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Abstract. The post-quantum key encapsulation mechanism, CRYSTALS-
Kyber, has recently been selected by the National Institution of Stan-
dards and Technology for standardization, making the study of its imple-
mentation security a critical concern. As a widely used countermeasure
against implementation attacks, masking has been proven effective in
protecting Kyber implementations from side-channel attacks. However,
the masking process complicates the original scheme and introduces ad-
dtional operations, raising the question of whether these changes open
up new attack vectors.

In this paper, we propose a novel fault attack targeting the masked im-
plementation of Kyber, focusing on the masked message decoder. Our
generic single-bit fault attack is amplified by masked implementations
of Kyber. Moreover, the randomness introduced by masking allows a
stuck-at fault to behave as a bit-flip fault with a certain flip probabil-
ity, thereby simplifying the complexity associated with fault injection.
Based on a practical attacker model, we demonstrate that each faulted
decapsulation reveals partial information about the secret key in the form
of an inequality. By employing a solver based on statistical theory and
two filtering techniques, the entire secret key can be efficiently recovered
by solving the resulting system of inequalities. Only 36,000 (Kyber512),
54,000 (Kyber768), and 4,000,000 (Kyber1024) inequalities are required
for key recovery.

We validated the effectiveness of our attack through experiments on an
STM32F4 target board, with introducing the required faults by clock
glitches. The experimental results demonstrate that the required number
of faulted decapsualtion can be reduced from more than 540, 000 to
380, 000 when dealing with Kyber512. These findings highlight the risks
brought by masking when considering fault attacks.

Keywords: Post-quantum cryptography - ML-KEM - CRYSTALS-
Kyber - Fault attack - Masking
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1 Introduction

The National Institute of Standards and Technology (NIST) has recently made
available for public a set of standards for post-quantum cryptography (PQC)
algorithms. As these algorithms will be deployed in a multitude of embedded
devices across the globe, it is of paramount importance to ensure their resilience
against physical attacks. While the security of side-channel attacks has been
extensively studied, that of fault attacks on PQC algorithms has received com-
paratively little attention. It is therefore imperative to evaluate the security of
implementations of PQC algorithms to fault attacks.

In this study, we investigate the vulnerability of the CRYSTALS-Kyber (Ky-
ber) algorithm, which serves as the foundation for the Module-Lattice Key
Encapsulation Mechanism Standard (ML-KEM), to fault attacks. To achieve
chosen-ciphertext attack (CCA) security, the designers of Kyber applied the
Fujisaki-Okamoto (FO) transform [17] to a chosen-plaintext attack (CPA) se-
cure public key encryption (PKE) algorithm. During decapsulation, the cipher-
text is first decrypted and then re-encrypted. In the event that the re-encrypted
ciphertext does not match the original, the decapsulation process fails. From
a fault attack perspective, the FO transform can be regarded as a redundancy
countermeasure [[l] designed to protect against malicious tampering. As a result,
traditional fault attack techniques, such as the differential fault attack [8], are
not directly applicable to Kyber.

Fault attacks targeting the key generation phase [22][i1] or disrupting the
FO transform ['7][24] have proven effective. Several such attacks have been pro-
posed [21], although they often involve high costs or are challenging to execute
in practice. However, even observing whether an injected fault results in a de-
capsulation failure can benefit the attacker. Indeed, fault attacks have been de-
vised that exploit this concept to achieve key recovery, including the safe-error
attack [25][2] and the (statistical) ineffective fault attack [0]. Based on this con-
cept, in 2020, Pessl et al. proposed a new fault attack on CCA-secure KEMs [20].
Following this, Hermelink et al. introduced a fault-enabled chosen-ciphertext at-
tack on Kyber by combining fault injection with a chosen-ciphertext attack [I4].
Their attack requires a single-bit flip and remains effective even with the pres-
ence of shuffling countermeasures. Later, Delvaux proposed a more general at-
tack, known as the Roulette attack, along with an efficient solver [d]. Building on
these advancements, Hermelink et al. [13] incorporated the solver with the lat-
tice reduction framework from [7], reducing the number of inequalities required
for successful key recovery.

Masking serves as a generic countermeasure to defend against side-channel
attacks. It involves dividing a single intermediate value into multiple random
shares, making it challenging to tamper with an intermediate value precisely
using fault injection. Consequently, it can effectively defend against the major-
ity of fault attacks. In lattice-based schemes, masking encompasses arithmetic
masking, Boolean masking, and the conversion between arithmetic and Boolean
masking (A2B and B2A). This increases the complexity of the algorithmic im-



plementation. However, it remains unclear whether this added complexity intro-
duces new vulnerabilities to fault attacks.

Delvaux’s work [d] was among the first to explore this issue, focusing on the
linear components of masked Kyber, such as polynomial multiplication and the
number theoretic transform. He pointed out that the randomness inherent in
masking could expedite the Roulette attack. However, more complex compo-
nents, such as non-linear components like the message decoder were beyond the
scope of this study. In 2024, Kundu et al. [I5] identified an adder-carry leakage
in the masked decoder proposed by Oder et al. [I8], which enables a practical
fault attack on masked Kyber. This highlights the need for increased scrutiny
of non-linear components in masked implementations. Building on these find-
ings, we aim to investigate one of the most advanced masked schemes of Kyber,
which is proposed in [B]. Since attacks on the addition of offset [20] and A2B
conversion [I5] have been thoroughly investigated, this paper primarily focuses
on the less-explored left part of the masked decoder. In essential, the principle
contribution of this work can be summarized as follows:

— We conducted an analysis of the effectiveness of fault injection attacks on the
masked Kyber scheme, identifying an exploitable fault attack vulnerability.
Based on a practical attacker model, we demonstrate how an attacker can
derive a system of inequalities that reveal information about the secret key.
To the best of our knowledge, this is the first practical fault attack targeting
the arbitrary-order masked message decoder in lattice-based schemes.

— By adapting a solver for the system of inequalities and employing two filter-
ing techniques, we found that the secret keys can be recovered with no more
than 36,000, 54,000, and 4,000,000 inequalities for Kyber512, Kyber768, and
Kyber1024, respectively. As a side contribution, this is also the first eval-
uation of the cost of fault attack on the masked non-linear components of
Kyber768 and Kyber1024.

