Improved Algebraic Attacks on Round-Reduced LowMC with Single-Data Complexity

Xingwei Ren^{1,2} Yongqiang Li^{1,2} Mingsheng Wang^{1,2}

¹Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

²School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

August, 2024

Contents

- Background
- 2 Algorithms for Solving Multivariate Boolean Equations
- 3 New GnD Attacks on 2-round LowMC
- 4 New MITM Attacks on Round-Reduced LowMC
- **6** Conclusion

LowMC

- A family of block ciphers with flexible SPN structures.
- First designed for MPC/FHE/ZK protocols at EUROCRYPT 2015.

Figure 1: LowMC Round Function

Picnic

- Proposed at CCS 2017.
- A signature scheme in the third round of NIST PQC competition.
- LowMC is as its underlying symmetric primitive.

Security

Picnic is based on the MPC-in-the-head paradigm, its security is equivalent to the difficulty of recovering the secret key K from a single plaintext-ciphertext (P, C).

$$\mathsf{LowMC}_{\mathsf{Enc}}(P,K) = C$$

Picnic3 has introduced new LowMC instances with full S-box layers.

Previous Work

In 2020, the LowMC cryptanalysis competition^a (with single-data) began...

- Guess-and-determine (GnD) + Meet-in-the-middle (MITM) attack (ToSC 2020, ASIACRYPT 2021, SAC 2022)
- Polynomial method (EUROCRYPT 2021)
- Polynomial method + GnD (ToSC 2022, ePrint 2022, ToSC 2023)

[&]quot;https://lowmcchallenge.github.io/

Linearization Techniques for the LowMC S-box

LowMC employs the 3-bit S-box $S(x_0, x_1, x_2) = (y_0, y_1, y_2)$, where

$$y_0 = x_0 \oplus x_1 x_2,$$

$$y_1 = x_0 \oplus x_1 \oplus x_0 x_2,$$

$$y_2 = x_0 \oplus x_1 \oplus x_2 \oplus x_0 x_1.$$

The First Method: Guess the value of any one output bit

Let $x_0 \oplus x_1 x_2 = c$, the output bits can be rewritten as

$$y_0 = c,$$

$$y_1 = c \oplus x_1 \oplus cx_2,$$

$$y_2 = c \oplus x_1 \oplus x_2 \oplus cx_1.$$

The LowMC S-box is fully linearized. (Similarly for the inverse S-box)

Linearization Techniques for the LowMC S-box

LowMC employs the 3-bit S-box $S(x_0, x_1, x_2) = (y_0, y_1, y_2)$, where

$$y_0 = x_0 \oplus x_1 x_2,$$

 $y_1 = x_0 \oplus x_1 \oplus x_0 x_2,$
 $y_2 = x_0 \oplus x_1 \oplus x_2 \oplus x_0 x_1.$

The Second Method: Guess the values of any two input bits

Let $x_0 = c'$ and $x_2 = c''$, the output bits can be rewritten as

$$y_0 = c' \oplus c'' x_1,$$

$$y_1 = c' \oplus x_1 \oplus c' c'',$$

$$y_2 = c' \oplus x_1 \oplus c'' \oplus c' x_1.$$

The LowMC S-box is also fully linearized. (Similarly for the inverse S-box)

Fast Exhaustive Search (FES) Algorithm

How to fastly evaluate a Boolean polynomial of degree d with u variables?

FES Algorithm

- lacksquare To evaluate any f(x).
 - An initialization phase $O(u^{2d})$. (negligible when $d \ll u$)
 - Use Gray-codes to enumerate $\forall x \in \mathbb{F}_2^u$, then f(x) can be evaluated within $d \cdot 2^u$ bit operations.
- 2 To find all zeros of any $\{f_i(x)\}_{i=1}^m (deg(f_i) \leq d)$.
 - Time: $2d \cdot \log_2 u \cdot 2^u$ bit operations.
 - Memory: $m \cdot \binom{u}{\leq d}$ bits, where $\binom{u}{\leq d} = \sum_{i=0}^{d} \binom{u}{i}$.

