

Towards Optimally Small Smoothness Bounds for Cryptographic-Sized Smooth Twins and their Isogeny-based Applications

Bruno Sterner

Inria and Laboratoire d'Informatique de l'École polytechnique (LIX), Institut Polytechnique de Paris, Palaiseau, France

Talk at SAC 2024

Meet-in-the-Middle

Meat-in-the-Middle

Motivation: "smooth sandwiches"

Cryptographic sized primes p such that $p^2 - 1$ is smooth¹ or has a large smooth cofactor

B-SIDH
$$\phi: E \to E'$$
 SQlsign $\#E(\mathbb{F}_{p^2}) = (p-1)^2, (p+1)^2$

Example: The SQIsign NIST submission use the following 254-bit prime

¹A number *n* is *B*-smooth if all prime factors of *n* are at most *B*

Smooth twins

Smooth twin: Consecutive smooth integers (e.g. $(r, r+1) = (4374, 4375) = (2 \cdot 3^7, 5^4 \cdot 7)$) (r, r+1) smooth twin and p = 2r+1 prime $\Rightarrow p^2 - 1 = 4r(r+1)$ smooth sandwich

Known algorithms: This is the landscape for finding smooth twins

4

Overview – evolution of probabilistic methods

Naïve approach: Choose a smooth integer r and hope the r + 1 is also smooth **Slightly better approach:** Force coprime smooth factors into r and r + 1:

$$a \mid r$$
 and $b \mid r + 1$, with $a \cdot b \approx r$

Use the *extended Euclidean algorithm (XGCD)*: solve a Bézout equation as + bt = 1 and get a smooth twin (r, r + 1) = (|as|, |bt|) when s, t are smooth

Even better approach: Combine many small and smooth integers to get a smooth twin In this talk we find smooth twins of the following form

$$(r,r+1) = \left(\frac{(\ell+1)(\ell+4)(\ell+9)(\ell+10)(\ell+15)(\ell+18)(\ell^2+19\ell-12)}{1166400}, \left(\frac{\ell(\ell+6)(\ell+13)(\ell+19)}{1080}\right)^2\right)$$

Using polynomials to find smooth twins

Cyclotomic factors: Search for twins of the form $(r, r + 1) = (\ell^n - 1, \ell^n)$ exploiting the cyclotomic factors of the polynomial $x^n - 1$

The larger degree cyclotomic factors dominate the smoothness probability

PTE solutions: Find polynomials $f, g \in \mathbb{Z}[x]$ that split completely into linear factors and $g - f \equiv C \in \mathbb{Z}$ – getting twins of the form

$$(r, r + 1) = \left(\frac{f(\ell)}{C}, \frac{g(\ell)}{C}\right)$$

This increases the smoothness probability compared to the cyclotomic factors

Such polynomials f, g can be found using solutions to the ideal Prouhet-Tarry-Escott (PTE) problem as done by Costello, Meyer and Naehrig (2021)

6

XGCD generalisation

XGCD over k[x]: For coprime $F, G \in k[x]$ solve the polynomial Bézout equation:

$$F \cdot S + G \cdot T \equiv 1$$
, $\deg(S) < \deg(G)$ and $\deg(T) < \deg(F)$

General smooth twin strategy: $-F \cdot S$ and $G \cdot T$ differ² by 1 and gives a general platform to find smooth twins – but working with $k = \mathbb{Q}$ (and not $k = \mathbb{Z}$!)

Set
$$f(x) \coloneqq -C \cdot F(x) \cdot S(x)$$
 and $g(x) \coloneqq C \cdot G(x) \cdot T(x) \in \mathbb{Z}[x]$; and search for $\ell \in \mathbb{Z}$ such that

Smoothness: $P(\ell)$ is smooth for all irreducible $P \mid f \cdot g$

Combine this to get a smooth twin

Evaluation:
$$f(\ell) = g(\ell) = 0 \mod C$$

$$(r, r+1) = \left(\frac{f(\ell)}{C}, \frac{g(\ell)}{C}\right)$$

Example: cyclotomic factors

$$F(x) = x - 1 \text{ and } G(x) = x^n \qquad (f(x), g(x)) = (x^n - 1, x^n)$$

²Assume WLOG that the leading coefficient of these polynomials is positive

Do we have too many linear factors?

Yes, when deg(f) > 6 we can tradeoff the number of linear and quadratic factors:

$$f(x) = x(x+4)(x+9)(x+23)(x+27)(x+41)(x+46)(x+50), \text{ and}$$

$$g(x) = (x+1)(x+2)(x+11)(x+20)(x+30)(x+39)(x+48)(x+49).$$

$$f(x) = (x+1)(x+4)(x+9)(x+10)(x+15)(x+18)(x^2+19x-12), \text{ and}$$

$$g(x) = x^2(x+6)^2(x+13)^2(x+19)^2.$$

First pair: 16 linear factors;

Second pair:

10 linear factors and1 quadratic factor

Probabilities: For a fixed smoothness bound, the probability of finding smooth twins with the second pair is expected to be *much larger* than with the first pair

Search strategies using XGCD over k[x]

Natural strategy: Iterate over many polynomials $F, G \in \mathbb{Z}[x]$ (ensuring coprimality)

ightharpoonup Compute $f,g\in\mathbb{Z}[x]$ (as before) and save the (f,g) that give good smoothness probabilities