— Leveraging the implementation characteristics of this masking scheme, we
demonstrated that a simple instruction skip fault in the Bitslice process can
achieve the desired bit-flipping effect. The feasibility of this fault injection
method was validated through inducing clock glitches on a STM32F4 target
board, resulting in successful key recovery. This approach demonstrates a
significantly higher fault injection success rate compared to previous attacks,
consequently necessitating fewer decapsulation attempts for successful key
recovery. A detailed comparison is presented in Table 1.

Outline This paper is organized as follows. In Becfion 2, we present the
background knowledge utilized in this paper. Becfion—3 details our observations
and introduces the basic attack method. In Bection™d, we describe how to per-
form the attack on a practical masked implementation. In Bection 3, we present
practical evidence that supports our claims. Finally, we conclude this papaer
and discuss potential countermeasures in Secfion @.



2 Preliminaries

2.1 Notations

To simplify notation, we denote the ring of integers modulo ¢ as Z; and the
ring of Z,[X]/(X™ + 1) as R,. Furthermore, we denote by B* the set of byte
arrays of length k. Regular font letters, such as v, denote elements in R,, with
v[i] representing the i-th coefficient in v. Specially, when we refer to a message
m € B32, we use m[i] to denote the i-th bit in this message. Bold lower-case
letters indicate vectors. By default, all vectors are column vectors, and we denote
v[i] the i-th entry of a vector v, and v[i, j] the j-th coefficient (bit) in its i-th
entry when the entry is a polynomial (message), with the index starting at zero.
For an element z € Q we denote by [z] to the closest integer with ties being
rounded up. z; denotes the i-th bit in z, while 2(¥) denotes the i-th share of
masked z. The notation z() represents all shares of masked z. Additionally, the
symbols z()4 and z()E are used to denote arithmetic masking and Boolean
masking, respectively. When dealing with polynoimials, the symbol o represents
vector multiplication between vectors (matrices and vectors).

2.2 Masked Kyber

The Kyber algorithm is constructed from a public-key encryption scheme (Ky-
berPKE) and employs the Fujisaki-Okamoto (FO) transform [12] to convert the
PKE into a CCA-secure key encapsulation mechanism (KyberKEM). A detailed
specification is provided in Appendix Al

The secret-key-dependent operation in Kyber is the key decapsulation, in
which the secret key and the ciphertext are first used to compute a noisy polyno-
mial mp. Subsequently, the decoding function (Compress,(z, 1)) maps each coef-
ficient of the polynomial to a corresponding message bit. As illustrated in [Fig. 1,
a coefficient close to 0 is decoded as 0, while a coefficient close to [2] is decoded
as 1. Following decoding, the recovered message is re-encrypted. If the newly
generated ciphertext does not match the original one, a decapsulation failure
occurs, and a meaningless output is returned; Otherwise, the correct shared key
is established and returned.

Bos et al. proposed the first comprehensive implementation of masked Ky-
ber [G]. In their work, they introduced a new masked decoder for message de-
coding, which is based on a masked bit-sliced binary search. The core part of

this decoder is the Compressg function, as shown in [Equation 1.

Compress, (z) = =211 ® (—211 - 210 - 20 - (28 ® (—28 - 27))) (1)
As illustrated in [AIgorithm 1|, the whole decoding process starts with adding

the offset L%J modulo ¢ from the arithmetic shares with a subsequent A2B
conversion to create [log, ¢]-bit Boolean shares of the coefficient. Given these
Boolean shares, it then suffices to securely compute whether the masked value
is smaller than  using [Equation 1|, where
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Fig.1. The original de-
coding result. The red
curve depicts the distribu-
tion of polynomial coeffi-
cients that are decoded as
1, whereas the green curve
depicts the distribution of
coefficients decoded as 0.
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Fig. 2. The decoding re-
sult after +3¢/4. The red
curve depicts the distri-
bution of polynomial co-
efficients decoded as 1,
whereas the green curve
depicts the distribution of
coefficients decoded as 0.
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Fig.3. The shaded re-
gions depict intervals of
coefficient that result in
decapsulation failures af-
ter fault injection. Specif-
ically, the blue regions de-
note interval containing
coefficients exploitable in

practical attacks.

1, ifz< 4
Compress; () = 2
0, otherwise

The process correspond to the decoding results in [Fig. 2. Following this, a
masked binary search is performed, with the & and - operations replaced by their
secure counterparts (SecXOR and SecAND). Additionally, the SecREF function
is required for fulfilling security properties, which is beyond the scope of this
paper. To enhance efficiency, the Boolean shares of the polynomial are converted
into a bit-sliced representation, enabling the compress function to be executed
in parallel. This bit slicing transformation is crucial to the performance of the
masking decoder.

3 Generic Attack Description

In this section, we present our primary observation, which allows for a practical
fault attack on the masking scheme proposed in [G]. The attack vulnerability
arises from the intricate implementation of the masked message decoder, rather
than from the original components of the plain Kyber. For the sake of simplicity,
we will initially describe our attack in a non-masked manner, disregarding the
obfuscation caused by masking and focus solely on the description provided in
[Equafion 1. Additionally, unless otherwise specified, all related parameter sets
refer to Kyber512. The detailed attack on a specific masked implementation will



Algorithm 1 Masked Decoder Compress, (2, 1) =Compress; (z+ L?’qJ mod q)

4

Input: a4, a € Z,[X].

Output: mO8 m/ = Compress, (a, 1) € Zaesc.

1: fori< 0Oton—1do
TR
3 a’? = A2B(a{’")
4: end for

5: 2P = Bitslice(a)P)
6

7
8
9

: m/OP = SecAND(SecREF (—z{7), 2{)7)
: m'B = SecREF (SecXOR(m'VB  2{'5))
:m/OB = SecAND(m'(‘)B,zé'w)
. m/OB = SecAND(m')B 2{)P)

10: m'OB = SecAND(m/)B =2{)P

11: m/OB = SecXOR(m'VB, -z{}")

12: return m')B

be discussed in the following sections. Our attacker model is described as follows,
which is a reasonable setting in a practical attack scenario.

