Practical Collision Attacks on Reduced-Round
Xoodyak Hash Mode

Huina Li', Le He?, and Weidong Qiu'=

1 School of Cyber Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China
2 School of Cyber Engineering, Xidian University, Xi’an, China
{lihuina, qiuwd}@sjtu.edu.cn

Abstract. X0ODYAK is a finalist of the NIST lightweight cryptography
competition, offering both keyed and hash modes. After several years of
cryptanalysis, the largest number of XooDYAK hash rounds for which
actual collisions was still in vacancy. To the best of our knowledge, one
of the most powerful collision attacks on hash functions based on sponge
construction is the differential-based attacks using the S-box linearization
technique proposed by Qiao et al. (EUROCRYPT 2017). However, the
linearization technique requires a large number of degrees of freedom,
making it challenging to apply to XOODYAK with a small outer part. On
the other hand, the constraint-input and constraint-output imposed on
the differential trail of Xoopoo permutation make the exhaustive search
for such high-probability differential trails in collision attacks extremely
costly.

In this paper, we present critical observations regarding Xoopoo0 round
function, particularly focusing on its unique 6 and x operation. These
properties can be leveraged to manually design specific differential trails
for the XooD0OO permutation, referred to as loop differential trails. To
efficiently find practical collisions for up to 3 rounds, we develop a SAT
model based on these loop trails. Finally, we present the first practical
collision on 2 rounds and a practical semi-free-start collision on 3 rounds
of XoopvaK hash mode. Besides, we improve Dong et al.’s (CRYPTO
2024) collision attack on 3-round XoopyAK-HasH from 212523 o 210093
using several linearization strategies. Since we focus on the analysis on
collisions during the message absorbing phase of the hash modes, our
results are applicable to both XoobYAK-HAsH and XOODYAK-XOF.

Keywords: XoobpYAK: X0ODYAK hash mode - Collision attack - Semi-
free-start collision attack

1 Introduction

With the rapid development of emerging networks such as the Internet of Things
(IoT), sensor networks, and vehicular networks, symmetric cryptographic algo-
rithms face new challenges. In 2018, the National Institute of Standards and
Technology (NIST) launched a Lightweight Cryptography Competition[18] to so-
licit, evaluate, and standardize schemes providing authenticated encryption with



2 Huina Li, Le He, and Weidong Qiux

associated data (AEAD) and optional hashing functionalities for constrained
environments. In April 2019, NIST announced the first round of 56 candidate
algorithms. Based on extensive security evaluations of the candidates by crypt-
analysts, NIST announced the 10 finalists for the final round in March 2021.
X0ODYAK [0] is one of these finalists and has attracted considerable attention
from cryptographers due to its unique design.

X00DYAK offers both the keyed and the hash modes, while the keyed mode
has been extensively studied [22127], the hash mode has received comparatively
less attention [9]. In this paper, we focus on the XOODYAK hash mode. The
XO00ODYAK hash mode is a versatile cryptographic primitive that combines sponge
construction [I0] with the X0ODOO permutation [5], operating under a mode of
operation known as Cyclist. XOODYAK hash mode includes the hash function
X0oODYAK-HASH and an eXtendable Output Function (XOF) X0ODYAK-XOF.
Both of them have an internal state size of b = 384 bits and an output size h of
either 256, or an arbitrary output length, respectively. XOODYAK is built on the
sponge construction, the underlying permutation XOODOO consists of 12 rounds
of a non-linear round function applied to the 384-bit state.

A successful collision attack on a sponge-based hash function H is to find a
pair of distinct messages M and M’ such that Hyy (M) = Hypy(M') with a time
complexity of less than 27"(h/2:¢/2)  To the best of our knowledge, the most
powerful collision attack on sponge-based hash function to date is based on the
differential attack framework proposed by Dinur et al. in [8]. The full attack
primarily consists of two parts: the first part is the high probability differential
trail search that ensures collision on the digest bits, which we refer to as the col-
liding trail search phase, and the second part is constructing a 1-round connector
with the target difference algorithm (TDA) in order to obtain a sufficiently large
set of message pairs that simultaneously satisfy the colliding trail, as well as
the constraints imposed by the padding rule and the initial value (IV) of the
hash function. Qiao et al. [I9] built upon the framework proposed by Dinur et
al. [8] and introduced a novel algebraic technique to linearize all S-boxes in the
first round, thereby extending 1-round connectors to 2-round connectors. Fur-
thermore, 3-round connectors were designed in [23/T1] using partial linearization
techniques, resulting in the first practical 5-round collisions for SHA3-224 and
SHA3-256.

To further address the inefficiency of differential trail search, Guo et al. in
[12] introduced the SAT tool to accelerate multiple intermediate steps of the col-
lision attacks. This approach demonstrated remarkably high efficiency in solving
both differential trail search and connecting trail search problems encountered
during the process, ultimately resulting in the first six-round collision attack on
SHAKE128. Huang et al. [I3] observed that the previously proposed lineariza-
tion techniques [I923ITT] become impractical for variants with smaller input
spaces, such as SHA3-384, which has only 832 initial degrees of freedom (ignor-
ing padding bits). To address this limitation, they proposed an attack framework
that utilizes 2-block messages instead of 1-block messages and transforms the
connectivity problem into a Boolean Satisfiability (SAT) problem. Using SAT-



Practical Collision Attacks on Reduced-Round Xoodyak Hash Mode 3

based tools, they successfully presented the first practical attack on 4-round
SHA3-384.

The Constrained-Input Constrained-Output (CICO) problem [I0] inherent
to sponge-based hash functions, significantly restricts the availability of high-
probability differential trails for collision attacks. In the case of the XOODYAK
hash mode, the rate part is considerably smaller, with only the first 128 bits
having non-zero differences. Such trails are often extremely rare, requiring an
exhaustive search of the entire space, which is computationally expensive. So
far, differential trail search results on the X0ODOO permutation have only been
reported by its designers [5/17], who developed a dedicated tool for general trail
search. This may explain why the first collision results for XOODYAK, relying
on a meet-in-the-middle (MitM) attack, were recently presented in 2024, rather
than through a differential-based attack.

At CRYPTO 2024, Dong et al. [9] proposed a generic MitM collision attack
framework for sponge constructions for the first time and presented the first
collision attack on 3-round XOODYAK-HASH with the time complexity of 212523,
However, it required a huge memory complexity of 2124,

1.1 Owur Contributions.

In this work, we improve the differential-based collision attacks against XOODYAK
hash mode, as summarized below:

— We adopt a multi-block collision attack framework for the reduced-round
XO0ODYAK hash mode. Unlike previous works that focused on the squeezing
phase of KEccak [ST923/TTT3IT2], our attack focuses on collisions during
the message absorbing phase of hash modes. This distinction makes our
framework applicable to both the hash mode (X0ODYAK-HASH) and the
extendable output function (XOODYAK-XOF).

— We utilize the property of the 6 operation: when all columns in a sheet are
odd, then the f-effect cancels and there are no induced affected columns.
Leveraging this property, along with the differential property of the non-
linear operation x, we manually design special differential trails (we refer to
them as loop differential trails), each maintaining a probability of 2764 per
round. To efficiently find practical collisions, we develop a collision search
SAT model based on the loop trails. As a result, we obtain an actual 2-round
collision in 64.7 seconds, and a practical 3-round semi-free-start (SFS) colli-
sion in 3.67 seconds. These are the first practical collision results on reduced
rounds of the XOODYAK hash mode. For the source code, please refer to

https://github.com/Huinali/Practical-Collision-Attacks-on-Xoodyak.

