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How Do We Construct Block Ciphers?

Fix a vector space over a finite field Fn
q.

Classical designs: Fn
2m .

Modern designs for MPC or ZK: Fn
p, where p prime.

Choose a round function

Ri (x , k i ) = M︸︷︷︸
matrix

P(x)︸ ︷︷ ︸
non-linear perm.

+ k i︸︷︷︸
round key

+ c i︸︷︷︸
constant

.

Choose a key schedule.

E.g., linear k i = M i
ksk .

Obtain a cipher by iteration of round functions

C(x , k) = Rr ◦ · · · ◦ R1(x , k).
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Classical Non-Linear Layers

Substitution-Permutation Network (SPN): Let f : Fq → Fq be
a permutation, then

S :

x1
...
xn

 7→

f (x1)
...

f (xn)

 .

Feistel Networks: Let f : Fq → Fq be a function, then a
2-branch Feistel Network is given by

FN :

(
xL
xR

)
7→

(
xR + f (xL)

xL

)
.

And variations thereof.
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Triangular Dynamical System

Triangular Dynamical System (TDS) [OS10a]
Fq finite field, n ∈ Z≥1, gi , hi ∈ Fq[xi+1, . . . , xn] polynomials.
Then the TDS F = {f1, . . . , fn} ⊂ Fq[x1, . . . , xn] is defined as

f1(x1, . . . , xn) = x1 · g1(x2, . . . , xn) + h1(x2, . . . , xn),

f2(x1, . . . , xn) = x2 · g2(x3, . . . , xn) + h2(x3, . . . , xn),

...
fn−1(x1, . . . , xn) = xn−1 · gn−1(xn) + hn−1(xn),

fn(x1, . . . , xn) = xn.

Introduced by Ostafe and Sparlinski [OS10a].
Can exhibit polynomial degree growth under iteration [OS10a,
§2.2].

3/15



Triangular Dynamical System

Triangular Dynamical System (TDS) [OS10a]
Fq finite field, n ∈ Z≥1, gi , hi ∈ Fq[xi+1, . . . , xn] polynomials.
Then the TDS F = {f1, . . . , fn} ⊂ Fq[x1, . . . , xn] is defined as

f1(x1, . . . , xn) = x1 · g1(x2, . . . , xn) + h1(x2, . . . , xn),

f2(x1, . . . , xn) = x2 · g2(x3, . . . , xn) + h2(x3, . . . , xn),

...
fn−1(x1, . . . , xn) = xn−1 · gn−1(xn) + hn−1(xn),

fn(x1, . . . , xn) = xn.

Introduced by Ostafe and Sparlinski [OS10a].
Can exhibit polynomial degree growth under iteration [OS10a,
§2.2].

3/15



Triangular Dynamical System

Triangular Dynamical System (TDS) [OS10a]
Fq finite field, n ∈ Z≥1, gi , hi ∈ Fq[xi+1, . . . , xn] polynomials.
Then the TDS F = {f1, . . . , fn} ⊂ Fq[x1, . . . , xn] is defined as

f1(x1, . . . , xn) = x1 · g1(x2, . . . , xn) + h1(x2, . . . , xn),

f2(x1, . . . , xn) = x2 · g2(x3, . . . , xn) + h2(x3, . . . , xn),

...

fn−1(x1, . . . , xn) = xn−1 · gn−1(xn) + hn−1(xn),

fn(x1, . . . , xn) = xn.

Introduced by Ostafe and Sparlinski [OS10a].
Can exhibit polynomial degree growth under iteration [OS10a,
§2.2].

3/15



Triangular Dynamical System

Triangular Dynamical System (TDS) [OS10a]
Fq finite field, n ∈ Z≥1, gi , hi ∈ Fq[xi+1, . . . , xn] polynomials.
Then the TDS F = {f1, . . . , fn} ⊂ Fq[x1, . . . , xn] is defined as

f1(x1, . . . , xn) = x1 · g1(x2, . . . , xn) + h1(x2, . . . , xn),

f2(x1, . . . , xn) = x2 · g2(x3, . . . , xn) + h2(x3, . . . , xn),

...
fn−1(x1, . . . , xn) = xn−1 · gn−1(xn) + hn−1(xn),

fn(x1, . . . , xn) = xn.

Introduced by Ostafe and Sparlinski [OS10a].
Can exhibit polynomial degree growth under iteration [OS10a,
§2.2].