Attacker Model It is assumed that the attacker has access to the public
key and is able to perform an arbitrary number of encapsulations using suitable
messages. The attacker then transmits the resulting ciphertext from encapsula-
tion to the target device and introduces a fault during the decapsulation process.
The fault injection causes a bit flip in a decoded coefficient z, either before or
during the decoding process. Ultimately, the attacker can observe whether a
decapsulation failure occurs in accordance with the equality of the share keys
derived from encapsulation and fault injected decapsulation.

FEach faulted decapsulation result reveals partial information about the se-
cret key, which is represented as an inequality involving the secret key as the
unknown variable. By repeating this process and collecting sufficient inequali-
ties, the attacker can solve the system of inequalities and thereby recover the
full secret key.

3.1 Fault Effectiveness in Masked Decoder

Since the masked message decoder relies on bit-wise operations, introducing a
bit fault may be easier compared to other fault types. Therefore, we first consider
the impact of different bit flips. If a bit flip in z causes a flip in a decoded message
bit d, an attacker will observe a decapsulation failure. Our primary objective is to
determine whether flipping a specific bit in z will lead to a decapsulation failure
and, more importantly, to assess what information the decapsulation result might
reveal to the attacker.

As previously stated in [Equation 1l, the binary search-based decoding process
only involves the five bits z7...z11, and thus we will omit the analysis of the
remain lower bits in z. Additionally, when z1; = 1, the decoding result is always



Table 1. The possible intervals in which flipping z1¢ causes a decapsulation failure.

Interval of z| d
[1664, 2048)
[1792, 2048)
(640, 1024)
[768, 1024)
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Table 2. The interval information of z provided by the faulted decapsulation results.

‘ Decapsulation Failure Decapsulation Success
211][0,1792) U [2048, 3329) (1792, 2048)
210|640, 1024) U [1664, 2048) [0, 640) U [1024, 1664)
2o |[1152, 2048) [0,1152)
zs |[1664, 1792) [0,1664) U [1792, 2048)
z7 |[1792,1920) [0,1792) U [1920, 2048)
fixed at 0, regardless of the values of the other bits, as shown in [Equation 2.

Consequently, when focusing on the lower bits, we omit the interval [2048, 3329),
as it corresponds to z1; = 1.

diO@(O'Zlo'Zg'(Zg@(—\Zs'27))):0 (2)

We use z19 as an example to illustrate our analysis. Since we are only con-
sidering the case where 217 = 0, we can update to reflect this in
[Equafion 3. The equation can be divided into two parts: one involving z1¢ only
and the other consisting of the remaining bits. If either of the two parts equals
to 0, the decoded message bit will be fixed to 0. This means that flipping z1¢
only becomes significant if the condition zg - (28 @ (25 - 27)) # 0 is satisfied. We
recursively analyze the second part of the equation until all possible cases are
considered. The results of this analysis are summarized in Mahlel, where it is
shown that flipping z19 will cause a flip in d and lead to decapsulation failure
when z € [640, 1024) U [1664, 2048).

Compress; (2) = (210 - 20 - (28 © (728 - 27))), 2 < 2048 (3)

We extend our recursive analysis to all five bits from z7; to z1;, and the
final results are presented in Mabhle 2. The analysis reveals that if an attacker
can flip any of the bits involved in the masked decoder, then observing the
decapsulation result provides interval information about the decoded coefficient.
This key insight allows the attacker to narrow down the possible values of the
decoded coefficient, thereby facilitating the recovery of the secret key.

Nevertheless, determining whether this interval information can be exploited
by an attacker requires further investigation. In accordance with the Kyber spec-
ification presented in Appendix B, the decoded polynomial, denoted as mp, is



computed according to [Equafion 4. Here, u denotes the polynomial derived
from the encoded message, and we define § as the noise term to be eliminated
during the decoding process. Let v = Pr[||o||oo > [g/4]]. The design of Kyber [d]
aims to achieve a security level of 1 — v by ensuring elements of § follow a spe-
cific probability distribution, thereby satisfying the necessary security properties.
Additionally, the Kyber team has provided a Python script? for evaluating the
probability distribution of 4.

mp=v+Av— (u+ Au)os

=tor+es+u+Av—(Aor+e; +Au)os (4)
=roe—(e;+Au)os+ey+ Av+p

Since the input coefficient z for Compress; is equal to either [q/4] + & or
[3g/4] + 4, the script can also be used to evaluate the probability distribution
of decoded coefficients. To illustrate, in the case of flipping zs, a decapsulation
failure occurs only if z € [1664,1792). Accordingly, the probability of a noisy
coefficient occurring within this interval is 27193-°. This indicates that the prob-
ability of flipping zg and resulting in a decapsulation failure is essentially zero.
Similarly, the same reasoning applies to other bits.

In accordance with the aforementioned guideline, selecting zo for fault in-
jection proves to be the optimal choice. When an attacker flips the z1g bit from
0 to 1, the probability that z falls into a interval resulting in decapsulation fail-
ure is 1 — 2768 (approximately 99.1%), which is within an acceptable range for
practical attacks. On the other hand, the opposite flip direction, corresponding
to the interval [1664,2048), has a negligible probability of 2739-% making it im-
practical for exploitation in a real-world attack scenario. Consequently, when
targeting the 219 bit for a fault attack, the entire interval of z can be divided
into three distinct regions, as illustrated in [Fig. 3.

If the value of z falls into the blank area in [Fig. 3, a bit flip happened to
z10 does not affect the decapsulation result, providing no useful information for
the attack. However, when a decoded coefficient lies in the interval [640,1024)
(the blue region) and zjq is flipped by fault injection, the attacker will observe
a decapsulation failure. Similarly, the interval [1664,2048) (the gray region) has
the same effect. Although a coeflicient lies in [1664,2048) occurs with very low
probability, it may still introduce some noise to the attack. Since the attacker
has the ability to control the message bit corresponding to z during the encap-
sulation phase, they can ensure that z < by fixing the target message bit at
1. Furthermore, Kyber has an inherently low failure probability, as indicated in
Mable 8, which can be neglected in this attack due to its negligible occurrence.
This leads to the following conclusion: during the decapsulation of a filtered ci-
phertext, if a bit flip occurs in z19 and the attacker observes a decapsulation
failure, they can infer that z € [640,1024). Otherwise, z € [0,640) U [1024, 1664).

