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Abstract. A common presumption in cryptography is that quantum
key search effectively halves the level of bit security compared to the
classical setting, leading for example to the recommendation to use AES
with 256-bit keys instead of 128-bit keys. From a very coarse point of
view, this is perspicuous by the speed-up obtained via Grover’s search
algorithm. On closer inspection, however, it lacks a formal justification,
especially if the AES key is not perfectly random but only statistically
close to uniform if generated by a quantum key distribution scheme. In
other words, the question is how the statistical distance influences the
quantum key search, or viewed from an implementation point of view,
how one should choose the statistical distance to achieve the best security
bounds.
Our starting points are the recent works about bit security of Micciancio
and Walter (Eurocrypt 2018), Watanabe and Yasunaga (Asiacrypt 2021),
and Lee (Communication in Cryptology 2024) in the classical setting. We
transfer them to the quantum setting and discuss the security against
quantum key search if the keys are close to uniform. We then argue that
to achieve an optimal bit security level of λ/2 bits for λ-bit keys against
quantum search, it is advisable to set the statistical distance of the keys
from uniform to a value in the range from 2−λ to 2−λ/2. Going below
these bounds does not yield any advantage for the bit security, and going
above this range gives worse bit security guarantees.
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1 Introduction

An easy way to compare the strength of cryptographic primitives like block
ciphers, hash functions, or even public-key schemes is via the bit security of the
primitives. For example, a hash function like SHA-256 is attributed a security
level of λ′ = 128, and thus in the same realm as 256-bit elliptic curves. This
is based on the observation that the currently best attack on SHA-256 via the
general birthday collision search requires approximately O(2λ/2) steps for λ =
256. Similarly, for λ-bit elliptic curves, Pollard’s rho method also needs O(2λ/2)
steps. Hence, for a hash-and-sign signature scheme of security level λ′ = 128, one
could deploy SHA-256 with a 256-bit curve (albeit one would need to take the
security loss due to the combination in the signature protocol into account). The
bit security levels of cryptographic primitives and their comparison have thus
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also entered recommendations for cryptographic primitives for security agencies
[2,6].

1.1 Defining Bit Security

Lenstra [17] informally defined a cryptographic system to offer λ′-bit security if
any attacker is expected to require the effort of at least 2λ′ to break the system. A
more rigorous and common approach is to measure bit security by the logarithm
of time divided by the success probability, log T/ϵ, and taking the minimum over
all adversaries. More specifically, in the setting of search problems, a scheme has
bit security λ′ if no adversary can exceed a success probability of ϵ in less than
ϵ · 2λ′ steps for any ϵ.

Recently, there were several proposals how to capture bit security more for-
mally and more broadly. Micciancio and Walter [20] proposed definitions for
search and decision games based on entropy notions. Bit security in this case is
defined as

min
A

log (TA/adv(A)) ,

where adv(A) is the adversary’s advantage in term of entropy. Building on this,
Watanabe and Yasunaga [34] presented a new framework for defining bit security,
focusing on demonstrating the advantage of the adversary. This demonstrating
advantage measures how often an outer adversary B needs to invoke an inner
adversary A (with some success probability ϵA) to find a correct answer with
overwhelming probability. The bit security for search problems is then defined
as

min
A,B

log (NB · TA) ,

where NB is the number of invocations of A. Note that the success probability
ϵA is implicit in NB: For any ϵA one usually requires NB = 1/ϵA many runs of
adversary A to find a solution. The approaches were shown to be equivalent [19].

More recently, Lee [16] conducted a comparative analysis of the frameworks
proposed by Micciancio and Walter [20] and by Watanabe and Yasunaga [34].
Lee gave a more comprehensive framework for capturing search and decision
games simultaneously, with the help of a so-called dummy adversary Adummy to
define a baseline probability. The dummy adversary can be considered the best
non-adaptive strategy to win the game in the same time as the adversary A.
As in [34], Lee then defines bit security via an observational advantage of an
adversary B, amplifying the distinguishing probability between the adversary A
and the dummy adversary Adummy of the same complexity TA as A. This also
results in the definition of the bit security level of minA,B log(NB · TA), but the
definition is now independent of the structure of the security game.

