# Train Wisely: Multifidelity Bayesian Optimization Hyperparameter Tuning in Deep Learning-based Side-Channel Analysis

Trevor Yap, Shivam Bhasin, Léo Weissbart



#### Table of contents

Introduction

Bayesian Optimization HyberBand (BOHB)

Objective Functions

Experimental Results

Future Works

#### Table of contents

#### Introduction

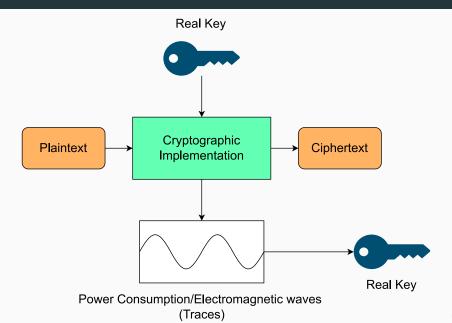
Bayesian Optimization HyberBand (BOHB)

**Objective Functions** 

Experimental Results

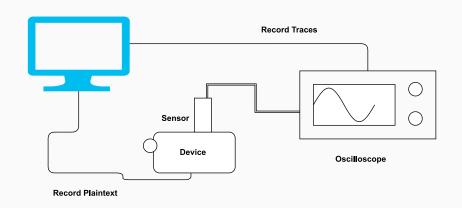
Future Works

# Overview of side channel analysis (SCA)

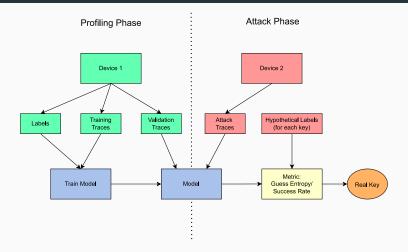


1

## Overview of side channel analysis (SCA)



# **Profiling Attack**

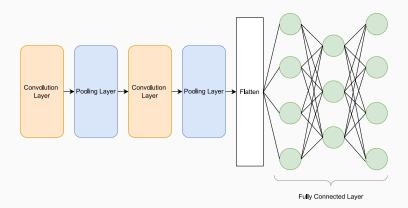


We denote GE = 0 if the attack is successful.

We define NTGE to be the number of traces required for GE = 0.

A typical model used are the template attack or deep neural networks.

# Deep Neural Network (DNN)



DNNs are used as classifiers.

Common DNNs are like Multilayer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs)

#### **Motivation**

- DNNs were shown to outperform classical SCA even in the presence of countermeasures.
- Introduced a large number of hyperparameters to tune (e.g., the number of layers, kernel size, type of activation functions, etc.) compared to other machine learning or classical SCA.
- Maghrebi et al. [1] have pointed out that the performance of DNNs is greatly influenced by their hyperparameters.
   This pushes for the need for methodologies to find good hyperparameters in the domain of SCA.

#### **Related Works**

#### Manual Hyperparameter Tuning:

• [3] and [4] provided guidelines and offer a more precise methodology that helps to generate smaller and well-performing DNNs manually.

#### **Automatic Hyperparameter Tuning:**

- Bayesian Optimization [5],
- Reinforcement Learning [6],
- Evolutionary Algorithm [7].

Most techniques are slow and could run for days.

#### **Motivation**

- Due to the large number of IT products to be evaluated, evaluating the security of these products in evaluation labs becomes very time-sensitive.
- Resources such as time are valuable assets to determine a device's security.
- An evaluator will naturally set a budget for any resources like the time needed to quantify the security of the primitive tested.

Are there automated tools available can produce comparable results while **allocating resources more efficiently**?

#### **Main Contribution**

Multifidelity optimization methods allow speed up in the optimization process by:

- allocating more resources to promising configurations
- stopping evaluations of poorly performing ones early.

Explore multifidelity optimization method known as Bayesian Optimization HyperBand (BOHB) search for hyperparameters.

#### Table of contents

Introduction

Bayesian Optimization HyberBand (BOHB)

**Objective Functions** 

Experimental Results

Future Works

## Hyperparameter Optimization Problem (HPO)

The performance score/objective function of a model is

$$f:\Theta\to\mathbb{R}$$

with  $\theta \in \Theta$  as their hyperparameters and  $\Theta$  is a predefined space that an expert with prior knowledge.

• **Problem:** search for  $\theta^*$  such that it satisfies

$$\underset{\theta \in \Theta}{\arg\min} \, f(\theta).$$

Note: f here is not the neural network itself, but the performance score based on the neural network with  $\theta$  as their hyperparameters.