— Based on 3-round loop differential trail with the probability of 27192, we

propose a specific linearization technique that carefully selects the output
bits of the first round to be linearized. We decrease the time complexity
of Dong et al.’s 3-round collision attacks on XOODYAK-HASH from 2!25-23
to 21009311 Tt is worth noting that our approach has negligible memory
complexity. The results are summarized in Table


https://github.com/HuinaLi/Practical-Collision-Attacks-on-Xoodyak

4 Huina Li, Le He, and Weidong Qiux

Table 1: Summary of collision attacks on Xoodyak hash mode

Target Methods Rounds Time Memory  Reference

XooDpYAK-HasH MitM 3 2125:23 ol [9]
Differential 2 Practical Negligible Section

XOoDYAK hash mode Differential 3 21009311 Negligible Section

1.2 Organization

In Section [2| we define some notations and properties that will be used in the
paper and briefly describe XOODYAK hash mode and the underlying permutation
X00D00. In Section [3] we introduce our collision attack framework. In Section
[] we present a efficient SAT-based collision search model. In Section [f] we give
some new collision results on XOODYAK hash mode. Finally, we summarize the
full paper in Section [0}

2 Preliminary

2.1 XooDYAK Hash Mode

Xoodyak [0] is a versatile cryptographic primitive combining sponge construction
and X0ODOO permutation denoted by f, based on an operational mode termed
Cyclist. It offers two modes including the keyed and the hash modes, one of which
is selected upon initialization. In the case of hash mode illustrated in Figure [T}
it includes XOODYAK-HASH and the extanded output function XOODYAK-XOF.

h
0]10]0|O0 — —!
olofo]o f
0]1]0]|0|O0
— I N N
Initialization Absorbing Squeezing

Fig.1: The XoopYAK Hash Mode

The 384-bit state is initialized to the all-zero string like Cyclist, and a du-
plexing call corresponds to a sequence of Down() and Up()(Due to page limita-
tions, specific details have been omitted. For more details, please refer to [0]).
For XOODYAK hash mode with the parameters b = 384,r = 130,c¢ = 254, the
security claims are 2!2® against any attacks.

The rate is set to r = 130 bits, which includes the maximum input message
block size of 128 bits along with 2 bits from the padding. The sponge construction
works on a b-bit internal state, which is divided into two phases (see Figure [1)):



Practical Collision Attacks on Reduced-Round Xoodyak Hash Mode 5

in the absorbing phase, it cuts the input message M in blocks of given length
(after padding r = 130) and calls Down() and Up() appropriately. The Down(M;,
c¢p = 0z01 if first block else 0200) method absorbs one block of input message,
by bitwise adding it to the state, together with a color ¢p in the last byte of the
state. The processed message is denoted by M,. The Up(0, ciy = 0200) method
aims at producing one block of output. It absorbs a color ¢y in the last byte of the
state, invokes the underlying permutation f and returns the output of the state.
After absorbing all the message blocks, a 128-bit hash value is extracted during
the squeezing process each time, until the desired hash length h is achieved.

2.2 Description of XooDoO

X00DO0O is the underlying permutation of XOODYAK, first presented by Daemen
et al. [5] at ToSC 2018. It operates on a 3-dimensional array of size 384 bits.
The bits of the state S are indexed by the (z,y, z) coordinates where 0 < z < 4,
0 <y < 3,and 0 < z < 32. Each bit is indexed by S[32 x (z + 4 x y) + z].
The state can be broken down into rows, columns, and lanes, which refer to
the 1-dimensional arrays in the z, y, and z directions, or into two-dimensional
arrays, such as planes and sheets, in the (z, z) and (y, z) directions, as shown in

Figure

Fig.2: The X00DOO state

X00DOO has an iterated structure, and the input state is processed through
the round function for multiple rounds to obtain the output state, with a total
of 12 rounds. The round function of X00ODOO follows a design approach similar
to KECCAK-p with five step mappings in each round: R = pegst © X O L O Pryest © 6.
The five step mappings in each round of the permutation are given below, in
order:

0 creates a parity plane P by adding the bit-wise sum of all columns, if the parity
of a column is 1, which defines an odd (resp. even) column. Then, the 6-effect of
a state value S is F/, which is calculated by adding two shifted parity planes with
shift offsets (1,5) and (1,14). The 6-effect is then added to the original input



6 Huina Li, Le He, and Weidong Qiux

state.

Ple]z] + ) Sla]ly]l#]

1
Elz][z] - Plz + 1][z + 5] & Plz + 1][z + 14] .

Slz]lyllz] < Sl=]lyl[z] & Elz][2]

Pwest shifts two planes of the state with offsets (1,0) and (0, 11), respectively.
Slz][1][z] = Sz + 1][1][2] @)

S[z][2][z] « S[z][2][z + 11]

¢ adds a constant in each round. The round constants C; in hexadecimal notation
(see Table|2)) are such that the least significant bit is at z = 0.

S[0][0[z] «= S[0][0][2] @ C

Table 2: Constants C; used in the X00DOO (round index ¢ from —11 to 0)
Round 7 Constant C; Round 7 Constant C; Round 7 Constant C;

-11 0x00000058 -7 0x00000120 -3 0x00000380
-10 0x00000038 -6 0x00000014 -2 0x000000£0
-9 0x000003c0 -5 0x00000060 -1 0x000001a0
-8 0x000000d0 -4 0x0000002¢ 0 0x00000012

X is the only non-linear layer. It operates in parallel on 3-bit columns and, as
such, forms a layer of 128 3-bit S-boxes.

S[a][0][2] « Slz][0)[z] © =S[=][1][z] A S[x][2][]
Sla][1][z] = S2][1][z] @ ~S[x][2][z] A S[][0][2] (3)
S[a]2)[z]  Sz][2][z] @ =5[] [0][z] A S[a][1][2]

Peast shifts two planes of the state with offsets (0,1) and (2, 8), respectively.

Sla][1][z] « Sla][1][z + 1]

S[z][2][2] + S[z + 2][2][z + 8] (4)

2.3 Properties of 6

We first present the definition of loop, an important property of 6 that allows us
to manually design differential trails in Section [3.3]for enhanced collision attacks.

Definition 1 (Loop [5]). A parity loop (or loop for short) is a state value with
32 active bits in a sheet, each in a distinct column.



Practical Collision Attacks on Reduced-Round Xoodyak Hash Mode 7

A loop is invariant through 0. According to Equation [I} a loop generates 32
odd columns, that means all the columns in a sheet are odd, i.e., Plx + 1][z +
5] @ Pz + 1][z + 14] = 0, then the f-effect cancels and there are no induced
affected columns.