Both the work of Watanabe and Yasunaga [34] and of Lee [16], referring to an
earlier work by Yasunaga [11,35], also pointed out the importance of the Hellinger
distance in determining the observational advantage. Namely, the number NB
of invocations of the adversary A is roughly in the order of the square of the
Hellinger distance (between the probability of A winning and the probability



of the dummy adversary Adummy winning), such that bit security can be well
approximated by

min
A

log
(
TA/(dHell(A,Adummy))2) .

1.2 From Statistical Distance to Bit Security

We are interested in the following question:

Suppose that one aims to derive an AES key of 256 bits to protect against
key search of a quantum adversary. The key generation is not perfectly
uniform but has a slight statistical distance from the uniform distribution.
What is the reasonable range for this statistical distance?

The question appears naturally when the key is derived via quantum key dis-
tribution. In this case, privacy amplification as the final step of the protocol is
usually implemented via randomness extractors [38,12], generating statistically
close to uniform keys. Making the statistical distance arbitrarily small is inef-
ficient because the smaller the distance, the more bits have to be truncated.
Specifically, for a statistical distance ∆, one must roughly sacrifice 2 log 1/∆ bits
[12].

The problem also appears in any modern hybrid key exchange setting com-
bining classical and quantum-safe keys. Any protocol like TLS 1.3 [27] is based on
Krawczyk’s extract-and-expand paradigm [14], implememented either via HKDF
[15] or some AES-based function [7]. The quality of the extraction steps in terms
of statistical distance from uniform depends on properties of the underlying
cryptographic primitive [10,9]. This is also true for multi-input key derivation
functions, such as the hybrid version of TLS 1.3 [28].

We note that in the classical setting, with the interpretation of bit security
λ′ that no adversary can exceed a success probability of ϵ in less than ϵ · 2λ′

steps for any ϵ, one can easily compute an upper bound on the bit security in
terms of the statistical distance. For this, consider an adversary A testing at
most TA potential key values of λ bits. The best strategy of A is to sort the keys
in decreasing likelihood, i.e., testing the most likely keys first, where we assume
that determining the order is for free. The situation is depicted in Figure 1.

Then we can upper bound the success probability of the adversary A when
testing the most likely TA keys first by

ϵ ≤ TA · 2−λ + ∆,

where ∆ is the statistical distance of the key distribution from uniform (the
shaded area in Figure 1). The reason is that the probability of finding the right
value for a uniform key would be TA ·2−λ, also taking into account the increased
probability via the statistical distance in the first steps. Using

TA · 2−λ + ∆ ≤ TA · (2−λ + 2− log 1/∆) ≤ TA · 2max{−λ,− log 1/∆}+1,

we hence get a bit security of λ′ = min{λ, log 1/∆} − 1. This bound is quasi-
tight since, in general, the statistical distance may concentrate on a single key



only, such that an adversary outputting this key would succeed with probability
2−λ + ∆ ≥ 2 ·min{2−λ, 2− log 1/∆} with a single guess.

ordered key values

Pr

2−λ uniform distribution

key distributionTA trials →

Fig. 1: Optimal search strategy in the classical setting (neglecting ordering ef-
fort): Check the most probable keys first.

Setting the statistical distance to ∆ ≤ 2−λ maximizes the above bound
min{λ, log 1/∆} − 1 for bit security, meaning that the classical setting with the
straightforward interpretation of bit security suggests using a statistical distance
close to 2−λ. However, it is unclear if this is also true in the quantum setting.
For one, the approach here uses a simple approach to define bit security. Then,
when a quantum adversary searches for a key, we cannot easily argue about the
optimal strategy to order keys in sequential order.

We note that Micciancio and Walter [20] as well as Yasunaga [35] already
discuss the relationship of closeness of distributions and bit security for classical
games. As mentioned by Yasunaga [35], if the statistical distance of two distribu-
tions is 2−λ, e.g., the distance of a uniform key vs. an almost uniform key as in
our setting, then the game preserves λ-bit security (up to additive terms). Mic-
ciancio and Walter [20] showed that this also holds if the max-log distance of the
distributions is at most 2−λ/2, and Yasunaga [35] extended this to a difference
in the Hellinger distance of 2−λ/2. He also proves, by presenting a specific game,
that this generally does not hold if the distributions have a statistical distance
of 2−λ/2. In contrast, we investigate here quantum key search games and the
precise effect of the more common notion of statistical distance on the actual bit
security for this game.