# Three components of BOHB

- Successive Halving
- HyperBand
- Bayesian Optimization

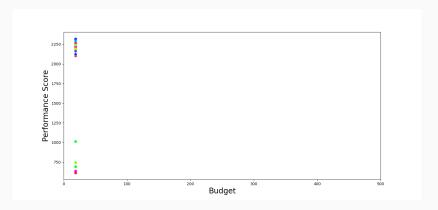
- Developed by Jamieson et al. [8].
- Multi-armed bandit strategy,
- Evaluated the configurations' performance based on the budget b. Then it continues to evaluate the performance of the top  $\eta^{-1}$  configurations on a  $\eta$  times larger budget until the maximum budget is attained. Recommended to set  $\eta=3$

#### **Algorithm 1** SuccessiveHalving

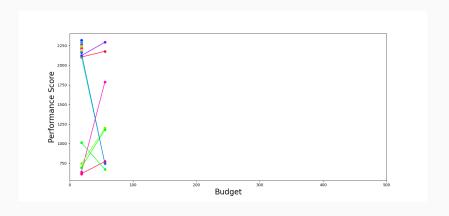
**Input:** initial budget  $b_0$ , maximum budget  $b_{\max}$ ,  $\eta$ , n different configurations  $HP=\{\theta_1,\theta_2,\ldots,\theta_n\}.$ 

- 1:  $b = b_0$
- 2: while  $b \leq b_{max}$  do
- 3: Evaluate all configuration in *HP* with budget b,  $L = \{f(\theta, b) : \theta \in HP\}$ .
- 4: Pick the top  $\lfloor \frac{|HP|}{n} \rfloor$  performing configuration.  $HP = top_k(L, HP, \lfloor \frac{|HP|}{n} \rfloor)$ .
- 5: Set the next round budget,  $b = \eta \times b$ .
- 6: end while

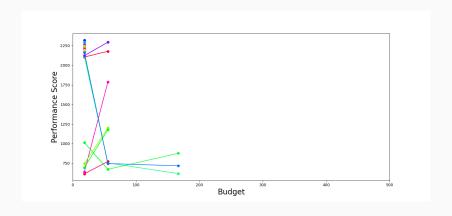
Set initial budget  $b_0 = 18$ , maximum budget  $b_{max} = 486$  and number of different configurations n = 27.



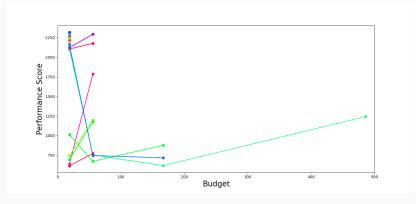
In the first iteration, 27 models are evaluated with budget of 18 each.



In the second iteration, the top 9 models are rerun with a larger budget of 54 each. (Note: 27  $\div$   $\eta=9)$ 



The top 3 models out of the previous 9 models are rerun with a larger budget of 162. (Note:  $9 \div \eta = 3$ )



Choose the top performing out of the 3 models and run with the budget of 486. **Limitation:** There is a trade-off in terms of the **number of configurations** to initialize and the **initial budget** to be used.

# **HyperBand**

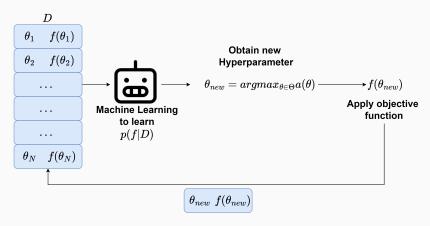
Li et al. [9] created HyperBand to solve this issue by repeatedly applying the SuccessiveHalving with **different starting number configurations and initial budget**.

#### Algorithm 2 HyperBand

**Input:** minimum and maximum budgets per configuration  $b_{min}$  and  $b_{max}$ ,  $\eta$ 

- 1:  $s_{max} = \lfloor log_{\eta} \frac{b_{max}}{b_{min}} \rfloor$
- 2: **for** s from  $s_{max}$  to 0 **do**
- 3: sample  $n = \lfloor \lfloor \frac{s_{max}+1}{s+1} \rfloor \times \eta^s \rfloor$  configurations  $HP = \{\theta_1, \theta_2, \dots, \theta_n\}$
- 4: run SuccessiveHalving( $b_0, b_{max}, \eta, HP$ ) with budget  $b_0 = \eta^s \times b_{max}$ .
- 5: end for

## **Bayesian Optimization**



The acquisition function  $\,a:\Theta o\mathbb{R}\,$  based on the  $\,p(f|D)$ 

## Bayesian Optimization HyberBand (BOHB)

Falkner et al. combine Bayesian Optimization and HyperBand by proposing BOHB [10].