It is worth noting that, as a linear function, the properties of 6 remain the
same whether it is applied to the absolute value of a state or to a difference.
For a n-round differential trail, if all the internal differences consist solely of
loop elements, we refer to such a differential trail as a loop differential trail.
More details for constructing 2-round or 3-round loop differential trails will be
introduced in Section 3.3

2.4 Properties of x

X is a key non-linear component in the round function of Xo0oDOO for gener-
ating differential probability, which leading certain input and output difference
to appear in a non-random way. It is applied to each column of the state inde-
pendently, and can be regarded as a 3-bit S-box. We first present the difference
distribution table (DDT) for the 3-bit S-box (see Table

Definition 2 (Valid Differential Pattern). In the DDT of X0OD0OO’s 3-bit
S-boz, if the entry o(a, B) for the input-output differential pair (c, B) is non-zero,
we call the differential pattern valid; otherwise, it is referred to as invalid.

Definition 3 (Active S-box). A S-boz is active if its input difference is non-
zero; conversely, it is termed inactive if (o, 8) = (0,0).

Each valid difference pattern (a, ) has a non-zero value, i.e., the entry

o(a,B) # 0. The differential weight of each valid pattern can be denoted by

W(a,5) = _109270(2,@ =2

Table 3: DDT of X00ODOO’s S-box
Output difference (3)
0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7

Input difference ()

0x0 8 0 0 0 O O O O
0x1 0o 2 0 2 0 2 0 2
0x2 0o 0 2 2 0 0 2 2
0x3 o 2 2 0 0 2 2 O
0x4 o 0o 0 0 2 2 2 2
0x5 o 2 0 2 2 0 2 O
0x6 o 0 2 2 2 2 0 O
0x7 0o 2 2 0 2 0 0 2




8 Huina Li, Le He, and Weidong Qiux

Property 1. Given an input difference o € F3 and an output difference 3 € 3
such that o(a, 3) # 0, denote the value solution set X = {z € F3|x(z) ® x(z &
a) = p} and x(X) = {x(z) : z € X}, then X is a linearizable affine subspace.

The algebraic degree of the 3-bit X00D0OO’s S-box is 2 as shown in Equation
which means that for any valid differential pattern («, ), the set of input
messages z that follow this pattern forming an affine subspace of size 23~ (.5,
3-bit S-box Linearization. The linearization of a 3-bit S-box can be catego-
rized into two classes.

— For active S-boxes, according to Property [I when the input difference and
the compatible output difference are given, two linear equations on the input
bits x; can be listed for each active S-box, such that the outputs y can
be expressed as linear combinations of the input bits. From this algebraic
perspective, these S-boxes are already fully linearized.

— For non-active S-boxes, linearization can be achieved by introducing two
additional equations involving the input bits (see Property .

Property 2. The algebraic normal form of x mapping 3-bit z = (xg, x1, x2)
into 3-bit ¥y = (yo, y1, y2) can be written as y; = x; ® (z;41 D 1)x,;42 as below,

Yo =20 B (z1 @ 1)z
Yy = I D (1‘2 D 1)1‘0 (5)
Y2 = T2 ® (o ® 1)z

Given the 3-bit input = = (x0, z1,22), two bits of the output y;11,¥y;+2 can
be linearized by introducing one linear equation on x;. Furthermore, any bit
of the output y can be represented as a linear function by adding two extra
linear equations on the input x.

2.5 Difference-Value Relations

At CRYPTO 2021, Liu et al. [I5] proposed an algebraic perspective on differential-
linear cryptanalysis. This novel algebraic perspective pointed out that the output
difference of a Boolean function is a special Boolean function of the input dif-
ference and input value. It is important to note that this forms the theoretical
foundation for constructing the difference-value relations model, which is pre-
sented in detail in Section

Property 3. For a Boolean function f; : Fy — [Fo representing a certain output
bit of a primitive, the output difference §; € F5 is the derivative of f with respect
to input difference a at point z € Fy,

Bi = Dafi(x) = fi(z) © fi(z & a) (6)

This is equivalently expressed as the partial derivative of f;(x@u-«) with respect
to the boolean variable u € Fy. Formally, this relationship is defined as:

Do fi(z) = Dufi(r @ u-a) (7)



Practical Collision Attacks on Reduced-Round Xoodyak Hash Mode 9

where the input message value z, the input difference a (z,a € F%), u is an
auxiliary binary variable, D, f;(x ® u - «) is the partial derivative of f;(z ®u - «)
with respect to wu.

According to Equation [3| the algebraic normal forms (ANFs) of the output
bits are denoted by x;(2;, Tit1,Zit2) = ; B "Xy - Ti+2. Based on Equation
[7] the relationship between the value and the differential can be illustrated as
follows.

Bo = DuXxo(To ®u- g, 71 B u- 1, T2 ®u-ag)
B1=Duxi(zo @ u-ap, 21 S u-ay, 2 ®u-as) (8)
Ba = Duxa2(zo ©u- g, x1 D u- a1,z S u- as)

Following the above Boolean equations, when the valid differential pattern («a, §)
is determined, the linear equations on input bits x; are directly listed.

Ezample 1. Let us consider an active S-box represented by S(zg, 21, z2), which
follows a valid difference pattern (o = (1,0,0),5 = (1,0,0)). The input values
x = (x9,x1,x2) of the S-box correspond to the solution space of the following
linear equations, which are derived from Equation

1=1
OZIEQ@I
02331

3 Overview of Our Collision Attack Framework

Following the collision attack framework by Dinur et al.’s [8], our differential-
based collision attacks consist of two essential steps: one step is to find a ni-round
high probability collision-generating differential trail (we call it the colliding
trail for simplicity). The second step is to construct a ng-round connector that
promises a subspace of message pairs which satisfy the colliding trail at the same
time and the constraints imposed by the padding rule and IV of XOODYAK hash
mode as depicted in Figure [3]

'
. I
/ M = =k-2 A M, = AP —round connectors 112 -round colliding trail 4 ,
M+ M =0,i<=k—2 M_1+M_, =Aj : A(,m d connect A our dtoHdugva/\lw C AL @ M — AL : o eatison
= ! ' * : : [EEEETRE ;
ofojojo—> olo]o]o D olo]ofo iifofo]ofol:
ofojojo fre—{o[o[o]o0 Jolofofo f ofolofol: olo]ofo flnoon*
oJofojo olofo]o dofofo]o olofo]ol: olofofo 1 efo]ofo
: 1
. ollisions during the message absorbing phase :
Initialization Absorbing ! Squeezing

Fig. 3: Our Collision Attack Framework of X0oDYAK Hash Mode

In the n-round differential trail search of sponge-based hash functions, the
Constrained-Input Constrained-Output (CICO) problem [I0] arises. The CICO



10 Huina Li, Le He, and Weidong Qiux

property imposes specific constraints on both the input and output differences.
In our collision attack framework, there is no difference in the first £ — 1 message
blocks, where the messages My, My, - -+, My_o are chosen randomly. We focus
our analysis on collisions occurring during the absorbing phase of the hash mode.
Thus, the last 256 bits of the input difference Ay and the output difference A,
are constrained to be zero.

In our attack framework depicted in Figure[3] assume there are k+ 1 message
blocks, denoted by M; for i € {0,1,...,k}. During the middle absorbing phase,
we introduce a message pair (My_1, Mj,_,) that satisfies the first 128 bits of the
input difference Ay, denoted by A§?®.