4 https://github.com/pqg-crystals/security-estimates


https://github.com/pq-crystals/security-estimates

The remainder of this section will demonstrate how key recovery can be achieved
based on this observation.

3.2 Key Recovery Attack

In [Equafion 4, Au and Av represent the losses introduced by the lossy compres-
sion of u and v, respectively. The value of Av is computed as

Av = Decompress(Compress(v, dy ), dy) — v,

and Au is determined analogously. Consequently, both Av and Au are pub-
licly accessible. Furthermore, the variables e, r, e2, and p are involved in the
encapsulation process and are therefore under the attacker’s control. The only
unknowns are s and e, which are secret vectors generated during the key gener-
ation phase.

Following the description of the masked decoder, we set z = mpl[i] + |3¢/4]
mod ¢ as the input to Compressz. Thus, after a faulted decapsulation with a
flip in 219, if a decapsulation failure is observed, the attacker can infer that
z € [640,1024), which is equivalent to §[i] € [—192,192). If a decapsulation
success is observed, then d[i] < —192 or §[i] > 192. After performing w faulted
decapsultions, the attacker can obtain w inequalities, represented as [Equafion J.
Here, M and b represent the public information from the w inequilities, while
x represents the unknown vector of s and e, which needs to be solved.This
vector contains 2nk unknown coeflicients, with each coefficient having 2n; + 1
possible values. For simplicity, we refer to inequalities featuring the ¢ symbol as
negative inequalities and those featuring the € symbol as positive inequalities.
Throughout the remainder of this paper, we denote ¥ = 2nk and set ¢ = 0.

(r)(0), —(e1 + Au) g o
Mx+b= <s> +eg+ Av g [-192,192) (5)

(t) (w—1), —(e1 + Au) 1)

Given the large number of inequalities and the inherent error rate in fault at-
tacks, directly solving such a system of inequalities is impractical. To address this
challenge, a series of solvers have been proposed, and the underlying approach
is similar across these solvers. First, the distribution of all secret coefficients
is initialized based on their sampling distribution. For instance, in Kyber, the
coefficients in s and e follow a centered binomal distribution parameterized by
11 Next, each coefficient iteratively updates its distribution based on the in-
formation provided by the system of inequalities. For the i-th inequality, which
corresponds to a decryption failure, the probability that the k-th candidate of the
j-th unknown coefficient is the correct guess is updated as shown in [Equation §.
This equation captures how the probability distribution evolves over iterations
by factoring in contributions from the current inequality and other coefficients.
The iterative process continues until a termination condition is satisfied. At that



point, each coefficient selects the candidate with the highest probability as the
final prediction for the secret key.

Pli,j, k] = Pr (—192 < MJi, j](k —m) + ( Z M[i,j’]x[j’]) +bli] < 192)

J'€l0,4 =11\ {5}
(6)

To implement such a solver, the belief propagation (BP)-based approach can
be utilized, as demonstrated in [4]. The main bottleneck of this solver lies in
the convolution operation, which involves computing all possible combinations of
x[j'] for § # j. To accelerate the process, previous work [20] proposed employing
the Fast Fourier Transform (FFT) to optimize these convolutions, significantly
reducing the time required to perform the updates. Additionally, a binary tree
algorithm was introduced to avoid inefficient re-computations. More recently,
a simplified method was presented in [9], which further reduces computational
overhead. This method leverages the Central Limit Theorem (CLT) to approxi-
mate the sum of distributions using a normal distribution X. The mean of X is
given by

= Mli, j](k —m1) + > ML FIEX(] | + bldl,
J'elo,p—11\{s}

and the standard deviation is calculated as

o= [ Y MlijVar[x[j']].
3’ €l0,y—1]
To convert it into a standard normal distribution, we perform the normalization
and get the standard normal distribution Z. Therefore, by revisiting the solver,

we can approximate [Equafion @ as [Equafion 1.

—192 - 192 —
P[i, j, k] ~ Pr <9“ <7< 9“) (7)

o o

This allows for rapid calculation of the probabilities using the cumulative
distribution function (CDF) of the standard normal distribution, as shown in
[Equation §. By applying this approximation, the solving process is significantly
accelerated, reducing the time required for handreds times.

192 —

P[iaj’k] %Fnorm( ) _Fnorm( (8)

In our attack, we adopt this simplified solver approach by adapting the prob-
ability calculation according to [Equafion 7 and [Equafion §, thus tailoring it
specifically to the inequalities derived in our attack. Moreover, by leveraging
the CLT approximation and PMF calculations, this solver efficiently manages
the substantial volume of inequalities generated throughout the attack, thereby
enabling a feasible key recovery process even under constrained computational
resources.

—192—,u)
o

10



Table 3. The maximum and minimum values of Av and e».

Av e
#min #max #min #max

Kyber512/768 —104 104 —2 2
Kyber1024 —52 52 =2 2

3.3 Boosting the Attack with Inequalities Filter

The attack proposed in [d] derives information from faulted decapsulations in
the form of inequalities indicating either 6 > 0 or § < 0. Since the mean of
the distribution of § is 0, the proportions of positive and negative inequalities
are balanced, approximately 50%:50%. In contrast, the inequalities obtained
in our attack provide relatively unbalanced interval information. Specifically,
for randomly generated ciphertexts, the obtained negative inequalities account
for only 276® ~ 0.9% in Kyber512, which presents a significant disadvantage
for our solver. To address this, we adapt two filtering techniques to enhance
the effectiveness of our attack. For comparison, the updated proportions after
applying the filters are presented in Tahle 4.

Filterl: Removing low-contribution inequalities offline. In most cases,
a noise coefficient 0[i] € [-192,192). Consequently, for many positive inequali-
ties, most or all possible values of the secret coefficients satisfy the inequality.
This renders these inequalities largely ineffective for distinguishing the correct
candidates. We categorize such inequalities as low-contribution inequalities. To
enhance the attack, it is crucial to identify high-contribution inequalities. Ac-
cording to the Central Limit Theorem, §[¢] is distributed approximately a normal
distribution with mean (A, + e2)[i]. Consequently, selecting ciphertexts where
(Av+e2)[i] approaches the boundary values £192 results in more incorrect secret
coeflicient candidates being excluded for the corresponding inequality.

