

Background

3. Development of Kleptography

[YY97]

Firstly proposed kleptography.

[XY18,YCL+20]

Backdoor for LWE-based cryptsystem

- General backdoor construction for LWE-based cryptsystem.
- Drawback: Cannot Apply to IND-CCA2 post-quantum KEM.

[YXP20]

Backdoor for New Hope KEM

- General backdoor construction for LWE-based cryptsystem.
- Drawback: Use elliptic curve-based
 Diffie-Hellman key exchange as a backdoor, lack of post-quantum undetectability.

[RBC+24]

<u>Post-quantum backdoor for Kyber</u>

- Claim to be publicly undetectable, but is not satisfied.
- Drawback: Can be detected by Kyber private key holders

[KLT17]

Backdoor Embedding to NTRU encryptsystem

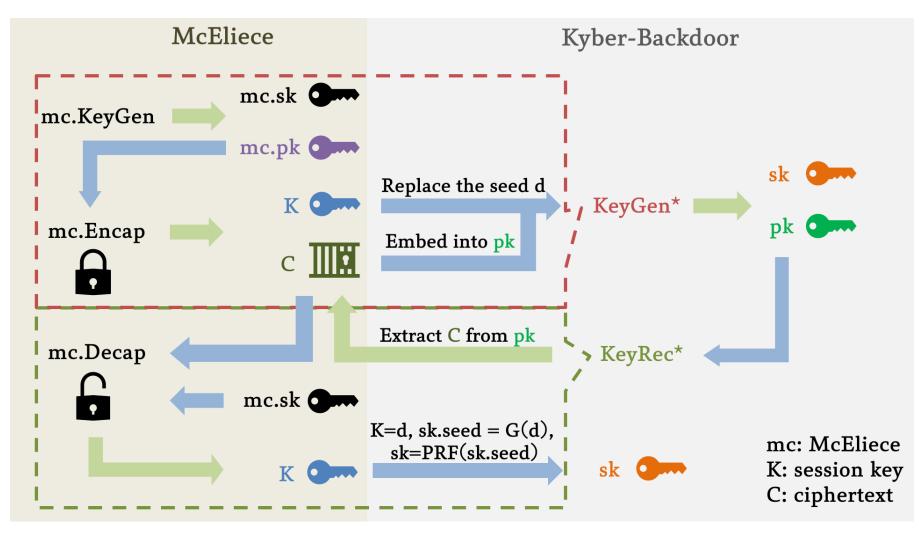
• The first backdoor for post-quantum cryptographic algorithm.

[Hem20]

Backdoor for New Hope KEM

- Fix the construction flaw in [YXP20].
- <u>Drawback: Lack of post-quantum</u> <u>undetectability.</u>

Roadmap



Post-Quantum Backdoor for Kyber-KEM

Basic Knowledge

Public Undetectibility

Challenger $\mathcal C$

Randomly choose $b \leftarrow \{0,1\}$. If b = 0, run (sk,pk)=KeyGen*. If b = 1, run (sk,pk)=KeyGen.

If b = 0, run C=Enc*(M,sk). If b = 1, run C=Enc(M,sk). Detector \mathcal{D}

pk

M

С

Choose message $M \leftarrow \{0,1\}^l$.

Output b'.

Pr(b = b') - 1/2 is negligible.

Basic Knowledge

Strict Undetectibility

Challenger $\mathcal C$

Randomly choose $b \leftarrow \{0,1\}$. If b = 0, run (sk,pk)=KeyGen*. If b = 1, run (sk,pk)=KeyGen.

If Enc and b = 0, C=Enc*(M,sk). If Enc and b = 1, C=Enc(M,sk). If Encap, (K, C)=Encap(pk). pk, <mark>sk</mark>

(M, Enc) or Encap

С

Detector \mathcal{D}

Choose message $M \leftarrow \{0,1\}^l$ and ask C run Enc, or ask C run Encap.

Output b'.

Pr(b = b') - 1/2 is negligible.

Basic Knowledge

McEliece KEM

■ Key Generation (mc.KeyGen)

Generate a key pair (mc. pk, mc. sk), where ublic key is a matrix $\mathbf{T} \in \{0,1\}^{(m_1 \cdot t) \times k}$.