1.3 Our Results

We start with the bit security notion of Lee [16] according to observational
advantages. This model is independent of the game’s structure (but not the run
time of the adversary and the dummy adversary). Yet, the structural simplicity



allows us to transfer the setting to the case of quantum adversaries. We model,
for example, the interaction of the adversary with the challenger in the game
as a joint quantum computation, such that the dummy adversary, implementing
the best non-adaptive strategy, will only act in the first stage of the interaction.
We note that the observational distinguisher B, receiving information about the
effectiveness of the quantum or dummy adversary, will remain classical. Its task
is to distinguish two worlds and amplify the advantage; quantum power is only
used to search for the key.

We then define a quantum key search game in which we randomly select a
secret key and allow the adversary to test candidates. This corresponds to a
black-box search on, say, an AES key space {0, 1}λ for λ = 256 where the adver-
sary can trial decrypt a given ciphertext and verify its guess. The distribution
of keys will not be perfectly random but instead have a statistical distance ∆
from the uniform distribution. Using an upper bound for quantum searches for
skewed input distributions by Montanaro [22], in a version by He et al. [13], we
present an upper bound on the adversary’s success probability in terms of its
run time TA in our setting. This bound is roughly T 2

A ·2−λ +∆ for any quantum
adversary with run time TA.

It turns out that the optimal strategy of the dummy adversary in our setting
is to guess the most likely key and win with probability at most 2−λ + ∆,
independently of its run time. We can then use the two probabilities, the one
for A and the one for Adummy, to compute the Hellinger distance and use it to
estimate the post-quantum bit security of the key search game. In doing so, we
derive the following results:
1. Statistical distance smaller than 2−λ will not yield an improved security

level. This is shown by upper and lower bounds for the bit security of key
search, which match up to additive terms.

2. Statistical distances in the range 2−λ and 2−λ/2 yield the optimal bound
of bit security λ′ = λ/2, again shown via corresponding upper and lower
bounds. Here, 2−λ is the conservative choice, giving tight bounds also in
cases where, for instance, quantum adversaries cannot rely on arbitrary run
times but are bounded in computing power.

3. Statistical distance larger than 2−λ/2 give worse security guarantees than
λ′ = λ/2.

These conclusions match common intuition but now rely on a proper formal
foundation. We present the technical statements in Section 4 and discuss their
meaning in Section 5.

We also discuss in Section 6 our findings in light of quantum key distributions
and suggestions for parameter choices in this area. Specifically, there appears to
be a general tendency in the literature [25,23,30,21,31,5,24,18,26] to choose the
security parameter ε close to 10−10 ≈ 2−33, where ε can be roughly viewed as
our value for statistical distance.1 However, this choice of ε = 10−10 is not well
1 The situation is more complex than outlined here, partly because it is common

to capture both correctness and security with this single parameter ε, where the
correctness error could be the dominating part. See Section 6 for details.



motivated from our viewpoint. In fact, our results indicate that if the quantum
key distribution should be used to generate 256-bit AES keys, then setting ε =
10−10 may be too optimistic.

2 Preliminaries

2.1 Notation

We consider a classical adversary A that interacts in a game with a challenger X.
All parties in a game receive the security parameter λ ∈ N in unary as input. The
symbols win or lose, eventually output by the challenger, indicate if the adversary
has won or lost the game. When considering quantum parties, we usually use a
subscript Q and write AQ and XQ. We denote by TAQ

the run time of adversary
AQ. The run time usually depends on the security parameter λ. When calling a
quantum oracle O, it is understood that we use the common approach to make
it a unitary operation by considering the map |x⟩ |y⟩ 7→ |x⟩ |y ⊕ O(x)⟩, where
x ∈ {0, 1}n and y ∈ {0, 1}m.

Calligraphic letters like P or Q usually represent probability distributions or
sets. For a distribution P we write P(x) for the probability that the distribution
outputs x. The notation x←$ S means that x is chosen uniformly from a finite
set S. The key space is denoted as K such that sampling a random key is denoted
as k←$ K. Unless mentioned differently, all logarithms log are to base 2.