The value of es is sampled from a distribution parameterized by 72, while the
value of Av are associated with the parameter d,. The interval information for
these two values is provided in Mahle 3. Without loss of generality, we choose to
use the ciphertext of encapsulation where |(Av + e2)[i]| > 94 for Kyber512/768
and |(Av + ez)[d]| > 42 for Kyber1024.

This filtering technique allows the attacker to focus on ciphertexts more likely
to produce high-contribution inequalities, significantly enhancing the effective-
ness of our attack. Moreover, since suitable ciphertexts can be selected offline,
this approach does not increase the overall attack cost.

We can infer that the required number of inequalities to solve the secret key
for Kyber1024 will increase at a rate faster than what would be expected based
solely on the increase in security level. This is due to the more biased values
present in Kyber1024. A detailed analysis of this observation will be provided in
the following subsection.

11



Table 4. The proportions of decapsulation success and failure.

Without filter With filterl With filter]l and filter2

F#fail F#success #fail #success F#fail F£success
Kyber512 99.1% 0.9% 95.5% 45% (95.5% —a)/(1 —a) 4.5%/(1 — «)
Kyber768 99.41%  0.59%  97% 3% 9% —-—ao)/1-—a) 3%/(1-a«)

Kyber1024 99.931%  0.069% 99.76%  0.24% (99.76% — ) /(1 — a) 0.24%/(1 — @)

Filter2: Increase the Proportion of Negative Inequalities. In our
attack, we deal with a highly unbalanced system of inequalities, where the num-
ber of negative inequalities is significantly less than the positive ones. We have
observed that this imbalance can cause the solver to converge prematurely. Ini-
tially, for Kyber512, the proportion of negative to positive inequalities was ap-
prox 0.9 : 99.1. With the filter]l applied, this proportion can be improved to
some extend. There is no theoretical method to calculate the new proportion.
We provide an experimental result in Mable—d. However, this improvement is
still insufficient for Kyber1024. To further address this issue, we revisit another
filtering technique proposed in [IH], called rejection sampling. In this approach,
a random proportion « of the inequalities is rejected, but only from those gen-
erated in cases of positive inequalities. This selective rejection helps increase the
proportion of negative inequalities, balancing the system and improving the per-
formance of the solver, this improvement can be seen in Mabled. For example,
with o = 94%, the proportion of inequalities from Kyber1024 can be brought to
the same level as Kyber512 only using filter1.

4 Practical Attack on Masked Kyber

The attack described in Section—3 omits specific details of the masked imple-
mentation to provide a more intuitive understanding of our approach. In this
section, we will delve into how the attack can be successfully executed in a prac-
tical masked implementation. Considering our attacker model, fault injections
can be categorized into the following types:

— Exact Fault: The fault injection achieves the desired effect. Specifically, a
noisy coefficient in the range [640,1024) results in a decapsulation failure;
otherwise, decapsulation success is observed.

— Invalid Fault: The fault injection does not produce the expected outcome.
For example, a noisy coefficient in the range [640,1024) does not lead to a
decapsulation failure. This can be caused by either a failed fault injection or
interference from the masking, which will be clarified later in this section.

— Reset Fault: The fault injection has an unintended consequence, disrupting
the control flow and rendering the process unusable.

— Unintended Fault: The fault injection causes an unexpected result, such
as a noisy coefficient outsides the range [640,1024) that still leads to a de-
capsulation failure.

12



4.1 Bit-Flip in Masking Implementation

First, considering the masking, an intermediate value is divided into ¢4 1 shares.
Before message decoding, these shares are transformed into Boolean masking
using the A2B transformation, as outlined in AIgorithm 1. For a Boolean-masked
coefficient, if any share of a bit in z is flipped, such as 258)7 the unmasked value
of z19 will also be flipped.

This makes the bit-flip fault model ideal for our attack, which has already
been applied in the attack proposed in [[d]. However, executing precise bit flips
in a practical setting is challenging. The stuck-at fault model used in [I5] can

also be applied to our attack. If z%) is stuck at 0 or 1, due to the randomness of
masking, on average, two decapsulations of the same ciphertext will yield a valid
flip of the unmasked bit. By decapsulating a ciphertext § times, and with an
appropriate choice of 3, the effectiveness of a stuck-at fault approaches that of
an ideal bit-flip fault, though it requires several times the number of additional
decapsulation attempts.

The bit-flip and stuck-at faults can be injected over a relatively long time
window, as shown in Mable 4. Nonetheless, it is important to emphasize that
inducing a single-bit fault remains highly challenging for an attacker.

4.2 Bit-Flip Based on Instruction Skip

The use of bitwise operations in the masked scheme has enabled the development
of a more relaxed fault injection method for achieving the desired fault model.
In [6], the authors stress the necessity of transforming the Boolean shares of the
polynomial to a bit-sliced representation prior to compute the compression func-
tion. The bit-sliced representation allows parallel accelaration in an otherwise
serial software implementation, offering a performance improvement concerned
about the word size of the target platform. Given that only the five most sig-
nificant bits will be used in subsequent operations, it is prudent to discard the
lower seven bits in order to reduce the cost.

Although the implementation of BitSlice strongly depends on the capabili-
ties of the target platform, the fundamental logic remains consistent. A basic
description of the naive BitSlice process is provided in [Algorithm 2, where the
five most significant bits of [ coefficients are stored in five registers in the bit-
sliced representation. Notably, a critical step involves assigning a single bit of a
coefficient to the target register. If an attacker manages to skip this step, the
result bit will be fixed at 0, effectively creating a stuck-at-0 fault. Since the im-
plementation is masked, the final outcome will appear as a random bit flip on
the unmasked value with a probability of 50%. As we can perform [ times fault
injected decapsulations of the same ciphertext, once a decapsulation happens,
then we can classify the inequality from this ciphertext as a positive inequality.
Otherwise, all 8 decapsulations succeed, then a negative inequality generated.
By selecting an appropriate 3, we can minimize the influence of masking and
invalid fault on our attack, and reduce the error rate of negative inequalities to
nearly 0.
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Algorithm 2 BitSlice
Input: a, a polynomial

Input: [, word size of target platform Table 5. Available fault injection types for
Output: b, the bit-sliced representation our attack.
of a

1: fori+ 0tol—1do Fault model Injection Target
2 bli]=0 _ A2B

3: ?nd for . Bit-Flip Bitslice

4: for 1 < 0 to 4 do SecAND

5. forj« 0tol—1do Stuck-at 0/1 load /store

6: bit = (al[j] > (i 4+ 7))&1 - - o 1

7. bit = bit < j Instruction Skip Bitslice

8 b[i] = b[d] | bit

9 end for

10: end for

4.3 Other Feasible Fault Models

In addition to the exact instruction skip, other operations can also be leveraged
for the attack. For instance, if the right operation (>>) operation is skipped, then

z(()o) will replace z%), resulting in a randon bit fault. Similarly, if the left shift

(<) operation is skipped, a[j]%%) will be set as 0 and 0] §%) will incur a random
fault.

