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Overview of side channel analysis (SCA)
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Profiling Attack

We denote GE = 0 if the attack is successful.
We define NTGE to be the number of traces required for GE = 0.
A typical model used are the template attack or deep neural networks. 6



Deep Neural Network (DNN)

DNNs are used as classifiers.
Common DNNs are like Multilayer Perceptrons (MLPs) and
Convolutional Neural Networks (CNNs)
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Motivation

• DNNs were shown to outperform classical SCA even in the
presence of countermeasures.

• Introduced a large number of hyperparameters to tune
(e.g., the number of layers, kernel size, type of activation
functions, etc.) compared to other machine learning or
classical SCA.

• Maghrebi et al. [1] have pointed out that the performance of
DNNs is greatly influenced by their hyperparameters.
This pushes for the need for methodologies to find good
hyperparameters in the domain of SCA.
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Related Works

Manual Hyperparameter Tuning:

• [3] and [4] provided guidelines and offer a more precise
methodology that helps to generate smaller and
well-performing DNNs manually.

Automatic Hyperparameter Tuning:

• Bayesian Optimization [5],
• Reinforcement Learning [6],
• Evolutionary Algorithm [7].

Most techniques are slow and could run for days.
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Motivation

• Due to the large number of IT products to be evaluated,
evaluating the security of these products in evaluation labs
becomes very time-sensitive.

• Resources such as time are valuable assets to determine a
device’s security.

• An evaluator will naturally set a budget for any resources
like the time needed to quantify the security of the primitive
tested.

Are there automated tools available can produce comparable
results while allocating resources more efficiently?
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Main Contribution

Multifidelity optimization methods allow speed up in the
optimization process by:

• allocating more resources to promising configurations
• stopping evaluations of poorly performing ones early.

Explore multifidelity optimization method known as Bayesian
Optimization HyperBand (BOHB) search for

hyperparameters.
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Hyperparameter Optimization Problem (HPO)

• The performance score/objective function of a model is

f : Θ → R

with θ ∈ Θ as their hyperparameters and Θ is a predefined
space that an expert with prior knowledge.

• Problem: search for θ∗ such that it satisfies

arg min
θ∈Θ

f (θ).

Note: f here is not the neural network itself, but the performance
score based on the neural network with θ as their hyperparameters.
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Three components of BOHB

• Successive Halving
• HyperBand
• Bayesian Optimization
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Successive Halving

• Developed by Jamieson et al. [8].
• Multi-armed bandit strategy,
• Evaluated the configurations’ performance based on the

budget b. Then it continues to evaluate the performance of
the top η−1 configurations on a η times larger budget until
the maximum budget is attained. Recommended to set η = 3

Algorithm 1 SuccessiveHalving

Input: initial budget b0, maximum budget bmax , η, n different configurations
HP = {θ1, θ2, . . . , θn}.

1: b = b0
2: while b ≤ bmax do
3: Evaluate all configuration in HP with budget b, L = {f (θ, b) : θ ∈ HP}.
4: Pick the top ⌊ |HP|

η
⌋ performing configuration. HP = topk(L, HP, ⌊ |HP|

η
⌋).

5: Set the next round budget, b = η × b.
6: end while 15



Successive Halving

Set initial budget b0 = 18, maximum budget bmax = 486 and
number of different configurations n = 27.

In the first iteration, 27 models are evaluated with budget of 18
each. 16



Successive Halving

In the second iteration, the top 9 models are rerun with a larger
budget of 54 each. (Note: 27 ÷ η = 9)
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Successive Halving

The top 3 models out of the previous 9 models are rerun with a
larger budget of 162. (Note: 9 ÷ η = 3)
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Successive Halving

Choose the top performing out of the 3 models and run with the
budget of 486. Limitation: There is a trade-off in terms of the
number of configurations to initialize and the initial budget to
be used.
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HyperBand

Li et al. [9] created HyperBand to solve this issue by repeatedly
applying the SuccessiveHalving with different starting number
configurations and initial budget.