2.2 Probability Metrics

This section delineates the primary definitions and properties of the two met-
rics employed to formulate our concepts: total variation distance and Hellinger
distance.

Definition 1 (Statistical/Total Variation distance). The total variation
(aka. statistical) distance between two discrete distributions P and Q on the
same domain Ω is defined as

∆(P,Q) = 1
2
∑
x∈Ω

| P(x)−Q(x) | .

The Hellinger distance is frequently employed in information theory to mea-
sure the closeness between distributions. It is the probabilistic equivalent of the
Euclidean distance. It has turned out to be an instrumental notion in cryptog-
raphy [29,11,35,34,16,8].

Definition 2 (Hellinger distance). The Hellinger distance dHell between two
discrete distributions P and Q on the same domain Ω is defined as

dHell(P,Q) = 1√
2

√∑
x∈Ω

(
√
P(x)−

√
Q(x))2.



A different formulation associates the Hellinger distance with the Bhat-
tacharyya coefficient (BC):

dHell(P,Q) =
√

1− BC(P,Q),

where
BC(P,Q) =

∑
x∈Ω

√
P(x) · Q(x).

The Bhattacharyya coefficient quantifies the similarity of two random statistical
samples. Furthermore, the Bhattacharyya coefficient is closely related to the
concept of fidelity, which is known from quantum information theory to measure
the closeness of density matrices.

For binary distributions P,Q with ϵP = P(1) and ϵQ = Q(1) the Hellinger
distance is thus given by

dHell(P,Q) =
√

1−
√

ϵP · ϵQ −
√

(1− ϵP) · (1− ϵQ).

Both distances serve as metrics for assessing the similarity between distributions.
They adhere to the classical analogue of the Fuchs–van de Graaf inequalities:

dHell(P,Q)2 ≤ ∆(P,Q) ≤
√

2 · dHell(P,Q).

For additional properties and proofs pertaining to statistical distances, we refer
the reader to [1],[29] and [35].

3 Definitions

3.1 Quantum Security Game

We consider a cryptographic game G = (X, W) interacting with an adversary A
as in [16] abstractly as an interaction between the challenger X and the adversary
A, where both parties receive the security parameter λ as unary input. At the
end of the interaction, the challenger outputs a bit win or lose to indicate if the
adversary has won or not. Formally, in [16], the decision is captured through the
condition predicate W, which evaluates the challenger’s view, consisting of the
input, the internal randomness, and the incoming messages fromA, to win or lose.
This predicate is only used for a better comparison with previous approaches,
and we keep it here as well for compatibility reasons.

First, we introduce the quantum variants of the classical definitions pro-
vided by Lee [16] to capture security games. We envision the interaction of
the quantum adversary AQ with the quantum challenger XQ in the security
game as a joint computation in a Hilbert space HA ⊗ HAX ⊗ HX, where HA
is attributed to algorithm AQ, HX to XQ, and HAX is a joint space for com-
munication. Formally, we thus decompose algorithm AQ (and likewise XQ) into
sequences A(1)

Q ,A(2)
Q ,A(3)

Q , . . . operating on HAQ
⊗ HAQXQ

. See Figure 2. Note
that we let the challenger access the following query of AQ in each round for
clarity, whereas we can assume that AQ may already access all joint registers
from the beginning.



A(1)
Q

X(1)
Q

A(2)
Q

X(2)
Q

A(3)
Q

X(3)
Q

HX

HAX

HA

win/lose

Fig. 2: Interactive computation of AQ and XQ. Both algorithms receive 1λ as
input in their corresponding registers.

Definition 3 (Quantum Security Game). A quantum security game GQ =
(XQ, WQ) against quantum adversary AQ consists of a quantum challenger XQ

and a winning condition WQ. The game is parameterized by the security param-
eter λ. In this game, the quantum adversary AQ(1λ) interacts with the quantum
challenger XQ(1λ) as depicted in Figure 2. The challenger eventually outputs
a bit win or lose. We say that the adversary wins (loses) the game for security
parameter λ if the challenger’s output is win (lose) when executing the game for
parameter λ. We write

PrGQ

AQ
(λ) := Pr[AQ wins game GQ for security parameter λ].

In Figure 3, we give a protocol-based view of the interactive game between the
parties. This notation will be supportive of understanding observational games.

