Post-Quantum Backdoor for Kyber-KEM

Reporter: Haoxiang Jin

Authors: Wenwen Xial2, Geng Wang32~, Dawu Gu32L"

1 School of Cyber Engineering, Xidian University, Xi’an, 710071, China xiawenwen@stu.xidian.edu.cn
2 Lab of Cryptology and Computer Security, Shanghai Jiao Tong University, Shanghai, 200240, China

3 School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai,
200240, China {wanggxx, dwgu}@sjtu.edu.cn

* Corresponding author

Background

3. Development of Kleptography

[XY18,YCL+20]
Backdoor for LWE-based cryptsystem

 General backdoor construction for

LWE-based cryptsystem.

[YY|97]] - Drawback: Cannot Apply to IND-
Firstly Propose CCA2 post-quantum KEM.
kleptographuy.

[KLT17]
Backdoor Embedding to NTRU encryptsystem

e The first backdoor for post-quantum

cryptographic algorithm.

[YXP20]
Backdoor for New Hope KEM

General backdoor construction for

LWE-based cryptsystem.

Drawback: Use elliptic curve-based

Diffie-Hellman key exchange as a

backdoor, lack of post-quantum

undetectability.

[Hem20]
Backdoor for New Hope KEM

Fix the construction flaw in [YXP20].

Drawback:

Lack of post-quantum

undetectability.

[RBC+24]
Post-quantum backdoor for

Kyber
e Claoim to be publicly

undetectable, but is not

satisfied.
 Drawback: Can be detected
by Kyber private key holders

Roadmap

McEliece Kyber-Backdoor

:_ mc.sk @ |
Imc.KeyGen '

I
| mc.pk @ :
| Replace the seed d_ | sk Q@
! K QPow L ; KeyGen*
: me.Encap Embed into pk / pk Qs
o - ’

I
| - -

l
I Extract C from pk
I'mc.Decap » KeyRec*
| /
| G mc.sk [
| l

K=d, sk.seed = G(d), .

I sk=PRE(sk.seed) . | mc: McEliece
I K | sk @ww K: session key
| I

C: ciphertext

Post-Quantum Backdoor for Kyber-KEM

Basic Knowledge

Public Undetectibility

Challenger C Detector D

Randomly choose b « {0,1}.

pk
If b = 0, run (sk,pk)=KeyGen*. >
If b = 1, run (sk,pk)=KeyGen.
M
: Choose message M « {0,1}%.
If b = 0, run C=Enc*(M,sk). ¢

> Output b’
If b = 1, run C=Enc(M,sk).

Pr(b =b’) - 1/2 is negligible.

Basic Knowledge

Strict Undetectibility

Challenger C Detector D

Randomly choose b « {0,1}. ok, sk
If b = 0, run (sk,pk)=KeyGen*. ' >
If b = 1, run (sk,pk)=KeyGen.

(M, Enc) or Encap Choose message M « {0,1}!
‘ and ask C run Enc,
If Encand b = 0, C=Enc*(M,sk). C or ask C run Encap.
If Encand b = 1, C=Enc(M,sk). > Output b’.

If Encap, (K, C)=Encap(pk).

Pr(b =b’) - 1/2 is negligible.

Basic Knowledge

McEliece KEM

M Key Generation (mc.KeyGen)
Generate a key pair (mc. pk, mc. sk), where ublic key is a matrix T € {0,1}("1-O)%k
Bl Encapsulation (mc.Encap)
1. Input mc.pk = T, generate a binary vectorv € {0,1}" of weight wt(v) = t.
2. Compute ciphertext C = ENCODE(v,mc.pk) = (I|T) - v.
3. Compute the sessionkey K = H(1,v,C).
4. Output (C,K).
B Decapsulation (mc.Decap)
1. Computev = DECODE(C, mc.sk) .
2. Compute and output K = H(1,v,C).
M In McEliece348864, m; = 12,t = 64,k = 2720,n = m4 - t + k = 3488, thus the ciphertext size m;t = 768.