From this starting point, we generate an n-round differential trail, which
includes a ns-round colliding trail that ensure h-bit collision and a ni-round
differential trail (we refer to it as the connecting trail for simplicity) for con-
structing a connector that generates a subspace of messages linking the initial
conditions of sponge construction and the input difference of the subsequent
colliding trail.

Once we construct such a n-round differential trail and find a message pair
(Mo, ..., My_1) and (M, ..., M, _,) that follows this trail where A}*® = My_1®
Mj._,, we introduce one more pair of message blocks (Mj, M},) at the last absorb-
ing phase that has the same difference in the first 128 bits, i.e., A12® = M;, &M,
the matching difference is then canceled out, resulting in zero difference during
the squeezing phase, thus successfully converting it into a real collision.

3.1 Complexity Analysis

Suppose a n-round collision attack comprises a ni-round connecting trail with
weight w; and a ns-round colliding trail with weight ws, where ny < 2. The
overall complexity includes both the complexity of the connector construction
phase, denoted as T7, and the complexity of the exhaustive search phase, denoted
as Ts.

Connector Construction Complexity. The core idea of constructing ni-
round connector is to convert the problem to solving an algebraic system. For
the attacker, the controllable initial degrees of freedom (DF) is 128.

Assume that an algebraic system of n;-round connector is constructed, where
the number of the linear equations denote by n;, and the number of non-linear
equations denote by ng. The number of non-linear equations that can be lin-
earized by guessing d; extra equations (we call them guess equations which con-
sume dy DF) is denoted by nj. Thus, the final linear system includes n; +nj +dy
linear boolean equations in 128 Boolean variables.

Let us first recall the equivalent conversion of implementation efficiency be-
tween connector construction and n-round X0ooD0O. The total number of bit
operationﬂ for an n-round X00DOO is given by n x (1024 + 768 4 32) = 1824n.
If n = 3, The total number of bit operations ~ 212-4178,

3 where 2x 12842 x 384 = 1024 bit operations are for the 6 operation, 2x 3x 128 = 768
bit operations are for the y operation, and 32 bit operations bit operations are for
the ¢ operation.



Practical Collision Attacks on Reduced-Round Xoodyak Hash Mode 11

Regarding this linear system, it is composed of n; + nj + dy linear equations
in 128 variables. Assume n; + nj + dy < 128, then the system has a non-trivial
solution. The time complexity of Gaussian elimination Ty for a system of linear
equations is approximately

1
T, ~ g(nl +n) +dy)? x 128.

Consequently, the complexity of solving a linear system can be calculated by
taking the ratio of the number of bit operations required for one iteration of
Gaussian elimination to the total number of bit operations in n-round X00ODOO
calls, i.e. %. During each iteration of Gaussian elimination, it is expected to
obtain 2128=m—m~ds golutions. The verification time complexity is estimated as
T’u — 2128—nl—n2—df_

As each guess equation can be assigned a constant value of either 0 or 1. In
this way, for one connector, we can construct 2%/ linear systems.

To satisfy the remaining n, —n; non-linear equations and the w, conditions of
the difference-value of the colliding trail, we need to prepare at least Quztng—m
solutions. Thus, the time complexity corresponds to the time required to con-
struct 2(w2+ng—ny)—(128—ni—nj—d)—ds — guatng+ni—128 conpectors.

The total time complexity in connector construction is equivalent to,

T
T, = qua+ng+n—128 (Qdf % (1822:” +Tv)) (9)
Exhaustive Search Complexity. The remaining n, — n; equations and the
wy conditions on the difference values of the colliding trail are satisfied via ex-
haustive search. In the exhaustive search phase of the attack, we try Qwztng—m
different message pairs in order to find a pair whose difference evolves according
to the specified no-round colliding trail. The time complexity is

Ty = 2wz +na—m (10)

In total, the time complexity denoted by T;.¢q; of the n-round collision attack
is
Ttotal = Tl + T2

— 2w2+nq+m+dffl28 . ( Tg Tu) + 271)24*714777,2 (11)

1824n -

3.2 n-round Differential Trail Search

Differential cryptanalysis is one of the most effective methods to attack cryp-
tographic permutations or block ciphers. It was first proposed by Biham and
Shamir in 1991 [4]. The idea of differential cryptanalysis is to choose an input
difference such that output differences can be reliably predicted. If a certain
input/output difference exists with an optimal probability, it can be used to
construct a distinguisher. This distinguisher can then be used to recover the
initial state in a collision attack or the key in a key recovery attack.



12 Huina Li, Le He, and Weidong Qiux

For the study of the differential trail propagation of X00D0OO, we take a n-
round differential trail as an example. A n-round differential trail starting from
0-th round has the following form:

Ao —> By Proest C() L) Dy i> Cl l) . i) Cn,1 L) D, —= Peast A (12)

With ¢ indexed from 0, let C; denote the input difference and D; denote the
output difference of the i-th x mapping. The last 256 bits of both the input
and output differences (i.e., Ag, A,) are zero. We denote the linear layer as
A= Pwest © 6o Peast - .

The weight of the j-th S-box in the i-th round is denoted by w?, where 4
starts from 0. The weight of a n-round differential trail is defined as the sum of
the weights of all 3-bit S-boxes:

r—1 127

w(Ag — Ap) =Y Y w!

=0 j=0

For all valid difference patterns, we have w(. 4y = 2. This can be represented
as twice the total number of active S-boxes (non-zero difference) in either C* or
DF for simplicity.

r—1 4 32

w(do = Ap) =2x Y > sifi][+][K] (13)

i=0 j=0 k=0

In this context, s;[j][*][k] indicates the active status of the 32j + k-th S-box in
the ¢-th round, taking a value of 1 if it is active and 0 otherwise.

3.3 Loop Differential Trail

In this section, we introduce a specific differential trail with internal differences
that consist solely of loop elements, based on the differential properties of the
round function of X00D00O. We now provide a formal definition of such a differ-
ential trail as follows.

Definition 4 (Loop Differential Trail). For a n-round differential trail, if
all internal differences consist solely of loop elements, we refer to such a n-
differential trail as a loop differential trail.

It can be easily observed from Equation [2] and Equation [ that, in order
to eliminate the influence of pyest and peqst, only the first plane of S[z][0][z]
is allowed to have a non-zero difference. To ensure that only the first plane
of the entire state retains a non-zero difference after the non-linear layer Yy,
we restrict the types of valid differential patterns. Specifically, we only allow
(CLIOIE), ClATE, AP = 1,0,0) and (DI 0], D, Dl =

For giving a more formal definition of the weight of n-round loop differen-
tial trail, we first define the notion of valid configuration of active S-boxes in
Definition [5] (it is also suitable for general differential trails).



Practical Collision Attacks on Reduced-Round Xoodyak Hash Mode 13

Definition 5 (Valid Configuration of Active S-boxes). Let r > 2 be the

number of rounds. We say a configuration (so,...,Sr—1) is valid if there exists
a r-round differential trail (Ao, As,...,A,) with sg,...,s.—1 active S-bozes at
round 0, ..., r — 1, respectively.