Moreover, if the attacker have the capability to perform a single-bit fault
injection, such as the stuck-at-0/1 fault used in [I5], a more wide range of fault
injection becomes available for our attack. Any operation involving z;¢ can serve
as a target. A summary is provided in Mabled, demonstrating that key recovery
can still be accomplished even without bit-sliced optimization. However, the use
of bit slicing significantly weakens the requirements for the attacker.

5 Experiments

In this section, we first evaluate both the correctness and the performance of our
attack based on the results of software simulation experiments. Subsequently, the
feasibility of the attack was validated in a practical attack scenario by executing
the attack on a STM32F405 target board, which utilizes clock glitches to induce
instruction skip faults.

5.1 Experiments Setup

We employed the Chipwhisperer suite [[9] to carry out our fault attack. The suite
comprises an STM32F405 target board, which incorporates an ARM Cortex-M4
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core, in conjunction with a Chipwhisperer-Lite control board. The Chipwhisperer-
Lite provides a 28MHz clock to the target board, thus it is also employed to
generate clock glitches for fault injection.

The STM32F405 board serves as the victim device. The device receives ci-
phertext, performs decapsulation with the secret key, and subsequently returns
a shared key. Since the implementation in [§] is not open-source and the fault
attack only targets the message decoding process, the firmware running on the
board is based on Kyber’s reference implementation®, equipped with the masked
decoder described in [§]. In this implementation, the BitSlice process is a proof-of-
concept implementation based on the naive approach described in [AIgorithm 2.
The code was compiled using the GNU Arm GCC Compiler 10.3.1 with -O8
optimization.

When solving the obtained system of inequalities, we primarily used the
simplified solver from [9]. Additionally, we also evaluated our attack using the
BP-based solver from [I3] for comparison. Both solvers were adapted from the
source code provided in the respective original papers to suit our attack®®. Em-
pirically, we set the maximum number of iterations for the solvers to 8 and used
the average number of recovered coefficients over 10 runs as the final result.

5.2 Evaluation of the Proposed Attack

First, we verify the correctness of our attack on Kyber512, which is expected to
the easiest to break. The results, shown in [Fig. 4, demonstrate that our attack
is capable of recovering the secret coefficients, and the application of filterl
significantly reduces the required number of inequalities. With filter1 is applied,
only 36, 000 inequalities are required for a full key recovery. When employing
filter2 with a = 0.5, we observe an improvement in the proportion of negative
inequalities. However, this leads to a decrease in the success rate due to the
reduced number of inequalities available for the solver.

Additionally, since there may be an error rate in fault attacks, we conducted
another experiment to evaluate the error-tolerance ability of our attack. We
observed that if 8 is not sufficiently large, some positive inequalities may be
mistakenly identified as negtive cases. To simulate this scenario, we intentionally
corrupted a portion of the positive inequalities within the collected system of
inequalities, thereby introducing an error rate in the negative inequalities. The
results, shown in Fig. g, indicate that our attack can tolerate an error rate of up
to 30%, with only a reasonable increase in the required number of inequalities.

The results for all three security levels are provided in [Fig. . The attack
difficulty for Kyber768 is comparable to that of Kyber512, which aligns with
our analysis. As expected, recovering the secret coefficients for Kyber1024 is
significantly harder than for the previous two levels. Based on the analysis in
Bection 3, we identified that applying filter2 with o = 0.94 yields a system of

5 https://github.com/pg-crystals/kyber

6 https://egithub.com/Crypto-'I'll/roulette
7 https://github.com/juliusjh/improved decryption error recovery
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inequalities with a relatively acceptable ratio of negative to positive inequalities
for Kyber1024. We conducted experiments to determine the number of inequal-
ities required for full key recovery, and the results are shown in [Fig. 4. The
results indicate that 4,000,000 inequalities need to be collected, and the solver
must solve a system of 240,000 inequalities for full key recovery.
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In (3], Hermelink et al. highlighted that the BP-based solver demonstrates
an advantage in terms of the number of inequalities when applied to traditional
attacks involving balanced inequalities. For comparison, we conducted an ex-
periment to solve our system of inequalities using both solvers, with the results
presented in [Fig. 8. The findings indicate that, in our attack, the BP-based solver
does not exhibit a discernible advantage. Given its higher requirements for run-
time and memory, there is insufficient motivation to employ the BP-based solver
in our attack.
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Table 6. The intervals during parameters scanning.

offset width ext__offset repeat
[—20, 20] [1,20] [1,50] 1

5.3 Fault Profiling

To achieve an effective fault injection, selecting the correct fault injection pa-
rameter set is essential. For clock glitch-based fault injection, the main parame-
ters involve determining when to insert the glitch (ext_offset) and what type of
glitch to apply (offset and width). In this subsection, we detail the fault profiling
process in our experiments.

A naive method to locate the target operation would be to scan through the
entire decapsulation process from the beginning. However, this approach is highly
time-consuming. Instead, we found that the start of the BitSlice process can be
coarsely identified using power side-channel information. Since we are targeting
the first coefficient, only a small portion of the process needs to be scanned. For
simplicity, in our experiments, we placed a trigger signal at the beginning of the
Bitslice process. It is worth noting, however, that the target operation remains
identifiable solely through power trace analysis. This implies that the absence of
a trigger signal would not impede attacks in real-world scenarios.

Even with precise identification of the target operation, there may still be
a probability of fault injection failure, as the analysis in Bection4. Therefore,
a critical aspect of the attack is how to handle error inequalities caused by
imperfect fault injections.