However, doing many XGCD's of this type becomes expensive

Better strategy: Do an XGCD precomputation over $\mathbb{Q}(a_1, \dots, a_n)[x]$

- ightharpoonup Use XGCD to compute $S, T \in \mathbb{Q}(a_1, \dots, a_n)[x]$ and factorise them over $\mathbb{Q}(a_1, \dots, a_n)[x]$;
- \succ Evaluate each irreducible factor of $S \cdot T$ at the variables a_1, \dots, a_n at rationals;
- \succ Factorise each of these polynomials over $\mathbb{Q}[x]$ and save the desired pairs

Gives a fine-grained searching criterion and is much faster than the natural strategy

Additional trick: Search using *even polynomials*, i.e. $F(x) = \hat{F}(x^2)$ and $G(x) = \hat{G}(x^2)$

Degree 8 search

XGCD precomputation: Apply XGCD to
$$F(x) = x^2 - c^2$$
 and $G(x) = (x^2 - a^2)^2 (x^2 - b^2)^2$

$$S(x) = -\frac{1}{C} (x^2 - (a^2 + b^2 - c^2)) (x^4 - (a^2 + b^2)x^2 + a^2b^2 + (a^2 - c^2)(b^2 - c^2)) & T(x) = \frac{1}{C}$$
where $C = ((a^2 - c^2)(b^2 - c^2))^2$

Variable evaluation: Iterate over many $a, b, c \in \mathbb{Q}$ (with $a \neq c$ and $b \neq c$) and see when this quadratic and quartic factorises over $\mathbb{Q}[x]$: e.g. a = 19/2, b = 7/2 and c = 1/2 gives³

$$f(x) = (x+1)(x+4)(x+9)(x+10)(x+15)(x+18)(x^2+19x-12)$$
, and $g(x) = x^2(x+6)^2(x+13)^2(x+19)^2$.

with C = 1166400

Remark: This search can be modified to reduce the quartic to a product of two quadratics

³After applying the linear shift $x \mapsto x + 19/2$

More pairs found from our experiments

Degree 8:

$$f(x) = x(x+4)(x+7)^2(x+10)(x+14)(x^2+14x+9)$$
, and $g(x) = (x+5)^2(x+9)^2(x^2+14x+4)^2$.

We also searched and found many pairs of larger degree

Degree 10:

$$f(x) = (x+1)(x+4)(x+10)(x+12)(x+18)(x+21)(x^2+20x-9)(x^2+24x+35)$$
, and $g(x) = x^2(x+3)^2(x+11)^2(x+19)^2(x+22)^2$.

Degree 12:

$$f(x) = (x+4)(x+7)(x+22)(x+50)(x+56)(x+84)(x+99)(x+102)(x^2+75x-136)$$
$$(x^2+137x+3150), \text{ and}$$
$$g(x) = x^2(x+14)^2(x+39)^2(x+67)^2(x+92)^2(x+106)^2.$$

Sieving using these new pairs

Smoothness step: Split up into two components:

Linear sieve: Use the *sieve of Eratothenes* to identify integers ℓ such that ℓ + a are all smooth

e.g. want ℓ , ℓ + 1, ℓ + 4, ℓ + 6, ℓ + 9, ℓ + 10, ℓ + 13, ℓ + 15, ℓ + 18, ℓ + 19 to be smooth

Post-processing: All evaluations of quadratic (or larger degree) factors are smooth

e.g. want ℓ^2 + 19 ℓ – 12 to be smooth

Evaluation Step: Checking $f(\ell) = g(\ell) = 0 \mod C$ is done before the post-processing For this polynomial pair, combining everything gets a smooth twin:

$$(r,r+1) = \left(\frac{(\ell+1)(\ell+4)(\ell+9)(\ell+10)(\ell+15)(\ell+18)(\ell^2+19\ell-12)}{1166400}, \left(\frac{\ell(\ell+6)(\ell+13)(\ell+19)}{1080}\right)^2\right)$$

Concrete example

Smooth twin: For $\ell = 38295031104$ we have

$$> (\ell + a)$$
's are all 2^{16} -smooth $> f(\ell) = g(\ell) = 0 \mod C$ $> \ell^2 + 19\ell - 12$ is 2^{16} -smooth

So combining everything gets a smooth twin (r, r + 1)

Smooth sandwich: Additionally its sum p = 2r + 1 is prime

```
p = 0 \times 447 \times 146069 \times 15 \times 15610 \times
```

Results & comparison

Method	$\log_2(B)$ of smallest smoothness bounds for b -bit smooth sandwiches		
	<i>b</i> ≈ 256	<i>b</i> ≈ 384	b = 512
XGCD over $\mathbb Z$	22.7	_	_
Cyclotomic factors	18.9	24.4	_
PTE sieve	15.0	20.6	27.9
XGCD over $\mathbb{Q}[x]$	15.4	19.7	24.3

Table 1: A comparison of smoothness bounds of p^2-1 for large primes p

Cryptographic impact

Question: How relevant is this in the context of current isogeny-based cryptography?

Answer: Extremely irrelevant! :(— In isogeny-based applications extra conditions on the factorisation of $p^2 - 1$ are needed

Example: SQIsign requirements

$$p^2 - 1 = 2^f \cdot T \cdot R$$
, f is large, $T \approx p^{5/4}$ is smooth and R need not be smooth

The polynomials found in this work are not suited to this due to the large power of two

Summary

Smoother smooth sandwiches: We reduce the smoothness bound of $p^2 - 1$ for large primes p using new polynomial pairs – found using XGCD over k[x]

Future work/open questions: Explore more constructive applications:

- ➤ Signing with isogeny skies (SQIsign)
- > B-SIDH variants of SIDH countermeasures
- > High dimensional (HD) applications

Also answer questions at the mathematical level

- Resolve conjectures made in the paper
- > Optimal smooth twins

Thanks for listening Questions?

ia.cr/2023/1576