■ Encapsulation (mc.Encap)

- 1. Input $mc. pk = \mathbf{T}$, generate a binary vector $\mathbf{v} \in \{0,1\}^n$ of weight $wt(\mathbf{v}) = t$.
- 2. Compute ciphertext $C = \text{ENCODE}(\mathbf{v}, mc. pk) = (\mathbf{I}|\mathbf{T}) \cdot \mathbf{v}$.
- 3. Compute the session key $K = H(1, \mathbf{v}, C)$.
- 4. Output (C, K).

■ Decapsulation (mc.Decap)

- 1. Compute $\mathbf{v} = \text{DECODE}(C, mc. sk)$.
- 2. Compute and output $K = H(1, \mathbf{v}, C)$.
- In McEliece348864, $m_1 = 12$, t = 64, k = 2720, $n = m_1 \cdot t + k = 3488$, thus the ciphertext size $m_1 t = 768$.

Construct Backdoor of Kyber through McEliece (KeyGen*)

```
output: pk \leftarrow (\mathbf{t}, pk.seed), sk \leftarrow \mathbf{s}
1 Function Kyber.KeyGen():
                                                           \blacksquare Replace d with session key K generated from McEliece
           (sk.seed, pk.seed) \leftarrow G(d) //Hash Function G is declared in Kyber
3
           (\mathbf{s}, \mathbf{e}) \leftarrow \mathsf{PRF}(sk.seed) \ / / \mathsf{Sample} \ \mathbf{s} \ \mathsf{and} \ \mathbf{e} \ \mathsf{from} \ sk.seed \ \mathsf{in} \ \mathsf{distribution} \ B_{\eta}
4
          \mathbf{A} \leftarrow \mathsf{Parse}(\mathsf{XOF}(pk.seed)) \ / / \mathsf{Sample} \ \mathbf{A} \ \mathsf{from} \ pk.seed \ .
          \mathbf{t} \leftarrow \mathbf{A}\mathbf{s} + \mathbf{e} \bmod^{\pm} q;
6
          return pk \leftarrow (\mathbf{t}.pk.seed), sk \leftarrow \mathbf{s}
                 Algorith n 1: Kyber Key Generation Algorithm KeyGen
```

- \blacksquare Embed C = ENCODE(v, mc. pk) from McEliece into LSB(t) by sampling a special e following the same distribution while ignoring border case of t_i .
- Suppose the backdoor user has mc.sk, then he can decrypt the seed d after receiving pk = (t, pk.seed) by computing d' = mc.Decap(mc.sk, LSBs(t)).
- Here v = DECODE(C, mc. sk), K = H(1, v, C)

How to do this?

 B_n -- Central Binomial Distribution:

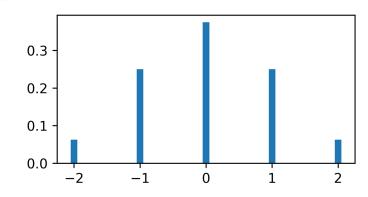
Sample

$$(a_1, ..., a_{\eta}, b_1, ..., b_{\eta}) \leftarrow \{0,1\}^{2\eta}$$

and output $\sum_{i=1}^{\eta} (a_i - b_i)$

Kyber512: $\eta = 3$

Kyber 768 and Kyber 1024: $\eta = 2$



Construct Backdoor of Kyber through McEliece (KeyGen*)

■ Sample a special e following the same distribution:

Kyber 768 and Kyber 1024: $\eta = 2$, then e_i follows distribution B_2 as:

Value	-2	-1	0	1	2
Probability	1	1_	3_	<u>1</u>	1
	16	4	8	4	16

$$Pr(LSB(e_i) = 0) = Pr(LSB(e_i) = 1) = \frac{1}{2}.$$

Depart the probabilistic distribution of B_2 into two distributions:

$$D_1$$
 with LSB $(e_i) = 0$

Value-202Probability
$$\frac{1}{8}$$
 $\frac{3}{4}$ $\frac{1}{8}$

$$D_1$$
 with LSB $(e_i) = 1$

Value	-1	1
Drobobility	1	1
Probability	$\overline{2}$	$\overline{2}$

Use reject sampling based on centered binomial distribution B_2

Construct Backdoor of Kyber through McEliece (KeyGen*)

```
input : mc.pk
    output: pk \leftarrow (\mathbf{t}, pk.seed), sk \leftarrow \mathbf{s}
1 Function KeyGen* (mc.pk):
         (K,C) \leftarrow \text{mc.Encap}(\text{mc.}pk)
        d \leftarrow K // Let the seed in Kyber be the session key of McEliece.
                                                                                                                                Replace seed d with session K
         (sk.seed, pk.seed) \leftarrow G(d) //Function G is declared in Kyber
         (\mathbf{s}, \bot) \leftarrow \mathsf{PRF}(sk.seed) //Sample \mathbf{s} from sk.seed in distribution B_n
         \mathbf{A} \leftarrow \mathsf{Parse}(\mathsf{XOF}(pk.seed)) \ / / \mathsf{Sample} \ \mathbf{A} \ \mathsf{from} \ pk.seed \ .
         \mathbf{t} \leftarrow \mathbf{As};
        for i from 1 to dim(t) do
              if i \leq \operatorname{len}(C) then
                   if (\mathbf{t}[i] - C[i]) \mod 2 = 1 then
10
                        Sample e_i from the probabilistic distribution \mathcal{D}_1
11
                   else
12
                                                                                                                                        Embed C into LSB(t)
                        Sample e_i from the probabilistic distribution \mathcal{D}_0
13
              else
14
                   Sample e_i from the probabilistic distribution B_2
15
              \mathbf{t}[i] \leftarrow \mathbf{t}[i] + e_i \mod^{\pm} q
16
         return pk \leftarrow (\mathbf{t}, pk.seed), sk \leftarrow \mathbf{s}
            Algorithm 2: Backdoor Key Generation Algorithm KeyGen*
```

Strict Undetectability of our Backdoor

Lemma 1. If C is uniformly distributed and independent with \mathbf{A} , \mathbf{s} , then the distribution of \mathbf{e} generated from Algorithm 2 is also independent with \mathbf{A} , \mathbf{s} , and identical with random \mathbf{e} where each coefficient is randomly sampled from B_2 .

Theorem 1. The backdoor scheme is strictly undetectable.

Backdoor Key Recovery (KeyRec*)

■ Discussion on the border case.

■ LSB (t_i) follows uniform distribution on \mathbb{Z}_q for q=3329 actually. Thus,

$$\Pr(LSB(t_i) = 0) = \frac{1665}{3329} = \frac{1}{2} + \frac{1}{6658}.$$

In border case, the recovery of C_i might fail. For example,

$$\left(\frac{q-1}{2} (\bmod^{\pm} q)\right) (\bmod 2) = \left(\frac{q-1}{2} + 1 (\bmod^{\pm} q)\right) (\bmod 2) = 0.$$

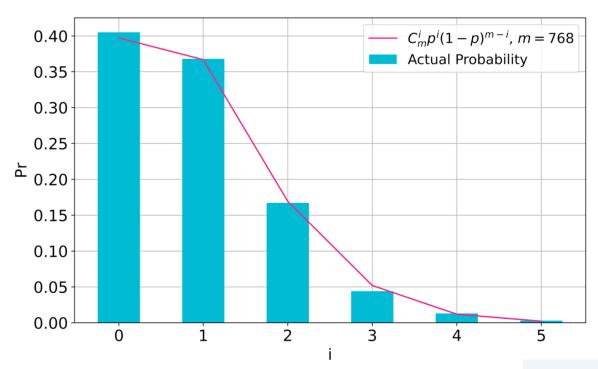
- LSB (t_i) and C_i disagree only when $t_i \in \{-\frac{q-1}{2}, -\frac{q-3}{2}, \frac{q-3}{2}, \frac{q-1}{2}\}$, so $p = \Pr(\text{LSB}(t_i) \text{ and } C_i \text{ disagree}) = \frac{4}{q}$.
- For q = 3329 in Kyber, the probability that i border case elements occurrence is

$$P_{\mathrm{theo}}(i) = \Pr(i \text{ border case elements in } (t_1, \dots, t_m)) = C_m^i p^i (1-p)^{m-i},$$

where m=768 is the bit size of McEliece348864 ciphertext \mathcal{C} .

■ The probability that there are more than 4 border case elements is only about $P_{\text{theo}}(i) \approx 0.2\%$.