#### **Bayesian Optimization HyberBand (BOHB)**

- HyperBand to decide the number of configurations and the budget in which these configurations are to be evaluated.
- A fraction of the random run are randomly sampled while the rest are sampled using the Bayesian Optimization.

#### Table of contents

Introduction

Bayesian Optimization HyberBand (BOHB)

Objective Functions

Experimental Results

Future Works

# **Objective Functions**

## From Previous Work [5]:

- Validation Loss (denoted as Val\_Loss)
- L<sub>m</sub>

#### New Objective function:

■ ge<sub>+ntge</sub>

## Prior Objective functions: Val\_Loss

#### Prior Objective functions: Val\_Loss

It was shown that minimizing the categorical cross-entropy loss is equivalent to maximizing the generalization of the mutual information between the leakage model and the traces (also known as perceived information).

# Prior Objective functions: $L_m$

#### Prior Objective functions: $L_m$

 $L_m$  as an objective function based on

$$LDD(k, k^*) = \sum_{i=0}^{Q} ||LM(p_i, k^*) - LM(p_i, k)||^2, k \in \mathcal{K},$$

where LM is the leakage model,  $p_i$  is the public data and k is the corresponding key. Then is  $L_m$  define as the correlation between the key guessing vector  $\mathbf{G}$  and LDD:

$$L_m(LDD, G) = corr(argsort(LDD), G).$$

[5] have found that  $L_m$  is the best objective function compared to key rank and validation loss.

## New Objective functions: $ge_{+ntge}$

The main goal of the hyperparameter search:

• one should include *NTGE* in the objective function.

#### New Objective functions: $ge_{+ntge}$

$$ge_{+ntge}(\theta) = egin{cases} NTGE & ext{if } GE = 0, \\ GE + N_a + c & ext{otherwise} \end{cases}$$

where c is a small positive constant and  $N_a$  maximum number of attack traces.

- Since we want to show how far off the given configuration is to recover the key (i.e., GE = 0), we add GE to  $N_a$ .
- The constant c is further added to give an extra penalty for not recovering the key within the given number of attack traces. We set c = 100 throughout.

#### Table of contents

Introduction

Bayesian Optimization HyberBand (BOHB)

**Objective Functions** 

Experimental Results

Future Works

## **Experimental Setting**

Fixed the iteration of BOHB to 50. Train the DNNs with categorical cross-entropy loss function. Set  $\eta=3$  and  $\rho=\frac{1}{3}$  (fraction of randomly sampled configuration).

**Table 1:** Hyperparameter search space.

| Hyperparameter         | Options                                        |  |  |  |  |
|------------------------|------------------------------------------------|--|--|--|--|
| MLP                    |                                                |  |  |  |  |
| Number of Dense Layers | 1 to 8 in a step of 1                          |  |  |  |  |
| Neurons per layer      | 10, 20, 50, 100, 200, 300, 400, 500            |  |  |  |  |
| CNN                    |                                                |  |  |  |  |
| Convolution layers     | 1 to 4 in step of 1                            |  |  |  |  |
| Convolution filters    | 4 to 16 in step of 4                           |  |  |  |  |
| Kernel size            | 26 to 52 in step of 2                          |  |  |  |  |
| Padding                | 0 to 16 in step of 2                           |  |  |  |  |
| Pooling type           | Average or Max                                 |  |  |  |  |
| Pooling size           | 2 to 10 in step of 2                           |  |  |  |  |
| Number of Dense Layers | 1 to 8 in a step of 1                          |  |  |  |  |
| Neurons per layer      | 10, 20, 50, 100, 200, 300, 400, 500            |  |  |  |  |
| Others                 |                                                |  |  |  |  |
| Batch size             | 100 to 1000 in a step of 100                   |  |  |  |  |
| Activation function    | ReLU, SeLU, ELU or tanh                        |  |  |  |  |
| Optimizer              | Adam or RMSprop                                |  |  |  |  |
| Learning Rate          | $1e - 3, 1e - 4, 5e - 4, 1e^{-5}, 5e^{-5}$     |  |  |  |  |
| Weight Initializer     | Random Uniform or Glorot Uniform or He Uniform |  |  |  |  |

We choose a larger hyperparameter search space than [5] and [6].

