d). (negligible when d ≪ u)
• Use Gray-codes to enumerate ∀x ∈ Fu

2 , then f (x) can be evaluated within
d · 2u bit operations.

2 To find all zeros of any {fi(x)}m
i=1 (deg(fi) ≤ d).

• Time: 2d · log2 u · 2u bit operations.
• Memory: m ·

(u
≤d

)
bits, where

(u
≤d

)
=

∑d
i=0

(u
i

)
.

6 / 22

Dinur’s Algorithm

Consider a system E(x) := {fi(x) = 0}m
i=1, where x ∈ Fu

2 and deg(fi) ≤ d .

Dinur’s Algorithm
1 The core idea:

• Choose a parameter u1 and split x into y ∈ Fu−u1
2 and z ∈ Fu1

2 .
• Randomly select four different choices for the system Ẽ(y, z), each
containing u1 + 1 equations from E(y, z).

• Efficiently enumerate all solutions to each Ẽ and then verify them by E .
• Based on a polynomial F̃(x) =

∏u1+1
i=1 (f̃i(x)⊕ 1).

2 Time: n2 · 2(1−1/2.7d)n bit operations. / Memory: n2 · 2(1−1/1.35d)n bits.

7 / 22

The GnD Attack Framework for 2-round LowMC

Guess bitst 



Affine Layer

S S S S S

    



0K

S



S



S



S



S



Affine Layer

    

1K

2K

Guess bitsh 

 

Guess 2 bitsg

Figure 2: GnD Attack on 2-round LowMC

Preliminaries:

• The key schedule is linear.

• Both the whitened key K0 and all
round keys Ki+1 are generated by
multiplying the master key K with a
full-rank binary matrix Mj .

• Subkey(i) = Lini(K).

8 / 22

The GnD Attack Framework for 2-round LowMC

Guess bitst 



Affine Layer

S S S S S

    



0K

S



S



S



S



S



Affine Layer

    

1K

2K

Guess bitsh 

 

Guess 2 bitsg

Figure 2: GnD Attack on 2-round LowMC

In the 1st round:

1 Linearize the last g S-boxes by the
second method.

2 Obtain 2g linear equations about K .

3 Perform Gaussian elimination to
yield n − 2g free variables v.

4 Linearize the first t = s − g S-boxes
by the first method.

8 / 22

The GnD Attack Framework for 2-round LowMC

Guess bitst 



Affine Layer

S S S S S

    



0K

S



S



S



S



S



Affine Layer

    

1K

2K

Guess bitsh 

 

Guess 2 bitsg

Figure 2: GnD Attack on 2-round LowMC

In the 2nd round:

1 Linearize the first h inverse S-boxes
by the first method.

2 Obtain 3h linear equations about v.

3 Perform Gaussian elimination to
yield n − 2g − 3h free variables β.

4 Construct the target system of n − 3h
quadratic equations in terms of β.

8 / 22

The GnD Attack Framework for 2-round LowMC

Guess bitst 



Affine Layer

S S S S S

    



0K

S



S



S



S



S



Affine Layer

    

1K

2K

Guess bitsh 

 

Guess 2 bitsg

Figure 2: GnD Attack on 2-round LowMC

Solve the target system by using FES or
Dinur’s algorithm.

• Vs. naive FES, the acceleration
factor is 231.9/251.7/271.8 for the
129/192/255-bit key.

• Vs. Dinur’s results, the acceleration
factor is 29.8/219.8/229.8 for the
129/192/255-bit key.

• The required memory is negligible.

8 / 22

2-stage MITM Attack Framework

Due to the linear key schedule of LowMC, the whitened key can be regarded as the
secret key K = [k1, k2, · · · , kn] for cryptanalysis.

1st MITM Stage:
• Split K into three parts U0 = [k1, k2, · · · , k3h], U1 = [k3h+1, k3h+2, · · · , k3h+t]
and U2 = [k3h+t+1, k3h+t+2, · · · , kn], where t = ⌊(n − 3h)/6⌋ · 3.

• Based on the first method, linearize the inverse of the 2nd round and the first h
S-boxes in the 1st round.

• Denote X = (a1, a2, · · · , a3h, x1, x2, · · · , xn−3h) to be the output state of the
1st S-box layer.

9 / 22

2-stage MITM Attack Framework

• To reach the state (a1, a2, · · · , a3h) from the plaintext and ciphertext, a system
of 3h linear equations can be constructed, rewritten as

A · U0 = A · [k1, k2, · · · , k3h]
T = B, (1)

where A is an 3h × 3h matrix over F2, and B is a vector whose elements are
affine functions in terms of U1, U2.