Dinur's Algorithm

Consider a system
$$E(x) := \{f_i(x) = 0\}_{i=1}^m$$
, where $x \in \mathbb{F}_2^u$ and $deg(f_i) \leq d$.

Dinur's Algorithm

- The core idea:
 - Choose a parameter u_1 and split x into $y \in \mathbb{F}_2^{u-u_1}$ and $z \in \mathbb{F}_2^{u_1}$.
 - Randomly select four different choices for the system E(y, z), each containing $u_1 + 1$ equations from E(y, z).
 - Efficiently enumerate all solutions to each \widetilde{E} and then verify them by E.
 - Based on a polynomial $\widetilde{F}(x) = \prod_{i=1}^{u_1+1} (\widetilde{f}_i(x) \oplus 1)$.
- **2** Time: $n^2 \cdot 2^{(1-1/2.7d)n}$ bit operations. / Memory: $n^2 \cdot 2^{(1-1/1.35d)n}$ bits.

Preliminaries:

- The key schedule is linear.
- Both the whitened key K_0 and all round keys K_{i+1} are generated by multiplying the master key K with a full-rank binary matrix M_j .
- Subkey $(i) = Lin_i(K)$.

Figure 2: GnD Attack on 2-round LowMC

Figure 2: GnD Attack on 2-round LowMC

In the 1st round:

- $lue{1}$ Linearize the last g S-boxes by the second method.
- 2 Obtain 2g linear equations about K.
- 3 Perform Gaussian elimination to yield n-2g free variables v.
- 4 Linearize the first t = s g S-boxes by the first method.

Figure 2: GnD Attack on 2-round LowMC

In the 2nd round:

- 1 Linearize the first h inverse S-boxes by the first method.
- **2** Obtain 3h linear equations about v.
- 3 Perform Gaussian elimination to yield n 2g 3h free variables β .
- 4 Construct the target system of n-3h quadratic equations in terms of β .

Figure 2: GnD Attack on 2-round LowMC

Solve the target system by using FES or Dinur's algorithm.

- Vs. naive FES, the acceleration factor is $2^{31.9}/2^{51.7}/2^{71.8}$ for the 129/192/255-bit key.
- Vs. Dinur's results, the acceleration factor is 2^{9.8}/2^{19.8}/2^{29.8} for the 129/192/255-bit key.
- The required memory is negligible.

Due to the linear key schedule of LowMC, the whitened key can be regarded as the secret key $K = [k_1, k_2, \dots, k_n]$ for cryptanalysis.

1st MITM Stage:

- Split K into three parts $U_0 = [k_1, k_2, \dots, k_{3h}], U_1 = [k_{3h+1}, k_{3h+2}, \dots, k_{3h+t}]$ and $U_2 = [k_{3h+t+1}, k_{3h+t+2}, \dots, k_n],$ where $t = \lfloor (n-3h)/6 \rfloor \cdot 3$.
- Based on the first method, linearize the inverse of the 2nd round and the first *h* S-boxes in the 1st round.
- Denote $X = (a_1, a_2, \dots, a_{3h}, x_1, x_2, \dots, x_{n-3h})$ to be the output state of the 1st S-box layer.

• To reach the state $(a_1, a_2, \dots, a_{3h})$ from the plaintext and ciphertext, a system of 3h linear equations can be constructed, rewritten as

$$A \cdot U_0 = A \cdot [k_1, k_2, \cdots, k_{3h}]^T = B,$$
 (1)

where A is an $3h \times 3h$ matrix over \mathbb{F}_2 , and B is a vector whose elements are affine functions in terms of U_1 , U_2 .

• Perform Gaussian elimination on Equ. (1), then each bit of U_0 can be an affine function over U_1 , U_2 .

2nd MITM Stage:

• To reach the state x_b ($b \in [1, n-3h]$), each of them can be expressed as

$$x_b = f_i(U_1) + c_i = A_i(U_1) + B_i(U_2) \text{ for } \forall b = i \in [1, t],$$

$$x_b = g_j(U_2) + d_j = C_j(U_1) + D_j(U_2) \text{ for } \forall b = j \in [t + 1, n - 3h],$$
(2)

where f_i , g_j are quadratic functions and A_i , B_i , C_j , D_j are affine functions, and c_i , d_j are single bit constants.