Construct Backdoor of Kyber through McEliece (KeyGen*)

output: pk < (t,pk.seed), sk + s

1 Function Kyber.KeyGen():

2 d «— 332.i B Replace d with session key K generated from McEliece

3 (sk.seed, pk.seed) < G(d) //Hash Function G is declared in Kyber S

4 (s,e) « PRF(sk.seed) //Sample s and e from sk.seed in distribution B, By — Central Binomial Distribution:

5 A < Parse(XOF(pk.seed)) //Sample A from pk.seed . sample

6 t + As+ e mod® ¢;

7 | return pk < [t]pk.seed), sk + s (ay, ..., an, by, ..., by) « {0,132
Algorith n 1: Kyber Key Generation Algorithm KeyGen and output ¥7_, (a; — b;)

Kyber512:n = 3

B Embed € = ENCODE (v, mc. pk) from McEliece into LSB(t) by sampling a special e Kyber768 and Kyber 1024: 1 = 2
following the same distribution while ignoring border case of t;.

B Suppose the backdoor user has mc.sk, then he can decrypt the seed d after
receiving pk = (t, pk.seed) by computing d’= mc.Decap(mc.sk, LSBs(t)).

B Here v = DECODE(C, mc. sk), K = H(1,v,C) 024 | ‘ |
-2 -1 0 1 2

How to do this? 0-11

0.3 1

0.0 -

Construct Backdoor of Kyber through McEliece (KeyGen*)

B Sample a special e following the same distribution:

Kyber768 and Kyber 1024: n = 2, then e; follows distribution B, as:

Probability i l i 1 L
16 4 8 4 16
Pr(LSB(e;) = 0) = Pr(LSB(e;) = 1) = -.
Depart the probabilistic distribution of B, into two distributions:
D, with LSB(e;) = 0 D, with LSB(¢;) =1
Probability l i l Probability l l
8 4 8 2 2

Use reject sampling based on centered binomial distribution B,

Construct Backdoor of Kyber through McEliece (KeyGen*)

input : mc.pk
output: pk « (t,pk.seed), sk < s
1 Function KeyGen™ (mc.pk):

2 (K,C) + mc.Encap(mec.pk)
3 d <~ K // Let the seed in Kyber be the session key of McEliece. -" Replace seed d with session K
4 (sk.seed, pk.seed) < G(d) //Function G is declared in Kyber
5 (s,-) + PRF(sk.seed) //Sample s from sk.seed in distribution B,
6 A + Parse(XOF(pk.seed)) //Sample A from pk.seed .
7 t <« As;
8 for i from 1 to dim(t) do
9 if 4 <len(C) then
10 if (t[¢) — C[i]) mod 2 =1 then
11 Sample e; from the probabilistic distribution D;
12 else i
13 _ Sample e; from the probabilistic distribution Dy -" Embed C into LSB(t)
14 else
15 L Sample e; from the probabilistic distribution B-
16 | t[i] « t[i] + e; mod® ¢
17 | return pk < (t,pk.seed), sk < s

Algorithm 2: Backdoor Key Generation Algorithm KeyGen*

Strict Undetectability of our Backdoor

Lemma 1. If C is uniformly distributed and independent with A, s, then the distribution of e generated from
Algorithm 2 is also independent with A, s, and identical with random e where each coefficient is randomly

sampled from B,.

Theorem 1. The backdoor scheme is strictly undetectable.

Backdoor Key Recovery (KeyRec*)

B Discussion on the border case.

B LSB(t;) follows uniform distribution on Z, for ¢ = 3329 actually. Thus,
1665 1 1

3329 2 ' 6658

In border case, the recovery of C; might fail. For example,

Pr(LSB(t;)) = 0) =

<q — ! (mod* q)> (mod 2) = (q ; 1 + 1(mod* q)> (mod 2) = 0.

B LSB(t;) and C; disagree only when t; € {—qgl,—qgg,qgg,qgl}, so p = Pr(LSB(t;) and C; disagree)= s.

B Forqg = 3329 in Kyber, the probability that i border case elements occurence is
Piheo(i) = Pr(i border case elements in (¢4, ..., t,,)) = ChLp'(1 — p)™ 7,
where m = 768 is the bit size of McEliece348864 ciphertext C.
B The probability that there are more than 4 border case elements is only about Py, (i) =0.2%.