• Perform Gaussian elimination on Equ. (1), then each bit of U0 can be an affine
function over U1, U2.

10 / 22

2-stage MITM Attack Framework

2nd MITM Stage:
• To reach the state xb (b ∈ [1, n − 3h]), each of them can be expressed as

xb = fi(U1) + ci = Ai(U1) + Bi(U2) for ∀b = i ∈ [1, t],
xb = gj(U2) + dj = Cj(U1) + Dj(U2) for ∀b = j ∈ [t + 1, n − 3h],

(2)

where fi , gj are quadratic functions and Ai , Bi , Cj , Dj are affine functions, and
ci , dj are single bit constants.

• Rearrange Equ. (2) to obtain the following collision equations:

fi(U1) + Ai(U1) + ci = Bi(U2),

Cj(U1) = gj(U2) + Dj(U2) + dj .

11 / 22

2-stage MITM Attack Framework

• Use Gray-codes to enumerate ∀U1 ∈ {0, 1}t , create hash table L1 indexed by
the (n − 3h)-bit vector [fi(U1) + Ai(U1) + ci , · · · ,Cj(U1)].

• Enumerate ∀U2 ∈ {0, 1}n−3h−t in Gray-codes order, create hash table L2

indexed by the (n − 3h)-bit vector [Bi(U2), · · · , gj(U2) + Dj(U2) + dj].

• Find possible collisions between L1 and L2, the expected number is about
2t+n−3h−t · 23h−n = 1.

• When a collision is found, verify the correctness of K = (U0,U1,U2).

12 / 22

2-stage MITM Attack Framework

Guess bitsh 



Affine Layer

S S S S S

    



 (the secret key)K

S



S



S



S



S



Affine Layer

    

1K

2K

Guess bits
3
n



 

 3
0 0,1 hU   1 0,1 tU    3

2 0,1 n h tU  

1 2 3State , , , ha a a 1 2 3State , , , n hx x x 

Figure 3: 2-stage MITM Attack Framework for 2-round LowMC

13 / 22

3-stage MITM Attack Framework

The time complexity of attacks can be further reduced…

1st MITM Stage:
• Split K into three parts V0 = [k1, k2, · · · , k3h], V1 = [k3h+1, k3h+2, · · · , k3h+t]
and V2 = [k3h+t+1, k3h+t+2, · · · , kn], note that t = ⌊(n − 3h)/9⌋ · 3 here.

2nd MITM Stage:
• After 1st MITM stage, the original collision equations can be written as

pi(V1)+Ei(V1) + wi = Fi(V2) for ∀i ∈ [1, t], (3)
Gj(V1)+sj = qj(V2) + Hj(V2) for ∀j ∈ [t + 1, n − 3h]. (4)

pi , qj are quadratic and Ei , Fi , Gj , Hj are affine, and wi , sj are constants.

14 / 22

3-stage MITM Attack Framework

• Let k ′
i = k3h+i for ∀i ∈ [1, t] and define

V 1 = [k ′
1, k ′

2, k ′
3, k ′

1k ′
2, k ′

2k ′
3, k ′

1k ′
3, · · · , k ′

t−2, k ′
t−1, k ′

t , k ′
t−2k ′

t−1, k ′
t−1k ′

t , k ′
t−2k ′

t].

• There exist affine functions pi , E i , G j over V 1, so that

pi(V 1) = pi(V1), E i(V 1) = Ei(V1), G j(V 1) = Gj(V1).

• Equ. (3) and Equ. (4) can be rewritten as

pi(V 1) + E i(V 1) + wi = Fi(V2), (5)
G j(V 1) + sj = qj(V2) + Hj(V2). (6)

15 / 22

3-stage MITM Attack Framework

• Define a map ϕ:

V 1 → [pi(V 1) + E i(V 1), · · · ,G j(V 1)]
T .

which can be seen as a linear code of length n − 3h and dimension 2t.

• Find the (n − 3h)× 2t generator matrix G and the (n − 3h − 2t)× (n − 3h)
check matrix H of ϕ.

• Define Vc to be the vector [w1,w2, · · · ,wt , st+1, · · · , sn−3h]
T . The left side of

Equ. (5) and Equ. (6) can be written as ϕ(V 1) + Vc. Note that

H · [ϕ(V 1) + Vc] = H · [G · V 1 + Vc] = H · Vc.