3/15



Triangular Dynamical System

Introduced by Ostafe and Sparlinski [OS10a].
Can exhibit polynomial degree growth under iteration [OS10a,
§2.2].

Polynomial pseudo-random number generator x i = F(x i−1)
was investigated [OS10a, §3].

Polynomial degree growth implies low discrepancy.

A hash function based on polynomial iterations was proposed
[OS10b].
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Invertibility of the GTDS

Suppose we are given F(x) = α ∈ Fn
q.

For the n-th component:

pn(xn) = αn =⇒ xn = p−1
n (αn).

For the (n − 1)-th component:

pn−1(xn−1) · gn−1(xn) + hn−1(xn) = βn−1

gn−1(xn)̸=0
=⇒ pn−1(xn−1) =

βn−1 − hn−1(xn)

gn−1(xn)

=⇒ xn−1 = p−1
n−1

(
βn−1 − hn−1(xn)

gn−1(xn)

)
.

Iterate through i = n − 2, . . . , 1.
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Enforcing No Zeros

In general, finding gi ∈ Fq[xi+1, . . . , xn] such that
gi (xi+1, . . . , xn) ̸= 0 for all xi+1, . . . , xn ∈ Fq is non-trivial.
For MPC and ZK applications q usually is prime.

Over prime fields we can use special case

g(x) = x2 + a · x + b.

With well-known formula for g(x) = 0

x1,2 =
−b ±

√
b2 − 4 · a
2

,

we have that g(x) ̸= 0 for all x ∈ Fq if and only if b2 − 4 · a is
non-square modulo q.
Build more general gi starting from g .
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GTDS Instances I

SPN GTDSp1(x1)
...

pn(xn)



p1(x1)·g1(x2, . . . , xn) + h1(x2, . . . , xn)

...
pn−1(xn−1)·gn−1(xn) + hn−1(xn)

pn(xn)


Generalized Feistel GTDS
x1+h1(x2, . . . , xn)

...
xn−1+hn(xn)

xn



x1·g1(x2, . . . , xn)+h1(x2, . . . , xn)

...
xn−1·gn−1(xn)+hn(xn)

xn−1


8/15



GTDS Instances II

Horst Scheme [GHR+22, GHR+23]: g , h ∈ Fq[x ] such that g
does not have any zeros, then

Horst
(
xL
xR

)
=

(
xR

xL · g(xR) + h(xR)

)
.

Independent development from us at the same time.

Horst variations with h = 0 are used in Griffin [GHR+23] and
Reinforced Concrete’s [GKL+22] Bricks.

Let p, d , ai , bi ∈ Z be such that p is prime, gcd (d , p − 1) = 1
and b2

i − 4 · ai are non-squares modulo p:

Bricks : F3
p → F3

p,

x1
x2
x3

 7→

 xd1
x2 ·

(
x2
1 + a1 · x1 + b1

)
x3 ·

(
x2
2 + a2 · x2 + b2

)
 .
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GTDS Instances III

Arion & ArionHash [RST23]: Offspring of this work.
First design that utilizes a full GTDS at round level.

Let p, d1, d2, n ∈ Z≥1
1 be such that gcd (d1 · d2, p − 1) = 1.

Let gi , hi ∈ Fp[xi+1, . . . , xn] be quadratic polynomials such
that the gi ’s do not have zeros in Fp.

The Arion GTDS is defined as

fi (x1, . . . , xn) = xd1
i · gi (σi+1,n) + hi (σi+1,n), 1 ≤ i ≤ n − 1,

fn(x1, . . . , xn) = x
1
d2
n ,

where

σi+1,n =
n∑

j=i+1

xj + fj(x1, . . . , xn).

1Recommended choices are d1 ∈ {3, 5, 7}
and d2 ∈ {129, 257}.
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Let gi , hi ∈ Fp[xi+1, . . . , xn] be quadratic polynomials such
that the gi ’s do not have zeros in Fp.

The Arion GTDS is defined as

fi (x1, . . . , xn) = xd1
i · gi (σi+1,n) + hi (σi+1,n), 1 ≤ i ≤ n − 1,

fn(x1, . . . , xn) = x
1
d2
n ,

where

σi+1,n =
n∑

j=i+1

xj + fj(x1, . . . , xn).

1Recommended choices are d1 ∈ {3, 5, 7}
and d2 ∈ {129, 257}.
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GDTS Cryptanalysis: Differential Cryptanalysis

Differential Distribution Table [Nyb94]
F : Fn

q → Fm
q function.