• Rearrange Equ. (2) to obtain the following collision equations:

$$f_i(U_1) + A_i(U_1) + c_i = B_i(U_2),$$

 $C_j(U_1) = g_j(U_2) + D_j(U_2) + d_j.$

- Use Gray-codes to enumerate $\forall U_1 \in \{0, 1\}^t$, create hash table L_1 indexed by the (n-3h)-bit vector $[f_i(U_1) + A_i(U_1) + c_i, \cdots, C_i(U_1)]$.
- Enumerate $\forall U_2 \in \{0,1\}^{n-3h-t}$ in Gray-codes order, create hash table L_2 indexed by the (n-3h)-bit vector $[B_i(U_2), \cdots, g_j(U_2) + D_j(U_2) + d_j]$.
- Find possible collisions between L_1 and L_2 , the expected number is about $2^{t+n-3h-t} \cdot 2^{3h-n} = 1$.
- When a collision is found, verify the correctness of $K = (U_0, U_1, U_2)$.

Figure 3: 2-stage MITM Attack Framework for 2-round LowMC

The time complexity of attacks can be further reduced...

1st MITM Stage:

• Split K into three parts $V_0 = [k_1, k_2, \dots, k_{3h}], V_1 = [k_{3h+1}, k_{3h+2}, \dots, k_{3h+t}]$ and $V_2 = [k_{3h+t+1}, k_{3h+t+2}, \dots, k_n],$ note that $t = \lfloor (n-3h)/9 \rfloor \cdot 3$ here.

2nd MITM Stage:

• After 1st MITM stage, the original collision equations can be written as

$$p_i(V_1) + E_i(V_1) + w_i = F_i(V_2) \text{ for } \forall i \in [1, t],$$
 (3)

$$G_j(V_1) + s_j = q_j(V_2) + H_j(V_2) \text{ for } \forall j \in [t+1, n-3h].$$
 (4)

 p_i , q_j are quadratic and E_i , F_i , G_j , H_j are affine, and w_i , s_j are constants.

• Let $k'_i = k_{3h+i}$ for $\forall i \in [1, t]$ and define

$$\overline{V}_1 = [k_1', k_2', k_3', k_1'k_2', k_2'k_3', k_1'k_3', \cdots, k_{t-2}', k_{t-1}', k_t', k_{t-2}'k_{t-1}', k_{t-1}'k_t', k_{t-2}'k_1'].$$

• There exist affine functions \overline{p}_i , \overline{E}_i , \overline{G}_j over \overline{V}_1 , so that

$$\overline{p}_i(\overline{V}_1) = p_i(V_1), \ \overline{E}_i(\overline{V}_1) = E_i(V_1), \ \overline{G}_j(\overline{V}_1) = G_j(V_1).$$

• Equ. (3) and Equ. (4) can be rewritten as

$$\overline{p}_i(\overline{V}_1) + \overline{E}_i(\overline{V}_1) + w_i = F_i(V_2), \tag{5}$$

$$\overline{G}_j(\overline{V}_1) + s_j = q_j(V_2) + H_j(V_2). \tag{6}$$

• Define a map ϕ :

$$\overline{V}_1 \to [\overline{p}_i(\overline{V}_1) + \overline{E}_i(\overline{V}_1), \cdots, \overline{G}_j(\overline{V}_1)]^T.$$

which can be seen as a linear code of length n-3h and dimension 2t.

- Find the $(n-3h) \times 2t$ generator matrix **G** and the $(n-3h-2t) \times (n-3h)$ check matrix **H** of ϕ .
- Define V_c to be the vector $[w_1, w_2, \cdots, w_t, s_{t+1}, \cdots, s_{n-3h}]^T$. The left side of Equ. (5) and Equ. (6) can be written as $\phi(\overline{V}_1) + V_c$. Note that

$$\mathbf{H} \cdot [\phi(\overline{V}_1) + V_c] = \mathbf{H} \cdot [\mathbf{G} \cdot \overline{V}_1 + V_c] = \mathbf{H} \cdot V_c.$$