## **Budget Considered: Number of Epochs**

 The budget could be any resource, like the amount of time taken or the number of epochs to train a neural network.

Therefore, we consider **the number of epochs as the budget** as the parameters for BOHB.

Based on [7], the smallest epochs to recover key is 8. We fixed our minimum budget  $b_{min}=10$ . Now, we explore the impact of  $b_{max}$ 

## **Elapse Time**

**Table 2:** Total time taken to run BOHB.

| Max Budget b <sub>max</sub> | 50                     | 100                     | 200                     | 500                |
|-----------------------------|------------------------|-------------------------|-------------------------|--------------------|
| ASCADf                      | $\approx$ 3 hrs        | $\approx$ 7.5 $hrs$     | pprox 12hrs             | pprox 1 day 13 hrs |
| ASCADr                      | pprox 4 hrs            | pprox 10 hrs            | pprox 14.5 $hrs$        | pprox 1 day 21 hrs |
| AES_HD                      | $pprox 5 \mathit{hrs}$ | $pprox 12 \mathit{hrs}$ | $pprox 17 \mathit{hrs}$ | pprox 2day6hrs     |
| CTF2018                     | pprox 4 $h$ rs         | pprox 10hrs             | pprox 14 $hrs$          | pprox 1 day 21 hrs |

• Larger the max budget  $b_{max}$ , the longer the time required, as more hyperparameters/configurations are sampled for evaluation.

#### **CTF2018**

**Table 3:**  $NTGE_{best}$  on the CTF2018 for HW leakage model. The best  $NTGE_{best}$  among the MLP and CNN setting are marked in blue and red respectively.

| Max Budget b <sub>max</sub> | 50   | 100 | 200  | 500 |
|-----------------------------|------|-----|------|-----|
| MLP: $ge_{+ntge}$           | 180  | 450 | 936  | 200 |
| MLP: Val_loss               | 713  | 742 | 269  | 288 |
| MLP: L <sub>m</sub>         | 1219 | 893 | 1237 | 773 |
| CNN: $ge_{+ntge}$           | 141  | 122 | 135  | 82  |
| CNN: Val_loss               | 101  | 149 | 185  | 89  |
| CNN: L <sub>m</sub>         | 115  | 147 | 140  | 91  |

#### **CTF2018**

**Table 4:**  $NTGE_{best}$  on the CTF2018 for ID leakage model. The best  $NTGE_{best}$  among the MLP and CNN setting are marked in blue and red respectively.

| Max Budget b <sub>max</sub> | 50     | 100    | 200    | 500  |
|-----------------------------|--------|--------|--------|------|
| MLP: $ge_{+ntge}$           | GE = 5 | 2691   | 2975   | 2983 |
| MLP: Val_loss               | 2991   | GE = 1 | 2987   | 2955 |
| MLP: L <sub>m</sub>         | GE = 2 | 2864   | 2999   | 2523 |
| CNN: $ge_{+ntge}$           | 2992   | GE = 2 | 2999   | 2927 |
| CNN: Val_loss               | 2912   | GE = 1 | 2987   | 2907 |
| CNN: L <sub>m</sub>         | GE = 1 | 2989   | GE = 1 | 2958 |

## Which Objective functions to choose?

- $ge_{+ntge}$  obtain the best  $NTGE_{best}$  in 8 out of 14 scenarios. In comparison,  $L_m$  and Val\_loss both attain best  $NTGE_{best}$  in 3 different scenarios. This shows that  $ge_{+ntge}$  can be considered as a **better objective function** for BOHB.
- Type of objective function could be dataset dependent.
- When resources/budgets are scarce, we suggest that ge<sub>+ntge</sub> be the preliminary objective function to be used with BOHB.