With these constraints, we ensure that the output difference Ay maintains
the same differential state even after propagating through multiple rounds. For
example, a one-round loop differential trail with a valid one-round configuration
of active S-boxes (sg = 32) is illustrated in Figure |4} In this way, we can extend
it to a 2-round loop differential trail with the configuration (sp = 32,s; = 32),
and to a 3-round loop differential trail with the configuration (sg = 32,s1 =
32,59 = 32). In what follows, we describe how to use these loop trails to find
practical collision results.

Fig. 4: 1-round Loop Differential Trail

4 SAT-based Collision Search

In this section, we develop a SAT-based collision search method. This method
effectively reduces the practical collision search problem into a SAT problem.

4.1 Overview of Our Collision Search Method

To search for a valid differential trail and conforming message pair simulta-
neously, Liu et al. [I4] at the CRYPTO 2020 developed a novel MILP model.
Their MILP model independently constructed the difference transition and value
transition of the target primitive as well as the difference-value relations model
through the non-linear layer. Based on this MILP model, they present the first
practical Semi-Free-Start (SFS) collision for 6-round GIMLI-HASH.

Inspired by Liu et al.’s approach [14], we propose a SAT model for collision
search. Our model construct the value transitions model and the difference-value
relations model through the non-linear layer simultaneously. For the difference-
value relations model, we utilize Property [3to derive the implicit difference-value
relations for each round of X00ODO0O. It is noted that our model does not require
a differential transition model; instead, the known differential trails are used as
the constants.



14 Huina Li, Le He, and Weidong Qiux

We choose SAT tool for two main reasons. First, SAT is particularly well-
suited for describing bit-level operations. At AISACRYPT 2022, Guo et al. [12]
proved significant advantages of SAT models over MILP models when applied to
differential trail search for KECCAK-f[1600]. In [7], Mathieu et al. reconstructed
the MILP-based search model for the AscoN MitM attack proposed by Qin et
al. [20] using a SAT model. This reconstruction not only significantly accelerated
the solving process but also eliminated the need for heuristic algorithms, such as
those relying on weak diffusion structures. To further study the impact of model
and solver selection on cryptanalysis tasks, Bellini et al. [2] built SAT, SMT,
MILP, and CP search models for various bit-oriented cryptographic primitives
including block ciphers, permutations, and hash functions—targeting tasks such
as optimal differential trail search, enumerating all optimal trails, and estimat-
ing differential probabilities. Their findings confirmed that SAT solvers generally
outperform others for ARX primitives and SPN structures, demonstrating sig-
nificant advantages.

On the other hand, the Sage [26] library includes a module named sage.sat,
specifically designed for handling SAT problems. This module provides CNF
encoding tools and functionalities for working with Boolean expressions and
solving problems related to their satisfiability. Based on the sage.sat module, we
can conveniently construct the corresponding SAT model for the linear layer as
well as for the difference-value relations. Furthermore, it allows us to compatibly
describe constraint models for nonlinear layers using truth table-based encod-
ing methods [II25]. Through this approach, we present an efficient SAT-based
collision search model.

In the next section, we will provide a detailed explanation of the construction
process for the SAT-based collision search model.

4.2 Constructing SAT Model for Value Transitions

The X00DOO permutation updates the initial state of 384 bits by applying the
round function over a total of n rounds. A n-round value transition model can
be expressed in the following form:

LOPwest Peast LOPwest

6 0
ag = by =2uetty g Xy dg Loty gy Dby 22t o) Xdy L S d,y (14)

Modeling the Initialization. In terms of the SAT model, each round requires
four sets a;, b;, ¢;, d; of 384 Boolean variables, with b; = 6(a;), ¢; = ¢ © pyest(b;),
d; = x(¢i), @4ir1 = peast(d;). We omit the last peqst, as it does not influence our
analysis. The initial state of XOODYAK hash mode in our model is denoted by
ap, the last 256 Boolean variables are assigned constant values according to the
known padding rule and color bits.

Modeling the Linear Mappings. Linear mappings include 0, pwest, Peast, and
t, which involve a large number of XOR operations and cyclic shifts. We utilize
the sage.sat module of SageMath [26] to simplify the cumbersome encoding of
CNF clauses for the linear layer.



Practical Collision Attacks on Reduced-Round Xoodyak Hash Mode 15

By simulating the linear mappings through symbolic computation, we gener-
ate the Boolean expressions of the internal state over n rounds. Using the sage.sat
module, we can convert these Boolean expressions into the corresponding CNF
clauses.

This approach enhances the flexibility of directly characterizing the SAT
model for linear mappings but also broadens our capabilities for CNF clauses
encoding of multivariate XOR operations. The specific process for modeling the
linear layer is outlined in Algorithm [I]

Algorithm 1 Linear Layer SAT Model

Require: Input a;, b;,ci,d;, 0 < i < n, linear mappings 6, pwest, L, Peast, number of
rounds n.
Ensure: DIMACS format of the CNF clauses for the n-round iteration.
1: Initialize Q = 0;
2: for i from 0 to n do
3: Compute the Boolean expressions a; < 6(a;);

4: Add b; & a; to the set Q;

5: Compute the Boolean expressions b; < ¢ 0 pyest(bi);
6: Add ¢; & b; to the set Q;

7 if i <n —1 then

8: Compute the Boolean expressions d; < peast(d;);
9: Add a;+1 P d; to the set Q;

10: end if

11: end for

12: Convert the set @ into CNF clauses in DIMACS format using the sage.sat module.

Modeling the Non-Linear Mapping x. According to Property 5] the lookup
table of 3-bit y is given in Table 4] where z = (xg,x1,22); if * = 4, then
({L‘O = 1,:E1 = 0,CE2 = 0)

Table 4: X0ODOO ’s 3-bit S-box x as a lookup table.
x 01234567

x(z) 05326147

The general encoding method of y is to extract all items of Table [ into a
truth table and feed this table into existing mathematical software to automat-
ically generate minimized CNFs. For small-scale problems, such as those where
the size of S-box is less than 5, we recommend using Logic Friday EI which is a
free tool specifically designed for Boolean logic analysis. Unfortunately, it only
supports Windows systems. Fortunately, the POSform functiorﬂ provided by the

4 please refer to http://sontrak.com/.
% please refer to https://docs.sympy.org/latest/modules/logic.html,


http://sontrak.com/
https://docs.sympy.org/latest/modules/logic.html

16 Huina Li, Le He, and Weidong Qiux

Algorithm 2 Difference-Value Relations SAT Model

nflo‘

Require: ¢;,0 < i < n, the non-linear operations x --0x?, the number of rounds
n, a given differential trail (Ao, Bo, Co, Do, A1, ..., An)(please refer to trail model
, and an auxiliary binary variable wu.

Ensure: The value of ag or “Invalid”.

1: Initialize a set Q = 0;
2: for ¢ from 0 to n do
3: fl =c; DulC;
4: Compute the output of the nonlinear operation: f“ « x*(f%);
5 Add D, f @ D; to the set Q;
6: end for
7: Convert the set @ into CNF clauses in DIMACS format using the sage.sat module.);

logic module in the SymPy library can achieve the same results and the logic
module of SymPy, both of which employ the Quine-McCluskey algorithm [2T)/16]
for minimizing logical functions. For larger-scale problems, particularly when the
size of the S-box exceeds 5, the Espresso tool can be utilized.