• Now, split V_2 into two parts $V_2' \in \{0,1\}^t$, $V_2'' \in \{0,1\}^{n-3h-2t}$ and rewrite

$$F_{i}(V_{2}) = F_{i}^{(1)}(V_{2}') + F_{i}^{(2)}(V_{2}''),$$

$$q_{j}(V_{2}) = q_{j}^{(1)}(V_{2}') + q_{j}^{(2)}(V_{2}''),$$

$$H_{j}(V_{2}) = H_{j}^{(1)}(V_{2}') + H_{j}^{(2)}(V_{2}'').$$

• Then define

$$N_{1} = [F_{i}^{(1)}(V_{2}'), \cdots, q_{j}^{(1)}(V_{2}') + H_{j}^{(1)}(V_{2}')]^{T},$$

$$N_{2} = [F_{i}^{(2)}(V_{2}''), \cdots, q_{j}^{(2)}(V_{2}'') + H_{j}^{(2)}(V_{2}'')]^{T}.$$

• The right side of Equ. (5) and Equ. (6) can be written as $N_1 + N_2$.

• Let us make

$$\mathbf{H} \cdot (N_1 + N_2) = \mathbf{H} \cdot V_c \Leftrightarrow \mathbf{H} \cdot N_1 = \mathbf{H} \cdot N_2 + \mathbf{H} \cdot V_c,$$

which is an additional collision equation.

- Use Gray-codes to enumerate $\forall V_2' \in \{0, 1\}^t$, create hash table I_1 indexed by the (n 3h 2t)-bit vector $\mathbf{H} \cdot N_1$.
- Use Gray-codes to enumerate $\forall V_2'' \in \{0,1\}^{n-3h-2t}$, create hash table I_2 indexed by the (n-3h-2t)-bit vector $\mathbf{H} \cdot N_2 + \mathbf{H} \cdot V_c$.
- Find possible collisions between I_1 and I_2 , the expected number is about $2^{t+n-3h-2t} \cdot 2^{3h+2t-n} = 2^t$, which can be stored in table I_0 .

3nd MITM Stage:

- Enumerate $\forall V_1 \in \{0, 1\}^t$ in Gray-codes order, create hash table I_3 indexed by the (n-3h)-bit vector $[p_i(V_1) + E_i(V_1) + w_i, \cdots, G_j(V_1) + s_j]$.
- For all values of $V_2 \in I_0$, create hash table I_4 indexed by the (n-3h)-bit vector $[F_i(V_2), \cdots, q_j(V_2) + H_j(V_2)]$.
- Find possible collisions between I_3 and I_4 , the expected number is about $2^{2t} \cdot 2^{3h-n} \approx 2^{-(n-3h)/3} < 1$.
- When a collision is found, verify the correctness of $K = (V_0, V_1, V_2)$.

Results

n	$\mid k \mid$	s	r	(h,t)	$\log_2(T)$	$\log_2(M)$	Exh.Search	References
129	129	43	2	(28, 15)	97 118 125.43 128.4* 94.4	53 92 77.4 40.2* 23.3	145	Asiacrypt 2021 Eurocrypt 2021 ePrint 2022 ToSC 2023 Ours
192	192	64	2	(46, 18)	139 170 181.91 186.6* 136.6	75 126 112.58 55.9* 26.6	209	Asiacrypt 2021 Eurocrypt 2021 ePrint 2022 ToSC 2023 Ours
255	255	85	2	(67, 18)	182 222 243.03 244.5* 178.7	97 173 152.67 71.4* 26.6	273	Asiacrypt 2021 Eurocrypt 2021 ePrint 2022 ToSC 2023 Ours

 $^{^{\}ast}$ The optimal complexity was recalculated using the formula in ToSC 2023 paper.

Summary

- 3-stage MITM attacks outperform the best previous 2-round attacks, with memory drastically reduced by a factor of $2^{29.7} \sim 2^{70.4}$.
- Attacks can be extended to 3-round LowMC by linearizing the 3rd S-box layer, resulting in a factor of 2^s increase in time complexity.
- The security evaluation of LowMC instances with full S-box layers under extremely low-data complexity (≤ 2) remains our future work.

Thanks!

renxingwei@iie.ac.cn