XQ AQ
...

win/lose

Fig. 3: Protocol-based view on game between AQ and XQ. Both algorithms re-
ceive 1λ as input (omitted here in the presentation).

3.2 Baseline Probabilities

We define the quantum version of dummy adversary following [16]. There, clas-
sical dummy adversaries are defined as being independent of the challenger’s
responses. We note that such adversaries can be considered even more simplistic
than trivial adversaries whose output may depend on the challenger’s behavior.



The example in [16] is a security game where the challenger sends a random
string s to the adversary, and the adversary wins the game if it responds with
that string s. A trivial adversary duplicating the incoming message s can easily
win this game, while a dummy adversary —whose output does not depend on
the challenger’s message— only has a success probability of 2−|s|.

For the quantum case, we can translate the independence of the dummy
adversary of the challenger by demanding that AQ creates all game queries at
the outset. The situation is depicted in Figure 4. Note that the challenger’s
processing steps remain unchanged. This is necessary as we consider fixed games
with identical challengers; only the adversary may change.

AQ

X(1)
Q

X(2)
Q

X(3)
Q

HXQ

HAQXQ

HAQ

win/lose

Fig. 4: Interactive computation of dummy adversary AQ with XQ

Definition 4 (Quantum Dummy Adversary). In a quantum security game
GQ against quantum adversary AQ, the adversary is called a quantum dummy
adversary if A(i)

Q is the identity operation for all i ≥ 2. That is, AQ prepares all
queries in advance, and the challenger processes all queries sequentially, even-
tually outputting win or lose (see Figure 4).

By construction, every quantum dummy adversary is a quantum adversary,
but in general, the converse does not hold.

We next define the baseline probability as the success probability of dummy
adversaries of a particular time complexity bound TQ.

Definition 5 (Bounded Quantum Baseline Probability). A quantum base-
line probability for time complexity TQ for a quantum security game GQ is defined
as

PrGQ

D[TQ](λ) = max
dummy AQ:TAQ

≤TQ

PrGQ

AQ
(λ),

where the maximum is over all quantum dummy adversaries of time complexity
TQ. A quantum dummy adversary AQ against a quantum security game GQ is a
quantum baseline adversary if it achieves the maximum, PrGQ

AQ
(λ) = PrGQ

D[TQ](λ).



We note that the maximum in the definition is a point-wise maximum over
the security parameter λ. If we assume a fixed representation of quantum circuits,
e.g., described via some universal gate set, then for given λ, run time bound TQ

and game G, the number of dummy adversaries AQ with run time TAQ
≤ TQ is

finite and the maximum thus reached. In the following, we use a similar line of
reasoning for the point-wise minimum over quantum search algorithms, which
we implicitly bound in run time by TQ ≤ 2λ/2.

To normalize the advantage of an adversary AQ, running in time TAQ
, over

the dummy adversary of the same complexity, we follow [16] and use the notion
of the conventional advantage:

Definition 6 (Quantum Conventional Advantage). We denote the quan-
tum conventional advantage of AQ for the game GQ as follows:

QAdvGQ

AQ
(λ) = max

{
PrGQ

AQ
(λ)− PrGQ

D[TQ](λ), 0
}

.

3.3 Hybrid Observation Game

The (advantage) observation game in [16] captures the advantage of distinguish-
ing the success of an adversary over a baseline adversary. The idea of the ob-
servation game is to have a meta-game between an adversary B and a “meta-
challenger” X̂. Adversary B can ping the meta-challenger multiple times. Each
time X̂ runs the game G with either the adversary A or with the baseline adver-
sary Adummy, the choice depending on a secret random bit b held by X̂. As in
[16], we stipulate that the adversary AQ has a success probability that is at least
as large as the one of the baseline adversary (of the same complexity). The meta-
challenger returns the game’s outcome win or lose to adversary B. Adversary B
eventually needs to predict b almost with certainty.

Based on the conceptual framework in [16], we propose a modification of
the observation game to the quantum setting. In this setting, the game and the
adversary may be quantum, and since we assume the execution of the game
to be part of the meta-challenger, we also make the meta-challenger quantum.
The observation algorithm B, however, is still classical. The reason is that we
are interested in the quantum adversary AQ finding the classical key, i.e., the
search game is supposed to use quantum power to solve a classical problem. We,
therefore, call this type of observation game a hybrid game.