4.3 Constructing Difference-Value Relations Through x

The difference transitions and the value transitions are dependent only on the
non-linear operation. For the (j x k)-th S-box in the i-round, we denote the input
difference and the output difference as C;[j][*][k] andD;[j][*][k], respectively,
where 0 <i<n,0<j<4,0<k<32

Our goal is to derive all relations between the differential pattern (C;[5][*][k],
D;[j][#][k]) and the input value ¢;[j][][k]. Based on Property [3| the difference-
value relations can be expressed as the following Boolean equations,

Di[5][0][¥]

= Duxo(ci[5][0][k] & uCi[5][0][K], ci[j][1][k] & wCs[5][1][K], ci[5][2][K] & uCi[j][2][k])
Di[5][1][K]

= Duxa (c[5][0)[k] @ uCi[5][0][K], ci[][1][k] & wCs[5][1][K], ci[5][2][k] & uCi[j][2][k])
D[j][2][K]

= Duxz(ci[5][0][k] @ wCs[5][0][K], i [1[1][K] @ uC[5][1][K], ci[5][2][K] © uCil][2] [1211)5)
We utilize SageMath as the symbolic computation tool to construct difference-
value Boolean equations and use the sage.sat module to convert Boolean equa-
tions to CNF clauses in DIMACS format. The specific process for modeling the
difference-value relations is presented in Algorithm 2]

5 New Collision Attacks on X0ooDYAK Hash Mode

In this section, we present the first 2-round collision attack and a 3-round SFS
collision attack based on our SAT-based collision search model.



Practical Collision Attacks on Reduced-Round Xoodyak Hash Mode 17

5.1 2-round Collision Attack
Our 2-round collision search can be divided into the following two phases:

1. Prepare a 2-round loop differential trail (Ag, By, Co, Do, A1, By, C1, D1) with
the configuration (so = 32,s1 = 32). In each 384-bit difference state, only
the first 32 bits have non-zero difference.

2. Construct a 2-round collision search SAT model and invoke SAT solver to
find a conforming message pairs satisfying the 2-round loop differential trail.
This message pair can be viewed as actual colliding pairs.

Theoretical Complexity Analysis. The weight of the second round trail is
32 x 2 = 64. Based on the 1-round connector, we can construct a linear system
with n; = 64 linear equations from the difference-value relations. The remaining
DF is 64, such that 1-round connector generates a subspace of 264 message pairs.
This enables us to exhaustively enumerate the message pairs generated with the
connectors until we find a message pair that following our 1-round colliding trail.
The time complexity of 2-round collision attack T}ozq; is 264. Actually, Tyose; can
be further reduced to 246647 using the parameters n; = 64, ng = 64, n; = 19,
and dy = 19 based on our linearization strategy outlined in Section by
directly constructing the 2-round loop differential trails as 2-round connectors.

In the practical collision search on the 2-round X0OODYAK hash mode, it
typically requires at least 2%6:647* executions of the X0ODYAK hash function to
find an actual collision. In contrast, our SAT model demonstrates outstanding
performance by enabling us to find a 2-round collision within minutes.
Practical 2-round Collision Search. We use different SAT solvers to solve
our 2-round collision search model, the Treengeling solver performs well as
shown in Appendix A (see Table @.It takes only 64.7 seconds to find a practical
collision. Thereal colliding pair is listed in Table [7]

5.2 Practical 3-round SFS Collision Search

For the 3-round loop differential trail with weight 192, finding a practical collision
is challenging. In this section, we implement a practical SFS collision attack
on the 3-round X00ODOO hash mode. The theoretical collision attack will be
analyzed in detail in Section [5.3]

In the Semi-Free-Start (SFS) collision attack, the attacker has the ability
to select the initial chain value, specifically the initialization vector (IV), along
with a pair of distinct messages, denoted as My||[IV and M{||IV. The goal is to
find these messages such that their hash values, calculated with the chosen IV,
are equal: H(IV, My) = H(IV, M) [24].

The 3-round SF'S collision search is conducted through the following steps:

1. Prepare a 3-round loop differential trail (A, By, Co, Do, A1, ..., D2) with the
configuration (sg = 32,81 = 32,59 = 32). In each 384-bit difference state,
only the first 32 bits have non-zero difference.



18 Huina Li, Le He, and Weidong Qiux

2. Construct a 3-round SFS collision search SAT model without imposing any
constraints on the last 256 Boolean variables of the initial state ag. We then
invoke a SAT solver to find a conforming message pair that satisfy the 3-
round loop differential trail. This message pair can be regarded as actual
SFE'S colliding pair.

After 3-round SF'S collision search model constructed, We use Treengeling
[3] to solve it, it takes just 3.67s to find an actual 3-round SFS colliding pair.
This actual colliding pair is presented in Table[5] However, for 4-round loop trail,
we are unable to obtain an actual 4-round SF'S colliding pair within a reasonable
time (limited to 2 days).

Table 5: 3-round Practical SFS Collision for XooDpYAK Hash Mode (Mo, M})
My
0x89520d63 0x81dd4a10 0xfd153620 0x5£643139
0x87£72c£8 0x226e3ce7 0x6dd82fcb Oxc42eeeb7
0x683125fd 0xbd69af3d 0x859690da 0x84a2196b
M{ @ Ao
0x76adf29c 0x81dd4a10 0xfd153620 0x5£643139
0x87£72c£8 0x226e3ce7 0x6dd82fcb Oxc42eeeb7
0x683125fd 0xbd69af3d 0x859690da 0x84a2196b

5.3 Improved 3-round Collision Attacks

Now, we have a 3-round loop differential trail with the configuration of (so =
32,81 = 32,89 = 32). For the last two rounds, the total weight equals the birth-
day bound (128 for both Xoonp00-HAsH and X00D0OO-XOF). It is impractical
to randomly select a 2-round colliding trail and construct a 1-round connector.

To make the collision attack on the XOODYAK hash mode theoretically feasi-
ble for up to 3 rounds, our 3-round collision attack is constructed using a 2-round
connector and a 1-round colliding trail with weight 64. We propose a lineariza-
tion strategy in this section to partially linearize 64 quadratic conditions of the
second-round connectors. Two rounds of XOODOO permutation are expressed as

Peast

L0 ;00 X LOPwest 000 X
Pwest do Pwest Peast Cl —)dl al (16)

ag — Cy —

In our 3-round loop trail, all S-boxes have the same valid difference pattern,
(1,0,0,1,0,0), in the first round, we have n; = 64 linear equations derived
from the difference-value relations Dy = Dy x(co ® uCy), i.e., col0][1][z] = 0
and ¢g[0][2][z] = 1, where 0 < z < 32. In the second round, the difference-
value relations Dy = Dy, x(c1 @ uCh) give rise to ny = 64 quadratic equations,
i.e., ¢1][0][1][z] = 0 and ¢1[0][2][z] = 1. Hence, the total complexity of 3-round
collision attack can be computed based on Equation

Typa 25158224 (64 + nj +3df)2 x 128 4 9128-nf | 9128-n]  (17)




Practical Collision Attacks on Reduced-Round Xoodyak Hash Mode 19

Linearization Strategy Our aim is to maximize the number of quadratic
equations n; that can be linearized while minimizing the consumption of degrees
of freedom is essential. This will reduce the overall complexity of collision attack.