Backdoor Key Recovery (KeyRec*)

0.40- Clp(1-p)"| m=768 B x-axis is the number of border case elements
0.35 JR Actual probabllity among m elements.
0.30- M Test 1000 Kyber768 instances.
0.251 B The result of Kyber1024 is close to Kyber768
%0.20- since the bit size of McEliece ciphertext is
0.151 same.
0.101 B The accuracy of P, fits well to P, ctyal-
0.051 B The border case probability decreases rapidly
0-00 0 1 23 4 5 with the growth of border case number i.
i
Border case probability among Piheo(i) = Pr(i border case elements in (ty, ..., t;y)) = Crp'(1 —p)™
m = 768 elements .\ _ iborder case elements occur in (t1,...tm)
Pactual (1) = 1000

Backdoor Key Recovery (KeyRec*)

input : pk « (t,pk.seed), mc.sk, n + 2

output: sk < s

Function KeyRec™ (pk):

Sample A from pk.seed

C’ <+ LSBs(t),|mark C'[i] = x if t[i] > (¢ — 3)/2 or t[i] < —(q — 3)/2
repeat

d' + mc.Decap(mc.sk,C") s

(sk.seed’, pk.seed’) + G(d') 4

if pk.seed’ = pk.seed then Enumerate border case.
(s',.) < PRF(sk.seed’) //Sample s’ from sk.seed’ through ’\

o N o oA W N R

pseudorandom function PRF
9 return sk < s’

10 until|Set C'[i] = x to 0 or 1 respectively and exhaust all possibilities;
11 return |

Algorithm 3: Backdoor Key Recovery Algorithm KeyRec*

Efficiency Test of KeyGen* and KeyRec*

Ui S

Cost Type
(cycles/tick)

KeyGen

KeyGen®

KeyRec”

Median Cost/s 28397 115590 166088
Kyber768

Average Cost/s 36207 118271 169267

Median Cost/s 39636 133840 191503
Kyber1024

Average Cost/s 48604 135736 194552

We have implemented our backdoor
embedding method in C language in
open source code:
https://github.com/Summwer/kyber-
backdoor

All experiments were ran on a single
core (Intel(R) Core(TM) i5-9500 CPU @
3.00GHz).

Each experimental result is
median/averaged over 1000 instances.
We achieve a 100% success rate in
Kyber secret key recovery.

Possible Fixes for Backdoor

(Resistant to strict undetectability) A possible fix for
[YXP20] type backdoor.
B Add seed d into the secret key.
B Secret key holder can firstly generate pk.seed and

sk.seed from d, then compute

A = Parse(XOF(pk. seed)),
(s,e) = PRF(sk.seed).

B The secret key holder determines whether the

B Even with the fix method on the left, the backdoor of this

article and [ZXP20, Hem22] is still publicly undetectable.

B [ZXP20, Hem22] is a backdoor construction scheme based

on elliptic curves.

(Resistant to public undetectability) A possible fix for
[YXP20, Hem22].
B crs: the common reference string generated by a trusted

method (e.g. MPC protocol).

algorithm has been added to the backdoor by ® Each user's public key seed is generated by pk.seed =

verifying whether the following equation holds:
As + e = tmod*gq.
If the equation doesn’t hold, then there is a backdoor
in the scheme.
B This method can be used to fix the backdoor
construction scheme proposed by [YXP20, Hem22]
and our backdoor scheme.

H(crs || id) , in which id is the identity of a user, H(:) is a
hash function.

B Since the generation method of pk.seed is known, it is

easy for users to find out if it is replaced.

B Since our backdoor doesn’t modify pk.seed, it is not

affected.

Comparison with previous backdoors on post-quantum schemes

Post-Quantum Valid for KEM Undetectability Provable

Kwant et al[KLT17] X X X N/A B “Post-Quantum”: Backdoor construction

Xiao and Yu [XY18] J X J X is based on a Post-Quantum public key
cryptsystem.

Yang et al [YCL+20] v X v v YPLsY -

B “Undetectability”: Undectectability of

Yang et al [YXP20] X v X N/A each work.

Hemmert [Hem22] X v N4 S B “Provable”: A formal proof of
undetectability is provided.

Ravi et al [RBC+22] v v X N/A yisp

This Work v v v v

o
o

@ py‘gu&ﬁtlop
- ')(lawenwen@stu