Definition 7 (Hybrid Observation Game). Let AQ be a quantum adversary
of run-time TAQ

for a quantum game GQ = (XQ, WQ).
Consider a classical adversary B and a quantum meta-challenger X̂Q in the

following hybrid observation game (see Figure 5):



XQ Ab
Q

...win/lose
X̂Q

b←$ {0, 1}

B

"sample"

win/lose

b′

[b = b′]?

A0
Q = AQ

A1
Q = Adummy

Q

Fig. 5: Protocol-based view on hybrid observation game between B and X̂Q. Both
algorithms receive 1λ as input (omitted here in the presentation).

Hybrid Observation Game

Challenge: At the beginning of the game the quantum meta-challenger
X̂Q(1λ) chooses a secret bit b←$ {0, 1}. This secret bit b determines in
the following if we execute the game GQ with the adversary A0

Q = AQ

or with a quantum baseline adversary A1
Q = Adummy

Q of complexity
TAQ

for the game.
Sample Queries: Adversary B(1λ) may repeatedly send the special sym-

bol "sample" to X̂Q. The meta-challenger then invokes the quantum
game GQ with Ab

Q for security parameter λ. When the game invo-
cation eventually returns win or lose, then algorithm X̂Q returns the
value to B.

Decision: The adversary B eventually returns a prediction b′ for the se-
cret bit. The meta-challenger X̂Q outputs win if b = b′ and PrGQ

AQ
(λ) ≥

PrGQ

D[TAQ
](λ), and lose otherwise.

Remark 1. The hybrid observation game can be viewed as a game ĜQ between
the meta-challenger X̂Q and adversary B, such that we can, for example, imme-
diately transfer the notation PrĜQ

B (λ) to describe the success probability of B in
the observation game.

For the definition of bit security in our setting, we use the approach proposed
by [34] which is also used in [16]. The starting point is Definition 7 of the hybrid
observation game. We define the bit security as the cost to demonstrate the
advantage of the AQ against the quantum game GQ. This cost reflects the overall
effort needed to repeatedly invoke AQ, enabling the classical algorithm B to win
the hybrid observation game with sufficiently large probability. Precisely, we
measure the total cost TAQ

of AQ multiplied by the query complexity NB of B
against the hybrid observation game. To distinguish this setting from the classical



scenario and because it corresponds to quantum attacks on otherwise classical
key derivation schemes, we call this the post-quantum bit security (PQBS).

Definition 8 (Post-Quantum Bit Security as Cost to Demonstrate Ad-
vantage). For any quantum security game GQ we define the Post-Quantum Bit
Security (PQBS) with error probability 0 < δ(λ) < 1

2 as follows:

PQBSGQ,δ
Dem(λ) = min

AQ,B
{log

(
TAQ

·NB
)

: PrĜQ

B (λ) ≥ 1− δ(λ)}.

3.4 Estimating the Post-Quantum Bit Security

Lee [16] relates the bit security, as defined above, via the Hellinger distance.
Namely, the number of (classical) samples Nδ to distinguish two probability
distributions P and Q with success probability 1 − δ for 0 < δ < 1

2 is tightly
bounded by the inverse square of the Hellinger distance of the two distributions:

1
4 ln 2 ·

ln
(

1
4δ(1−δ)

)
dHell(P,Q)2 ≤ Nδ(P,Q) ≤

ln
( 1

2δ

)
dHell(P,Q)2 .

Here, the upper bound holds unconditionally and the lower bound holds if
dHell(P,Q)2 ≤ 1

2 . Since we consider a classical adversary B in our hybrid obser-
vation game, we can also apply this bound and derive the same conclusion as in
[16].

Theorem 1 (Estimation of Post-Quantum Bit Security [16]). For 0 <

δ < (2−
√

3)
4 , we have the following estimation of the quantum demonstration bit

security, up to a small additive error α, satisfying 0 ≤ α ≤ 1 + log
(
ln
( 1

2δ

))
:

PQBSGQ,δ
Dem(λ) = min

AQ

log

ln
(

1
2δ

)
·

TAQ

dHell(PrGQ

AQ
(λ), PrGQ

D[TAQ
](λ))2

− α,

where the minimum is over all quantum adversaries AQ satisfying PrGQ

AQ
(λ) ≥

PrGQ

D[TAQ
](λ).