As the inputs are already grouped to subset with the 64 linear constraints
of differentials, the first 32 active S-boxes are already fully linearized. Thus, the
output bits dy[0][*][z] of the 32 active S-boxes ¢y [0][*][z] after the first y mapping
must be linear bits i.e., (do[0][0][2], do[0][1][2], do[0][2][2],0 < z < 32).

Let us consider a given state ag, where only the first 128 bits are treated
as Boolean variables, while the remaining 256 bits are fixed as constants. After
propagation through the linear layer ¢ o pyest © 6, the resulting state ¢ satisfies
the following property:

Property 4. If the bit ¢[0][1][#] is imposed a linear equation, then the bit cy[3][2][2]
is also imposed a linear equation equivalent to bit ¢y[0][1][z 4+ 11], where 0 < z <
32.

Property 5. If the bit ¢[0][2][z] is imposed a linear equation, then the bit ¢o[3][2][2]
is also imposed a linear equation equivalent to bit ¢y[0][2][z — 11], where 0 < z <
32.

This relationship is determined by the combined effects of the linear op-
erations f-effect and pyes:. The detailed proof is omitted here for brevity. A
graphical explanation for the linearization can be seen from Figure [f]

Based on Property [2] any two bit of the output can be linearized by adding
one extra linear equations on the input. Thus, extra 2 x 2 x 32 = 128 bits
in dy can be linearized. We introduce 384 Boolean variables xs3s4,...,Z767 to
represent each bit of dy. Among these, 96 + 128 = 224 bits’ ANF expressions are
linear expressions with respect to the inputs z;,0 < i < 128. We refer to such
bits as linear bits. In contrast, the remaining 160 bits are referred to as non-
linear bits, as their ANF expressions are non-linear with respect to the inputs
x;, 0 <4 < 128.

% alell

° : X " Peast
col][0][2 dolz][0][=]

Fig. 5: Propagation of Boolean Variables in the First Round




20 Huina Li, Le He, and Weidong Qiux

Specially, for non-linear bits x;, 704 < ¢ < 735, each non-linear bit require
one extra linear equation to achieve linearization, resulting in the consumption
of 1 DF. We list the quadratic terms related to the non-linear bits below.

Tiyes6  (Ti + Tiyo)(Tiys2 + Tigar + Tiyae), 18 < <22

Titr09 © (T + Tig23)(@its2 + Tigss + Tiveo),0 <1< 8

Tipr18 ¢ (T + Tigo)(Tigs2 + Tigar + Tiqr),0 <0 <17
For example, if we set 7+ x39 = ¢, where ¢ = 0 or ¢ = 1, 2714 can be linearized.
In this way, this process enables us to obtain one linearized quadratic equation

at the cost of 1 DF, which can be mathematically expressed as d; = nj.
Based on the above analysis, we can re-write Equation [L7] as below,

64+ 20))° X 128 )15 01
3

The above computation has the optimal choice when n; = 29, the time com-

plexity of the 3-round collision attack reaches its minimum value, i.e., Tiotq; =
91009311

Tiotal —951.5822+4n] o ( (18)

Improved 2-round Theoretical Complexity Analysis. The time complex-
ity of 2-round collision attack T}ore; can be further reduced to 246:647 by directly
constructing the 2-round loop differential trails as connectors for the two rounds.
With the same linearization strategy, we set n; = 64,n, = 64 according to the
weight of 2-round loop differential trail, so that T;,4; reaches its minimum value
when n) = 19,d; = 19, specially 246-6474,

6 Conclusion

In this paper, we observe several key properties of the X0OODOO round function,
particularly its unique 6 and non-linear operation y. Leveraging these proper-
ties, we design special differential trails referred to as loop differential trails to
improve differential-based collision attacks. To quickly find practical collisions,
we build a SAT-based collision search model for the XOODYAK hash mode. It
would be interesting to apply this model to other permutation-based crypto-
graphic primitives. We present an actual 2-round collision and a 3-round SFS
collision on the XOODYAK hash mode. Furthermore, by employing a lineariza-
tion strategy, we reduce the best-known time complexity for 3-round collision
attacks to 21009311 To the best of our knowledge, these are the best attacks
on the round-reduced X0OODYAK hash mode, covering both X0ODYAK-hash and
XOODYAK-XOF.

Acknowledgments

The authors would like to thank Kai Hu for all valuable feedback. We are grateful
to the anonymous reviewers for their valuable comments. This work was sup-
ported by the National Key Research and Development Program of China under
Grant 2023YFB3106501.



Practical Collision Attacks on Reduced-Round Xoodyak Hash Mode 21

References

10.

11.

12.

13.

14.

15.

16.

17.

Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP modeling
for (large) S-boxes to optimize probability of differential characteristics. IACR
Trans. Symmetric Cryptol. 2017(4), 99-129 (2017)

Bellini, E., Piccoli, A.D., Formenti, M., Gérault, D., Huynh, P., Pelizzola, S.,
Polese, S., Visconti, A.: Differential cryptanalysis with SAT, SMT, MILP, and
CP: a detailed comparison for bit-oriented primitives. In: CANS. Lecture Notes in
Computer Science, vol. 14342, pp. 268-292 (2023)

Biere, A.: CaDiCal, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT
Competition 2017. In: Balyo, T., Heule, M., Jarvisalo, M. (eds.) Proc. of SAT
Competition 2017 — Solver and Benchmark Descriptions. Department of Computer
Science Series of Publications B, vol. B-2017-1, pp. 14-15 (2017)

Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of CRYPTOLOGY 4(1), 3-72 (1991)

Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and
Xoofff. IACR Transactions on Symmetric Cryptology 2018, 1-38 (2018)
Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak, a
lightweight cryptographic scheme. IACR Transactions on Symmetric Cryptology
pp. 60-87 (2020)

Degré, M., Derbez, P., Lahaye, L., Schrottenloher, A.: New models for the crypt-
analysis of Ascon. IACR Cryptol. ePrint Arch. p. 298 (2024)

Dinur, I., Dunkelman, O., Shamir, A.: New attacks on Keccak-224 and Keccak-256.
In: Fast Software Encryption - 19th International Workshop, FSE 2012. vol. 7549,
pp. 442-461. Springer, Berlin, Heidelberg (2012)

Dong, X., Zhao, B., Qin, L., Hou, Q., Zhang, S., Wang, X.: Generic MitM attack
frameworks on sponge constructions. In: CRYPTO (4). Lecture Notes in Computer
Science, vol. 14923, pp. 3-37. Springer (2024)

Guido, B., Joan, D., Michaél, P., Gilles, V.: Cryptographic sponge functions.
https://keccak.team/files/CSF-0.1.pdf (2011)

Guo, J., Liao, G., Liu, G., Liu, M., Qiao, K., Song, L.: Practical collision attacks
against round-reduced SHA-3. Journal of Cryptology 33(1), 228-270 (2020)

Guo, J., Liu, G., Song, L., Tu, Y.: Exploring SAT for cryptanalysis:(quantum) col-
lision attacks against 6-round SHA-3. In: International Conference on the Theory
and Application of Cryptology and Information Security. pp. 645-674. Springer
(2022)