Algorithm 2 HyperBand
Input: minimum and maximum budgets per configuration bmin and bmax , η

1: smax = ⌊logη
bmax
bmin

⌋
2: for s from smax to 0 do
3: sample n = ⌊⌊ smax +1

s+1 ⌋ × ηs⌋ configurations HP = {θ1, θ2, . . . , θn}
4: run SuccessiveHalving(b0, bmax , η, HP) with budget b0 = ηs × bmax .
5: end for
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Bayesian Optimization
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Bayesian Optimization HyberBand (BOHB)

Falkner et al. combine Bayesian Optimization and HyperBand by
proposing BOHB [10].

Bayesian Optimization HyberBand (BOHB)
• HyperBand to decide the number of configurations and the

budget in which these configurations are to be evaluated.
• A fraction of the random run are randomly sampled while the

rest are sampled using the Bayesian Optimization.
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Objective Functions

From Previous Work [5]:

• Validation Loss (denoted as Val Loss)
• Lm

New Objective function:

• ge+ntge
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Prior Objective functions: Val Loss

Prior Objective functions: Val Loss
It was shown that minimizing the categorical cross-entropy
loss is equivalent to maximizing the generalization of the
mutual information between the leakage model and the traces
(also known as perceived information).
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Prior Objective functions: Lm

Prior Objective functions: Lm

Lm as an objective function based on

LDD(k, k∗) =
Q∑

i=0
||LM(pi , k∗) − LM(pi , k))||2, k ∈ K,

where LM is the leakage model, pi is the public data and k is the
corresponding key. Then is Lm define as the correlation between
the key guessing vector G and LDD:

Lm(LDD, G) = corr(argsort(LDD), G).

[5] have found that Lm is the best objective function compared to
key rank and validation loss.
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New Objective functions: ge+ntge

The main goal of the hyperparameter search:

• one should include NTGE in the objective function.
New Objective functions: ge+ntge

ge+ntge(θ) =

NTGE if GE = 0,

GE + Na + c otherwise

where c is a small positive constant and Na maximum number of
attack traces.

• Since we want to show how far off the given configuration is
to recover the key (i.e., GE = 0), we add GE to Na.

• The constant c is further added to give an extra penalty for
not recovering the key within the given number of attack
traces. We set c = 100 throughout.
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Experimental Setting

Fixed the iteration of BOHB to 50. Train the DNNs with categorical cross-entropy
loss function. Set η = 3 and ρ = 1

3 (fraction of randomly sampled configuration).

Table 1: Hyperparameter search space.

Hyperparameter Options

MLP

Number of Dense Layers 1 to 8 in a step of 1
Neurons per layer 10, 20, 50, 100, 200, 300, 400, 500

CNN

Convolution layers 1 to 4 in step of 1
Convolution filters 4 to 16 in step of 4

Kernel size 26 to 52 in step of 2
Padding 0 to 16 in step of 2

Pooling type Average or Max
Pooling size 2 to 10 in step of 2

Number of Dense Layers 1 to 8 in a step of 1
Neurons per layer 10, 20, 50, 100, 200, 300, 400, 500

Others

Batch size 100 to 1000 in a step of 100
Activation function ReLU, SeLU, ELU or tanh

Optimizer Adam or RMSprop
Learning Rate 1e − 3, 1e − 4, 5e − 4, 1e−5, 5e−5

Weight Initializer Random Uniform or Glorot Uniform or He Uniform

We choose a larger hyperparameter search space than [5] and [6]. 29



Budget Considered: Number of Epochs

• The budget could be any resource, like the amount of time
taken or the number of epochs to train a neural network.

Therefore, we consider the number of epochs as the budget as
the parameters for BOHB.

Based on [7], the smallest epochs to recover key is 8. We fixed our
minimum budget bmin = 10. Now, we explore the impact of bmax
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Elapse Time

Table 2: Total time taken to run BOHB.