For small δ this bound can be simplified in terms of the quantum Hellinger
advantage:

Definition 9 (Quantum Hellinger Advantage). In a quantum security game
GQ with a quantum adversary AQ we denote the quantum Hellinger advantage
as:

QAdvGQ,AQ

Hell2 (λ) =
{

dHell
(
PrGQ

AQ
(λ), PrGQ

D[TAQ
](λ)
)2 if PrGQ

AQ
(λ) ≥ PrGQ

D[TAQ
](λ),

0 if PrGQ

AQ
(λ) < PrGQ

D[TAQ
](λ).

Then, we get a simplified approximation of post-quantum bit security:



Definition 10 (Hellinger Post-Quantum Bit Security). Let GQ be a quan-
tum security game. Then, the Hellinger Post-Quantum Bit Security is defined
as:

PQBSGQ

Hell2(λ) = min
AQ

log
(

TAQ

QAdvGQ,AQ

Hell2 (λ)

)
.

4 Bit Security of Quantum Key Search

In this section, we examine the bit security within the context of the quantum
key search game, where the adversary endeavors to find an unknown key for a
distribution with a small statistical distance from the uniform distribution. One
can view this game as reflecting the best adversarial strategy in settings where
the deployment of the keys does not introduce collateral weaknesses. For exam-
ple, one may think of a key used in a secure AES-based authenticated encryption
scheme, such that the adversary can check a key guess via trial decryption. Still,
neither the usage of AES nor of the authenticated encryption scheme is known
to facilitate the key search.

We further evaluate the upper and lower bounds for the success probabilities
associated with any adversary participating in the quantum key search game
and we adopt here the definition 10. We adopt here the simplified version of bit
security, defined via quantum Hellinger bit security:

PQBSGQ

Hell2(λ) = min
Aks

Q

log
(

TAQ

QAdvGQ

Hell2AQ(1λ)

)
,

where the quantum Hellinger advantage is articulated through the Hellinger dis-
tance dHell

(
PrGQ

Aks
Q

(λ), PrGQ

D[TAks
Q

](λ)
)2 for successful adversaries AQ. Within this

framework, the derivation of an upper bound on post-quantum bit security re-
quires a lower bound on the Hellinger distance, whereas deriving a lower bound
on post-quantum bit security requires an upper bound on the Hellinger distance.

4.1 Quantum Key Search Game and Baseline Probability

The quantum key search game is parameterized by some distribution µ, which
assigns a probability to each of the possible λ-bit keys k ←$ K = {0, 1}λ. The
distribution µ has a statistical distance ∆ from the uniform distribution. The
goal of the adversary is to find a randomly sampled key. For this, it can query
the challenger in superposition about the candidate keys. Finally, it outputs a
classical prediction for the secret key.

Definition 11 (Quantum Key Search Game). The quantum key search
game Gks,µ,∆

Q = (Xks
Q , Wks

Q ) with quantum key search adversary Aks
Q is defined

as follows:



Quantum Key Search Game

Challenge: At the beginning of the game the quantum challenger Xks
Q (1λ)

chooses a secret key k ∈ {0, 1}λ according to distribution µ(λ).
Queries: Adversary Aks

Q can repeatedly query the challenger
about any quantum state

∑
αxy |x⟩ |y⟩ to receive the answer∑

αxy |x⟩ |y ⊕ Ik(x)⟩, where Ik(x) is the indicator function returning
1 if and only if x = k.

Decision: The adversary Aks
Q eventually sends a prediction k′ to the

challenger Xks
Q . The challenger outputs win if k = k′, and lose other-

wise.

We consider the baseline probability for the key search game. Recall that
dummy adversaries against the key search game must prepare all queries and
their output at the beginning of the game. In particular, this means for our search
game that the dummy adversary must compute its guess k′ for the challenger’s
secret key k before it learns any information about the actual secret. This im-
plies that the best strategy is to pick the most likely key, whose probability is
bounded from above by 2−λ + ∆. At the same time, at least one key must be hit
with probability at least 2−λ, giving us a lower bound for the optimal dummy
adversary. We conclude that

2−λ ≤ Pr
Gks,µ,∆

Q

D[TQ] (λ) ≤ 2−λ + ∆.