Huang, S., Ben-Yehuda, O.A., Dunkelman, O., Maximov, A.: Finding collisions
against 4-round SHA3-384 in practical time. TACR Cryptol. ePrint Arch. p. 194
(2022)

Liu, F., Isobe, T., Meier, W.: Automatic verification of differential characteristics:
application to reduced Gimli. In: Advances in Cryptology - CRYPTO 2020 - 40th
Annual International Cryptology Conference. vol. 12172, pp. 219-248. Springer,
Cham (2020)

Liu, M., Lu, X., Lin, D.: Differential-linear cryptanalysis from an algebraic per-
spective. In: Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference. vol. 12827, pp. 247-277. Springer, Cham (2021)
McCluskey, E.J.: Minimization of boolean functions. The Bell System Technical
Journal 35(6), 1417-1444 (1956)

Mella, S., Daemen, J., Assche, G.V.: Tighter trail bounds for Xoodoo. IACR Trans.
Symmetric Cryptol. 2023(4), 187-214 (2023)


https://keccak.team/files/CSF-0.1.pdf

22

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Huina Li, Le He, and Weidong Qiux

NIST: The NIST lightweight cryptography project (2018), https://csrc.nist.
gov/Projects/lightweight-cryptography

Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced Kec-
cak. In: EUROCRYPT (3). Lecture Notes in Computer Science, vol. 10212, pp.
216-243 (2017)

Qin, L., Hua, J., Dong, X., Yan, H., Wang, X.: Meet-in-the-middle preimage at-
tacks on sponge-based hashing. In: EUROCRYPT (4). Lecture Notes in Computer
Science, vol. 14007, pp. 158-188 (2023)

Quine, W.V.: A way to simplify truth functions. The American mathematical
monthly 62(9), 627-631 (1955)

Song, L., Guo, J.: Cube-attack-like cryptanalysis of round-reduced Keccak using
MILP. IACR Trans. Symmetric Cryptol. 2018(3), 182-214 (2018)

Song, L., Liao, G., Guo, J.: Non-full Sbox linearization: Applications to collision
attacks on round-reduced Keccak. In: CRYPTO (2). Lecture Notes in Computer
Science, vol. 10402, pp. 428-451. Springer (2017)

Stevens, M., Karpman, P., Peyrin, T.: Freestart collision for full SHA-1. In: Ad-
vances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques. vol. 9665, pp. 459—
483. Springer, Berlin, Heidelberg (2016)

Sun, L., Wang, W., Wang, M.: More accurate differential properties of LED64
and Midori64. JACR Trans. Symmetric Cryptol. 2018(3), 93—-123 (2018). https:
//doi.org/10.13154/tosc.v2018.13.93-123

The Sage Developers: SageMath, the sage mathematics software system (version
9.5s) (2022), https://www.sagemath.org

Zhou, H., Li, Z., Dong, X., Jia, K., Meier, W.: Practical key-recovery attacks on
round-reduced Ketje Jr, Xoodoo-AE and Xoodyak. Comput. J. 63(8), 1231-1246
(2020)


https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
https://doi.org/10.13154/tosc.v2018.i3.93-123
https://doi.org/10.13154/tosc.v2018.i3.93-123
https://doi.org/10.13154/tosc.v2018.i3.93-123
https://doi.org/10.13154/tosc.v2018.i3.93-123
https://www.sagemath.org

Practical Collision Attacks on Reduced-Round Xoodyak Hash Mode 23
Appendix

A Practical Collision Results

The real 2-round collision pair and the corresponding search time are listed as
follows:

Table 6: 2-round Practical Collision Search Time

practical collision search time‘ solver ‘thread
64.7s Treengeling 10
966.4s Plingeling 10
1583.1s CryptoMiniSat| 10
18983.3s CaDiCaL 1

Table 7: 2-round Practical Collision for XooDpYAK Hash Mode (Mo, M)
Mo
0x2854a4be 0x3adeabll Oxffffffff Oxaaaaaaab
0x01000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000001
M§ & Ao
0xd7ab5b41 0x3adeabll Oxffffffff Oxaaaaaaab
0x01000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000001

B Quadratic Equations in the Second Round

To clearly illustrate the Boolean variables associated with the quadratic con-
ditions, we present all quadratic equations in Table [§| We observe that each
quadratic equation contains at least one non-linear bit or, in some instances, up
to four non-linear bits.



24

Table 8: Statistics of 64 Quadratic Equations. x(1,2,3) £ z; ® x9 ® x3; Orange

Huina Li, Le He, and Weidong Qiux

bit is non-liner variable in dg; Black bit is linear variable in dg.

No. Quadratic Equations

No.

Quadratic Equations

0 O Tk Wi

a(
a(
a(
a(
a(
a(
a(
a(
a(
a(
a(
a(
a(

?

)

)

,639,650, 659) 3
,608,651,660)
,609, 652,661) 35
,610, 653,662) 3
,611,654,663)3
,612,655,664)
,613,656, 665) 3
,614, 657, 666) 40
,615,658, 667) 4
,616,659, 668) 4
,617,660, 669) 43
,618,661,670) 44
,619, 662, 671) 4
,620, 640, 663) 46
,621,641,664)4
,622, 642, 665) 4
,623, 643, 666) 49
,624, 644, 667) 50
,625, 645, 668) 5
,626, 646, 669) 52
,627,647,670) 53
,628, 648, 671) 54
,629, 640, 649) 55
,630, 641, 650) 56
,631,642,651 57
,632, 643, 652) 58
,633, 644, 653) 59
,634, 645, 654) 60
,635, 646, 655) 61
)
)
)

7

7

,636, 647, 656) 62
,637,648,657) 63
,638,649, 658) 64

(487,496,614, 623, 680, 703,
(488,497,615, 624, 672, 681,
x(489, 498,616,625, 673, 682,
(490,499, 617,626, 674, 683,
x(491, 500, 618,627, 675, 684,
x(492,501, 619, 628, 676, 685,
(493, 502, 620, 629, 677, 686,
x(494 503,621, 630,678, 687,
x(495, 504, 622, 631, 679, 688,
x(496 505,623, 632, 680, 689,
x(497, 506, 624, 633, 681, 690,
x(498, 507,625,634, 682, 691,
5 (499, 508, 626,635, 683,692,
x(500, 509, 627, 636, 684, 693,
x(501, 510, 628, 637, 685, 694,
x(502, 511, 629, 638, 686, 695,
x(480, 503, 630, 639, 687, 696,
x (481,504, 608, 631, 688, 697,
(482, 505, 609, 632, 689, 698,
(
(4
(4
a(
(4
(4
a(
a(
(
a(
a(
(
(

(483, 506,610, 633, 690, 699,
84,507,611, 634,691, 700,
85,508,612, 635,692, 701

486,509,613, 636,693, 702,
87,510,614, 637,694, 703,
88,511,615, 638,672,695,

T

480,489,616, 639,673, 696,
481,490, 608,617,674, 697,
(482,491, 609, 618, 675, 698,
483,492,610, 619,676,699,
484,493,611, 620,677,700,
(485,494,612, 621,678, 701,
(486,495,613, 622,679, 702,

e e o e e e e e N e e e N e e S N N e e N e N e S S e




	Practical Collision Attacks on Reduced-Round Xoodyak Hash Mode