16 / 22

3-stage MITM Attack Framework

• Now, split V2 into two parts V ′
2 ∈ {0, 1}t , V ′′

2 ∈ {0, 1}n−3h−2t and rewrite

Fi(V2) = F (1)
i (V ′

2) + F (2)
i (V ′′

2),

qj(V2) = q(1)
j (V ′

2) + q(2)
j (V ′′

2),

Hj(V2) = H (1)
j (V ′

2) + H (2)
j (V ′′

2).

• Then define

N1 = [F (1)
i (V ′

2), · · · , q
(1)
j (V ′

2) + H (1)
j (V ′

2)]
T ,

N2 = [F (2)
i (V ′′

2), · · · , q
(2)
j (V ′′

2) + H (2)
j (V ′′

2)]
T .

• The right side of Equ. (5) and Equ. (6) can be written as N1 + N2.

17 / 22

3-stage MITM Attack Framework

• Let us make

H · (N1 + N2) = H · Vc ⇔ H · N1 = H · N2 + H · Vc,

which is an additional collision equation.

• Use Gray-codes to enumerate ∀V ′
2 ∈ {0, 1}t , create hash table I1 indexed by

the (n − 3h − 2t)-bit vector H · N1.

• Use Gray-codes to enumerate ∀V ′′
2 ∈ {0, 1}n−3h−2t , create hash table I2

indexed by the (n − 3h − 2t)-bit vector H · N2 + H · Vc.

• Find possible collisions between I1 and I2, the expected number is about
2t+n−3h−2t · 23h+2t−n = 2t , which can be stored in table I0.

18 / 22

3-stage MITM Attack Framework

3nd MITM Stage:
• Enumerate ∀V1 ∈ {0, 1}t in Gray-codes order, create hash table I3 indexed by
the (n − 3h)-bit vector [pi(V1) + Ei(V1) + wi , · · · ,Gj(V1) + sj].

• For all values of V2 ∈ I0, create hash table I4 indexed by the (n − 3h)-bit
vector [Fi(V2), · · · , qj(V2) + Hj(V2)].

• Find possible collisions between I3 and I4, the expected number is about
22t · 23h−n ≈ 2−(n−3h)/3 < 1.

• When a collision is found, verify the correctness of K = (V0,V1,V2).

19 / 22

Results 4 X. Ren et al.

n k s r (h, t) log2(T) log2(M) Exh.Search References

129 129 43 2 /

97 53

145

Asiacrypt 2021
118 92 Eurocrypt 2021

125.43 77.4 ePrint 2022
128.4* 40.2* ToSC 2023

(28, 15) 94.4 23.3 Ours

192 192 64 2 /

139 75

209

Asiacrypt 2021
170 126 Eurocrypt 2021

181.91 112.58 ePrint 2022
186.6* 55.9* ToSC 2023

(46, 18) 136.6 26.6 Ours

255 255 85 2 /

182 97

273

Asiacrypt 2021
222 173 Eurocrypt 2021

243.03 152.67 ePrint 2022
244.5* 71.4* ToSC 2023

(67, 18) 178.7 26.6 Ours
* The optimal complexity was recalculated using the formula in ToSC 2023 paper.

time complexity and memory complexity, with memory drastically reduced
by a factor of 229.7 ∼ 270.4. Thus, our results set a new record in the LowMC
cryptanalysis competition.

While our 3-round attack did not break the record, the concept of algebraic
attacks based on the MITM idea still holds potential and serves as our future
research work.

1.3 Organization

In Section 2, we introduce a description of LowMC, the linearization techniques
for LowMC S-box, and an overview of both the fast exhaustive search algorithm
and Dinur’s algorithm. In Section 3, we present the GnD attack framework and
its application effects. In Section 4, we present the MITM attack framework,
including both a 2-stage MITM attack and a 3-stage MITM attack. Finally, we
summarize the full paper in Section 5.

2 Preliminaries

2.1 Description of LowMC

LowMC [1] is a family of block ciphers with flexible SPN structures. Unlike
conventional block ciphers, the instantiation of LowMC is not fixed, and users
can independently select parameters: the block size n, the key size k, the number
of S-boxes s in each round and the allowed data complexity D of attacks. The

20 / 22

Summary

• 3-stage MITM attacks outperform the best previous 2-round attacks, with
memory drastically reduced by a factor of 229.7 ∼ 270.4.

• Attacks can be extended to 3-round LowMC by linearizing the 3rd S-box
layer, resulting in a factor of 2s increase in time complexity.

• The security evaluation of LowMC instances with full S-box layers under
extremely low-data complexity (≤ 2) remains our future work.

21 / 22

Thanks!
renxingwei@iie.ac.cn

22 / 22

mailto:renxingwei@iie.ac.cn