Max Budget bmax 50 100 200 500

ASCADf ≈ 3hrs ≈ 7.5hrs ≈ 12hrs ≈ 1day13hrs

ASCADr ≈ 4hrs ≈ 10hrs ≈ 14.5hrs ≈ 1day21hrs

AES HD ≈ 5hrs ≈ 12hrs ≈ 17hrs ≈ 2day6hrs

CTF2018 ≈ 4hrs ≈ 10hrs ≈ 14hrs ≈ 1day21hrs

• Larger the max budget bmax , the longer the time required, as
more hyperparameters/configurations are sampled for
evaluation.

31



CTF2018

Table 3: NTGEbest on the CTF2018 for HW leakage model. The best
NTGEbest among the MLP and CNN setting are marked in blue and red
respectively.

Max Budget bmax 50 100 200 500

MLP: ge+ntge 180 450 936 200

MLP: Val loss 713 742 269 288

MLP: Lm 1219 893 1237 773

CNN: ge+ntge 141 122 135 82

CNN: Val loss 101 149 185 89

CNN: Lm 115 147 140 91
32



CTF2018

Table 4: NTGEbest on the CTF2018 for ID leakage model. The best
NTGEbest among the MLP and CNN setting are marked in blue and red
respectively.

Max Budget bmax 50 100 200 500

MLP: ge+ntge GE = 5 2691 2975 2983

MLP: Val loss 2991 GE = 1 2987 2955

MLP: Lm GE = 2 2864 2999 2523

CNN: ge+ntge 2992 GE = 2 2999 2927

CNN: Val loss 2912 GE = 1 2987 2907

CNN: Lm GE = 1 2989 GE = 1 2958
33



Which Objective functions to choose?

• ge+ntge obtain the best NTGEbest in 8 out of 14 scenarios. In
comparison, Lm and Val loss both attain best NTGEbest in 3
different scenarios. This shows that ge+ntge can be considered
as a better objective function for BOHB.

• Type of objective function could be dataset dependent.
• When resources/budgets are scarce, we suggest that ge+ntge

be the preliminary objective function to be used with BOHB.
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Experimental Results: Compare to Prior Works

Dataset Epochs No. of parameters NTGEbest

[3]
ASCADf (ID) 50 16, 960 191

AES HD 20 3, 282 1, 050
ASCADf desync50 (ID) 50 87, 279 244

[7]
ASCADf (ID) 8 15, 107 130
ASCADr (ID) 8 317, 408 120

AES HD 33 102, 757 170

[5]

ASCADf (HW) 10 1, 388, 457 447
ASCADf (ID) 10 1, 544, 776 120

ASCADr (HW) 10 1, 314, 009 496
ASCADr (ID) 50 1, 539, 320 1, 568

CTF2018 (HW) 50 2, 418, 085 618

[6]

ASCADf (HW) 50 8, 480 1, 246
ASCADf (ID) 50 79, 439 202

ASCADr (HW) 50 15, 241 911
ASCADr (ID) 50 70, 492 490

CTF2018 (HW) 50 33, 788 122
ASCADf desync50 (HW) 50 516, 361 1, 592
ASCADf desync50 (ID) 50 41, 321 443

Ours

ASCADf (HW) 56 845, 109 849
ASCADf (ID) 200 10, 596 201

ASCADr (HW) 34 659, 409 879
ASCADr (ID) 17 1, 465, 056 1, 568

AES HD 34 1, 725, 856 1, 030
CTF2018 (HW) 500 3, 645 82
CTF2018 (ID) 18 25, 596 2, 523

ASCADf desync50 (HW) 500 10, 401 2, 4698
ASCADf desync50 (ID) 500 91, 976 1, 311 35
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Future Works

• Look into the capability of different multifidelity optimization
in the SCA domain, such as DEHB, in comparison to BOHB.

• Study objective functions that consider the size of the
network.
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