# **Experimental Results: Compare to Prior Works**

|      | Dataset              | Epochs | No. of parameters | NTGE <sub>best</sub> |
|------|----------------------|--------|-------------------|----------------------|
| [3]  | ASCADf (ID)          | 50     | 16,960            | 191                  |
|      | AES_HD               | 20     | 3, 282            | 1,050                |
|      | ASCADf_desync50 (ID) | 50     | 87, 279           | 244                  |
|      | ASCADf (ID)          | 8      | 15, 107           | 130                  |
| [7]  | ASCADr (ID)          | 8      | 317,408           | 120                  |
|      | AES_HD               | 33     | 102,757           | 170                  |
|      | ASCADf (HW)          | 10     | 1, 388, 457       | 447                  |
|      | ASCADf (ID)          | 10     | 1,544,776         | 120                  |
| [5]  | ASCADr (HW)          | 10     | 1, 314, 009       | 496                  |
|      | ASCADr (ID)          | 50     | 1,539,320         | 1,568                |
|      | CTF2018 (HW)         | 50     | 2, 418, 085       | 618                  |
|      | ASCADf (HW)          | 50     | 8,480             | 1,246                |
|      | ASCADf (ID)          | 50     | 79, 439           | 202                  |
| [6]  | ASCADr (HW)          | 50     | 15, 241           | 911                  |
| [O]  | ASCADr (ID)          | 50     | 70, 492           | 490                  |
|      | CTF2018 (HW)         | 50     | 33, 788           | 122                  |
|      | ASCADf_desync50 (HW) | 50     | 516, 361          | 1,592                |
|      | ASCADf_desync50 (ID) | 50     | 41, 321           | 443                  |
|      | ASCADf (HW)          | 56     | 845, 109          | 849                  |
| Ours | ASCADf (ID)          | 200    | 10,596            | 201                  |
|      | ASCADr (HW)          | 34     | 659,409           | 879                  |
|      | ASCADr (ID)          | 17     | 1, 465, 056       | 1,568                |
|      | AES_HD               | 34     | 1,725,856         | 1,030                |
|      | CTF2018 (HW)         | 500    | 3,645             | 82                   |
|      | CTF2018 (ID)         | 18     | 25, 596           | 2,523                |
|      | ASCADf_desync50 (HW) | 500    | 10,401            | 2,4698               |
|      | ASCADf_desync50 (ID) | 500    | 91, 976           | 1,311                |

#### Table of contents

Introduction

Bayesian Optimization HyberBand (BOHB)

Objective Functions

Experimental Results

Future Works

#### **Future Works**

- Look into the capability of different multifidelity optimization in the SCA domain, such as DEHB, in comparison to BOHB.
- Study objective functions that consider the size of the network.

#### References

- [1] Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking Cryptographic Implementations Using Deep Learning Techniques. pp. 3–26 (12 2016).  $https://doi.org/10.1007/978-3-319-49445-6\ 1$
- [2] Cagli, E., Dumas, C., Prouff, E.: Convolutional Neural Networks with Data Aug- mentation Against Jitter-Based Countermeasures. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems CHES 2017. pp. 45–68. Springer International Publishing, Cham (2017)
- [3] Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for Efficient CNN Architectures in Profiling Attacks. IACR Transac- tions on Cryptographic Hardware and Embedded Systems 2020(1), 1–36 (Nov 2019). https://doi.org/10.13154/tches.v2020.i1.1-36, https://tches.iacr.org/index.php/TCHES/article/view/8391
  [4] Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a Method-ology for Efficient CNN Architectures
- [4] Woulders, L., Arribas, V., Glerilcins, B., Freiner, B., Revisining a Method-ology for Efficient CNN Architecture in Profiling Attacks. IACR Trans-actions on Cryptographic Hardware and Embedded Systems 2020(3), 147–168 (Jun 2020). https://doi.org/10.13154/tches.v2020.i3.147-168,

https://tches.iacr.org/index.php/TCHES/article/view/8586

- [5] Wu, L., Perin, G., Picek, S.: I Choose You: Automated Hyperparameter Tuning for Deep Learning-based Side-channel Analysis. IEEE Transactions on Emerging Top- ics in Computing pp. 1–12 (2022). https://doi.org/10.1109/TETC.2022.3218372
- [6] Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparameter tuning in deep learning-based side-channel analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems 2021(3), 677–707 (Jul 2021). https://doi.org/10.46586/tches.v2021.i3.677-707,

https://tches.iacr.org/index.php/TCHES/article/view/8989

- [7] Acharya, R.Y., Ganji, F., Forte, D.: Information theory-based evo- lution of neural networks for side-channel analysis. IACR Transac- tions on Cryptographic Hardware and Embedded Systems 2023(1), 401–437 (Nov 2022). https://doi.org/10.46586/tches.v2023.11.401-437, https://tches.iacr.org/index.php/TCHES/article/view/9957 [8] Jamieson, K.G., Talwalkar, A.: Non-stochastic best arm identifica- tion and hyperparameter optimization. CoRR abs/1502.07943 (2015). http://arxiv.org/abs/1502.07943
- [9] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research 18(185), 1–52 (2018), http://jmlr.org/papers/v18/16-558.html
- [10] Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter optimization at scale. CoRR abs/1807.01774 (2018), http://arxiv.org/abs/1807.01774

Thank You!