The DDT entry of F at a ∈ Fn
q and b ∈ Fm

q is given by

δF (a,b) =
∣∣{x ∈ Fn

q | F (x + a)− F (x) = b
}∣∣

The Differential Uniformity of F is

δ(F ) = max
a∈Fn

q\{0}, b∈Fm
q

δF (a,b).

For a GTDS F assume that δ(pi ) < q for all 1 ≤ i ≤ n.
(Then δ(pi ) < deg (pi ).)
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GDTS Cryptanalysis: Differential Cryptanalysis

Let us look at DDT equation

F(x + a)−F(x) = b
⇒ pn(xn + an)− pn(xn) = bn.

At most deg (pn) many solutions for xn ∈ Fq if an ̸= 0.

For the (n − 1)-th component, fix a solution x̃n ∈ Fq, then

pn−1(xn−1 + an−1) · g(x̃n + an) + h(x̃n + an)

− pn−1(xn−1) · g(x̃n)− h(x̃n) = bn−1.

If an−1 ̸= 0, then ≤ deg (pn−1) many solutions for xn−1 ∈ Fq.
Otherwise q many solutions xn−1 ∈ Fq.
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GDTS Cryptanalysis: Differential Cryptanalysis

For a GTDS F with 1 < δ(pi ) < q, 1 ≤ i ≤ n, upwards
induction then yields that

δF (a,b) ≤
n∏

i=1

{
deg (pi ) , ai ̸= 0,
q, ai = 0.

Almost the same DDT bound as SPN
S =

(
p1(x1), . . . , pn(xn)

)⊺.
The gi , hi ’s can only decrease the number of solutions, never
increase them from the SPN bound.
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GDTS Cryptanalysis: Linear Cryptanalysis

Correlation [Bey21]
F : Fn

q → Fn
q function, χ, ψ : Fn

q → C additive characters.
The correlation of F for the characters (χ, ψ) is given by

CORRF (χ, ψ) =
1
qn

·
∑
x∈Fn

q

χ
(
F (x)

)
· ψ(x).

For a GTDS with gcd (deg (pi ) , q) = 1, 1 ≤ i ≤ n, we prove
that

|CORRF (χ, ψ)| ≤ max
1≤i≤n

deg (pi )− 1
√
q

.

Gap between SPN bound

|CORRS(χ, ψ)| ≤
n∏

i=1

{
deg(pi )−1√

q , χ non-const. on xi ,

1, else.

14/15



GDTS Cryptanalysis: Linear Cryptanalysis

Correlation [Bey21]
F : Fn

q → Fn
q function, χ, ψ : Fn

q → C additive characters.
The correlation of F for the characters (χ, ψ) is given by

CORRF (χ, ψ) =
1
qn

·
∑
x∈Fn

q

χ
(
F (x)

)
· ψ(x).

For a GTDS with gcd (deg (pi ) , q) = 1, 1 ≤ i ≤ n, we prove
that

|CORRF (χ, ψ)| ≤ max
1≤i≤n

deg (pi )− 1
√
q

.

Gap between SPN bound

|CORRS(χ, ψ)| ≤
n∏

i=1

{
deg(pi )−1√

q , χ non-const. on xi ,

1, else.

14/15



GDTS Cryptanalysis: Linear Cryptanalysis

Correlation [Bey21]
F : Fn

q → Fn
q function, χ, ψ : Fn

q → C additive characters.
The correlation of F for the characters (χ, ψ) is given by

CORRF (χ, ψ) =
1
qn

·
∑
x∈Fn

q

χ
(
F (x)

)
· ψ(x).

For a GTDS with gcd (deg (pi ) , q) = 1, 1 ≤ i ≤ n, we prove
that

|CORRF (χ, ψ)| ≤ max
1≤i≤n

deg (pi )− 1
√
q

.

Gap between SPN bound

|CORRS(χ, ψ)| ≤
n∏

i=1

{
deg(pi )−1√

q , χ non-const. on xi ,

1, else.
14/15



Open Problems & Follow-Up Works

Open Problems:
Extend generic analysis to more attacks and GTDS families.
For DDT, understand the impact of the gi , hi ’s.
For correlation, close the gap between SPN bound and our one.
Understand degree growth under iteration.
Etc.

Follow-Up Works:

Arion & ArionHash [RST23], a cipher and hash function for
Zero-Knowledge applications.
Estimation of the Boomerang Connectivity Table (BCT) for
GTDS with pi (xi ) = xdi and hi = 0 for all 1 ≤ i ≤ n [Ste23].
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