Since the attacker can only observe whether decapsulation succeeds or fails,
it is not possible to directly distinguish between an exact injection and an unin-
tended injection in the case of a decapsulation failure. In the event of a destroyed
injection, the attacker can simply retry the decapsulation with the same cipher-
text. Similar to the strategy employed in [I5], multiple faulted decapsulations
can be performed on a single ciphertext to mitigate the issue of invalid injec-
tions. Fortunately, the solver used in our attack demonstrates a high tolerance
for errors, minimizing concerns about destroyed-injection.

To determine suitable parameters for fault injection, we performed a scan
across the intervals shown in Mable@. The offset and width represent the timing
and duration of the glitch within a single clock cycle. Choosing smaller values for
these parameters minimizes their impact on execution and reduces the likelihood
of unintended faults. Similarly, the repeat parameter, which controls the number
of glitches inserted during a single decapsulation, is fixed at 1 to further reduce
unintended faults. As for the ext_ offset, which determines how many clock cycles
after the trigger signal the glitch is inserted, we empirically set the maximum
scan value to 50 in our experiment. After the scanning process, the number of
decapsulations that returned an unexpected share key from fault injection with
varying ext_ offset values is shown in [Fig. 10. We observed that flips mainly
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occurred at ext_ offset 28, 34, and 20. However, there is also the possiblility the
some flips were caused by unintended faults. To filter this parameter, we propose
the following method: for each candidate ext_ offset, we use a parameter pair of
offset and width that enables flips, then collect 500 inequalities through our fault
attack. Next, we check whether the number of decapsulation successes aligns
with or close to the theoretical proportion. Finally, we found that ext_ offsets
28 and 34 did not result in any decapsulation successes, while ext_ offset 20
showed the correct proportion. Thus, we selected ext_ offset = 20 for our attack
configuration.
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Fig. 10. The number of decapsulation Fig.11. The number of decapsulation
failures with different ext_ offset. failures with different (offset, width).

Additionally, to minimize the number of invalid injections and thereby lower
the total number of decapsulations required for our attack, we fixed ext_ offset
at 20 and conducted 100 faulted decapsulations for each pair of offset and width.
The resulting number of decapsulation failures is presented in [Fig. T1l.

5.4 Inequalities Acquirements and Key Recovery

Following the fault profiling phase, we conducted our attack using the prede-
termined parameters. Initially, we collected a total of 50,000 inequalities. To
ensure the efficacy of the fault injections and minimize the occurrence of in-
valid injections, each decapsulation attempt was repeated 10 times. Among the
inequalities, 28 negative inequalities are identified as error, indicating an error
rate of 6.2%, while no erroneous positive inequalities were observed. We then
applied our solver to recover the entire secret key. As illustrated in [Fig. 9, we
found that with at least 38,000 inequalities, we were able to recover the entire
secret key for Kyber512. This result aligns with our simulation experiments, con-
firming the validity of our attack approach. This demonstrates that even with
fewer attempts, our attack remains highly effective, significantly reducing the
overall attack cost while maintaining high success rates.
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5.5 Comparison

The simulation and practical experimental results indicate that the proposed
attack is capable of successfully recovering the secret key of Kyber. A compre-
hensive analysis and comparison are presented in Mable7d. The number of inequal-
ities represents the results from simulation experiments under the assumption of
perfect fault injection, while 8 indicates the required number of decapsulation
attempts to perform a successful attack in the practical experiments.

In comparison to the attack described in [8], our attack targets the more com-
plex part of the masked Kyber implementation, specifically the message decoder.
The faulted decapsulation results produce an unbalanced system of inequalities,
providing less information about the secret key compared to the approach in [4].
Consequently, our attack requires several times more inequalities theoretically.
However, the attack in [d] relies on random faults in the polynomial coefficients,
necessitating a larger number of decapsulation attempts of a ciphertext to gen-
erate an inequality (denoted by () even with high-precision fault injection.

Specifically, to approach the error rate in our attack with 8 = 10 (approx-
imately 6.2%), their attack would require § > 100 (see Figure 7 in [d]). Thus,
in practical scenarios, their attack requires significantly more faulted decapsula-
tion attempts than ours. For instance, their practical experiments indicate that
with 8 > 20, the error rate reaches approximately 50%. Under these conditions,
successful key recovery requires 27,000 inequalities, corresponding to a total of
540,000 decapsulation attempts. In contrast, our attack with 8 = 10 requires
only 38,000 inequalities to recover the secret key, corresponding to 380,000 de-
capsulation attempts, representing a reduction of approximately 30%.

Furthermore, the attack in [9] necessitates the manipulation of a compressed
ciphertext coefficient of an otherwise correctly computed encapsulation. There-
fore, the attack can be effectively mitigated by countermeasures such as the
message polynomial sanity check proposed in [21]. In contrast, our attack does
not rely on manipulated ciphertexts (MC), making it considerably harder to
defend.

When compared to the attack described in [[(5], our approach requires slightly
fewer inequalities. This is because a single faulted decapsulation in our attack
provides boundary information on both sides, whereas the attack in [I5] only ob-
tains one boundary. Notably, our attack only requires a clock glitch to perform
an instruction skip, while the attack in [[5] requires a single-bit stuck-at fault
using expensive electromagnetic pulse technique to inject fault with high pre-
cision for injection time and location. Moreover, our fault attack demonstrates
a significantly higher success rate, allowing us to use a much smaller [, repre-
senting fewer faulted decapsulation attempts. Additionally, we are the first to
evaluate the impact of this type of attack on Kyber768 and Kyber1024, discov-
ering notable differences when handling Kyber1024 and providing an evaluation
of the cost of recovering the full secret key for Kyber1024.
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Table 7. Comparison between this work and previous attacks.