Backdoor Key Recovery (KeyRec*)



Border case probability among m = 768 elements

- \blacksquare x-axis is the number of border case elements among m elements.
- Test 1000 Kyber768 instances.
- The result of Kyber1024 is close to Kyber768 since the bit size of McEliece ciphertext is same.
- The accuracy of P_{theo} fits well to P_{actual} .
- The border case probability decreases rapidly with the growth of border case number i.

$$P_{\mathrm{theo}}(i) = \Pr(i \text{ border case elements in } (t_1, ..., t_m)) = C_m^i p^i (1-p)^{m-i}$$

$$P_{\mathrm{actual}}(i) = \frac{i \text{ border case elements occur in } (t_1, ..., t_m)}{1000}$$

Backdoor Key Recovery (KeyRec*)

```
input : pk \leftarrow (\mathbf{t}, pk.seed), \text{mc.}sk, \eta \leftarrow 2
     output: sk \leftarrow s
 1 Function KeyRec* (pk):
           Sample A from pk.seed
           C' \leftarrow \text{LSBs}(\mathbf{t}), \text{ mark } C'[i] = \star \text{ if } \mathbf{t}[i] \geq (q-3)/2 \text{ or } \mathbf{t}[i] \leq -(q-3)/2
          repeat
  4
                d' \leftarrow \text{mc.Decap}(\text{mc.}sk, C')
                 (sk.seed', pk.seed') \leftarrow G(d')
                if pk.seed' = pk.seed then
                      (\mathbf{s}', \mathbf{b}) \leftarrow \mathsf{PRF}(sk.seed') / \mathsf{Sample} \mathbf{s}' \text{ from } sk.seed' \text{ through}
                        pseudorandom function PRF
                      return sk \leftarrow \mathbf{s}'
  9
           until Set C'[i] = \star to 0 or 1 respectively and exhaust all possibilities;
10
          \operatorname{return} \bot
11
```

Algorithm 3: Backdoor Key Recovery Algorithm KeyRec*

Enumerate border case.

Efficiency Test of KeyGen* and KeyRec*

方案	Cost Type (cycles/tick)	KeyGen	KeyGen*	KeyRec*
Kyber768	Median Cost/s	28397	115590	166088
	Average Cost/s	36207	118271	169267
Kyber1024	Median Cost/s	39636	133840	191503
	Average Cost/s	48604	135736	194552

- We have implemented our backdoor embedding method in C language in open source code: https://github.com/Summwer/kyber-backdoor
- All experiments were ran on a single core (Intel(R) Core(TM) i5-9500 CPU @ 3.00GHz).
- Each experimental result is median/averaged over 1000 instances.
- We achieve a 100% success rate in Kyber secret key recovery.

Possible Fixes for Backdoor

(Resistant to strict undetectability) A possible fix for [YXP20] type backdoor.

- Add seed <u>d</u> into the secret key.
- Secret key holder can firstly generate pk.seed and sk.seed from d, then compute

$$A = Parse(XOF(pk.seed)),$$

 $(s, e) = PRF(sk.seed).$

■ The secret key holder determines whether the algorithm has been added to the backdoor by verifying whether the following equation holds:

$$\mathbf{As} + \mathbf{e} = \mathbf{t} \bmod^{\pm} q.$$

If the equation doesn't hold, then there is a backdoor in the scheme.

■ This method can be used to fix the backdoor construction scheme proposed by [YXP20, Hem22] and our backdoor scheme.

- Even with the fix method on the left, the backdoor of this article and [ZXP20, Hem22] is still publicly undetectable.
- [ZXP20, Hem22] is a backdoor construction scheme based on elliptic curves.

(Resistant to public undetectability) A possible fix for [YXP20, Hem22].

- crs: the common reference string generated by a trusted method (e.g. MPC protocol).
- Each user's public key seed is generated by $pk.seed = H(crs \parallel id)$, in which id is the identity of a user, $H(\cdot)$ is a hash function.
- Since the generation method of *pk.seed* is known, it is easy for users to find out if it is replaced.
- Since our backdoor doesn't modify pk.seed, it is not affected.

Comparison with previous backdoors on post-quantum schemes

Work	Post-Quantum	Valid for KEM	Undetectability	Provable
Kwant et al[KLT17]	X	X	X	N/A
Xiao and Yu [XY18]	✓	Х	✓	Х
Yang et al [YCL+20]	✓	Х	✓	✓
Yang et al [YXP20]	Х	✓	Х	N/A
Hemmert [Hem22]	Х	✓	✓	✓
Ravi et al [RBC+22]	✓	✓	Х	N/A
This Work	✓	✓	√	√

- "Post-Quantum": Backdoor construction is based on a Post-Quantum public key cryptsystem.
- "Undetectability": Undectectability of each work.
- "Provable": A formal proof of undetectability is provided.