Type of Security No. Type of MC
Inequalities Level Inequalities B Faults Req.
Kyber512 36,000
This work| & g [—192,192) Kyber768 54,000 > 10 Clock glitch X
Kyber1024 4,000,000
(5] 6= —192 Kyber512 60,000 > 180 EM pulse
Kyber512 8,500
=] 1) 3 0 Kyber768 9,400 > 100  Clock glitch v
Kyber1024 12,000

6 Conclusion

In this paper, we propose a novel fault attack against masked Kyber. By employ-
ing an instruction skip fault, an attacker can successfully recover the full secret
key of a practical masked Kyber implementation. The effectiveness of our attack
stems from the structure of the masked message decoder introduced in [G], fur-
ther enhanced by bit slicing-optimizated implementation of the decoder. These
results underscore the vulnerability of masked implementations to fault attacks.
The message decoder can also be extended to other lattice-based schemes, mak-
ing our attack a broader threat to lattice-based cryptosystems. Notably, both
the attacks on non-linear components of masked Kyber, this work and the one
described in [I5], are based on single-bit faults, demonstrating that the use of
bit slicing can be advantageous for fault attackers.

To defend against this attack, several countermeasures can be considered.
Mishra et al. present a probabilistic method [I6] based on rejection sampling to
mitigate this type of attack. However, integrating this approach with a masked
implementation poses challenges, as it requires 2 to 3 retries even for a non-
faulted decapsulation. In 2022, Coron et al. proposed a new message decoder
based on a table-based conversion algorithm [G]. After thorough analysis, we have
not identified any similar vulnerabilities in this scheme. However, this method
introduces a higher probability of decryption failure, which could be exploited
by boosted decryption failure attacks [8]. Further investigation into the security
of this approach is necessary, and this will be the focus of our future work.
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A Kyber

Kyber consists of three parts: key generation (Algorithm J), encapsulation (BT
Eorithm 4), and decapsulation (AIgorithm §) [23]. The KyberKEM is equipped

with three parameter sets, corresponding to different security levels, which are
defined by five individual parameters: k, 11, 12, d, and d,. Additionally, two
constants n and g are used throughout the algorithm. The three parameter sets
are given in Mabled. Also, Mabled illustrates the negligible decapsulation failure
probability inherent in Kyber.

Table 8. Parameter sets of Kyber.

n q k m 2 dy dy Decapsulation failure rate
Kyber512 256 3329 2 3 2 10 4 9—138.8
Kyber768 256 3320 3 2 2 10 4 91648
Kyber1024 256 3329 4 2 2 11 5 9—174.8
The decapsulation of Kyber comprises a decryption procedure (Algorithm 1),
an encryption procedure (AlIgorithm §) and the hash function-based symmetric

primitives G, J. During the decapsulation process, the initial step is to perform
decryption. The ciphertext is decrypted to an message m € B3? using the se-
cret key s, whose coefficients belong to [—7,7;] and follow a centered binomial
distribution. The message is subsequently re-encrypted to prevent outside ex-
posure. The re-encrypted ciphertext is compared with the original ciphertext in
the final step of the decapsulation process. If the two ciphertexts do not match,
indicating a decryption error or tampering, the decapsulation procedure returns
an error shared key derived from the original ciphertext.

Additionally, to reduce the ciphertext size, Kyber applies lossy compression
to the coefficients in u and v, compressing each coefficient to d, or d, bits,
respectively. The compression and decompression procedure can be found in
Equation 9 and [Equation 10. When d = 1, the Compress and Decompress func-
tions are commonly referred to as message decoding and encoding in the general
context of lattice-based schemes. Henceforth in this paper, the terms "encoding"
and "decoding" will be utilized.

Compress, (z,d) = [(2¢/q) % z| mod 27 9)

Decompress,, (z,d) = [(q/2%) * z] (10)
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Algorithm 3 KyberKEM.KeyGen

Output: pk ¢ B384k+32

Output: sk € B768%+96

2 & B

. (pk', sk”) + KyberPKE.KeyGen()
. pk < pk’

© sk < (pkl|sk'|[H(pk)||2)

: return (pk, sk)

Algorithm 4 KyberKEM.Encaps

Input: pk € B384k+32

Output: shared key K € B3
Output: ciphertext ¢ € B32duk+de
m & B32

(K, 7) <= G(m||H (pk))

¢ < KyberPKE.Enc(pk, m, r)
return (K, c)

Algorithm 5 KyberKEM.Decaps

Input: ciphertext ¢ € B32duftde

Input: sk € B768k+9%

Output: shared key K € B*?

. sk’ < sk[0 : 384k]

: pk’ + sk[384k : 768k + 32]

: B sk[768k + 32 : 768k + 64]
. z < sk[768k + 64 : 768k + 96|
m’ < KyberPKE.Dec(sk', c)

: (K, r") « G(m/, k)

K« J(2||¢, 32)

: ¢ «+ KyberPKE.Enc(pk’,m’,r")

—
oL

. if ¢ # ¢ then
K « K

: end if

: return K’

—
W N =
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Algorithm 6 KyberPKE.KeyGen

Output: pk’ € B384++32
Output: sk’ € B384F

d & B

(p,6) « G(d)

A+ U(p)

: (s,e) « X(9)

t<— Aos+e

: pk’ « Pack(t||p)

: sk’ + Pack(s)

: return (pk’, sk’)

Algorithm 7 KyberPKE.Dec

Input: sk’ € B384F

Input: ciphertext ¢ €
Output: message m € B2

c1 + [0 : 32d,.K]

c2 + ¢[32duk : 32(duk + dv)]

u; < Decompress, (Unpack(ci))
vy = Decompress,; (Unpack(cz))
8§ < Unpack,,(sk’)

mp < v —souw

m < Pack; (Compress, (mp))
return m

B32(duk+dy)

Algorithm 8 KyberPKE.Enc

Input: pk’ € B384++32

Input: message m € B32

Input: randomness r € B32
Output: ciphertext ¢ € B32(duktdv)
: t < Unpack(pk'[0 : 384K])

p < pk'[384k : 384k + 32]

A+ U(p)

r,ei, ez + X(r)

u=Aor+e;

1 < Decompress, (Unpack, (m))
vitor+e+p

c1 < Packq, (Compress, (u))

c2 + Packg, (Compress, (v))

: return ¢ < (ci||c2)

—




B Masked Decoder

The original masked decoder presented in [5] is shown in Equafion 11. During
our analysis, we identified a potential issue at the boundary condition z = | ],
which can cause an error in the decryption result. The authors have clarified this
issue, and the corrected version of the function, which resolves the edge case, is

provided in [Equation I.

Compress;(2) = 211 © (2211 - 210 - 20 - (28 (728 - 27))) (11)

25



	Secret in OnePiece: Single-Bit Fault Attack on Kyber