This holds independently of the run time of the dummy adversary.

4.2 Bounds for Quantum Key Search Adversaries

We now turn to lower and upper bounds on the success probabilities of adver-
sariesAks

Q against the quantum key search game Gks,µ,∆
Q . He et al. [13], optimizing

Montanaro’s algorithm [22], give a quantum search algorithm for known input
distribution pi = P(i) for i = 1, 2, . . . , N . The idea of their search algorithm is
to run Grover’s algorithm but use an initial state |s⟩ =

∑N
i=1
√

qi |i⟩ + √q0 |0⟩
for non-negative values qi and q0 = 1−

∑N
i=1 qi ≥ 0. The values qi can be chosen

arbitrarily, yielding different bounds on the success probability after TQ steps of
the search algorithm. Specifically, He et al. [13] show that the expected success
probability ESPTQ

(p, q) of finding the key in TQ steps when using q as a starting
vector as

ESPTQ
(p, q) =

N∑
i=1

pi · sin2((2TQ + 1) arcsin√qi).

Each term sin2((2TQ+1)·arcsin√qi) reaches its maximum 1 for qi = sin2 π
2(2TQ+1) .

For our quantum key search problem, we assume that the probabilities pi are
given in non-increasing order, i.e., that the adversary has already ordered the



keys according to their likelihood (see Figure 1 on page 4).2 Given a bound TQ

on the run time, we now set the qi as

qi =
{

sin2 π
2(2TQ+1) if i ≤ T 2

Q

0 otherwise
,

such that the sum over all qi’s is bounded by 1 as required. Then, we get a lower
bound for the expected success probability of

ESPTQ
(p, q) ≥

T 2
Q∑

i=1
pi · sin2((2TQ + 1) arcsin√qi) =

T 2
Q∑

i=1
pi.

Since the pi-values are in non-increasing order, the sum over the first T 2
Q

values can never be smaller than T 2
Q · 2−λ. To see this, let I be the index where

the probability pi drops below 2−λ, i.e., where keys are less likely than uniformly
distributed keys, and the curve of the actual key distribution lies below the
curve of the uniform distribution in Figure 1. Then we can split the sum of the
probabilities in the values up to index I and after I (if I exceeds T 2

Q):

T 2
Q∑

i=1
pi =

max{I,T 2
Q}∑

i=1
pi +

T 2
Q∑

i=I+1
pi.

Noting that the first sum equals the “uniform contribution” plus the statistical
distance, and the second sum at least the “uniform contribution” minus the
statistical distance, we conclude:

≥ max{I, T 2
Q} · 2−λ + ∆ + min{0, T 2

Q − I} · 2−λ −∆

≥ T 2
Q · 2−λ.

He et al. [13] also show that their algorithm is optimal. That is, they show that
any quantum search algorithm has a success probability of at most

max
q

ESPTQ
(p, q) where qi ≥ 0 and

∑
qi ≤ 1.

Letting q∗(p) denote the optimal choice for q given a specific distribution p,

q∗(p) = arg max
q

ESPTQ
(p, q),

they argue that for any other distribution p̂ we have

ESPTQ
(p̂, q∗(p̂)) ≥ ESPTQ

(p̂, q∗(p))
2 Computing this ordering may nonetheless be quite expensive in practice and signifi-

cantly increase the run time of the adversary [33]. This depends on the concrete key
generation algorithm and its specific manifestation of the statistical distance. We
assume here, in favor of the adversary, that this step is inexpensive.



because q∗(p) cannot yield a better probability than the maximizing value q∗(p̂).
Exploiting linearity in the probabilities, we conclude further

= ESPTQ
(p, q∗(p)) + ESPTQ

(p̂− p, q∗(p))

Noting that the squared sin-values lie between 0 and 1 and that p̂i − pi ≥
−|p̂i − pi|, we obtain the lower bound

≥ ESPTQ
(p, q∗(p))−

N∑
i=1
|p̂i − pi|

= ESPTQ
(p, q∗(p))− 2 ·∆

for the statistical distance ∆ between p̂ and p. It follows that we can bound
the value ESPTQ

(p, q∗(p)) via the expected success probability for the uniform
distribution p̂ on the values and (twice) the statistical distance from uniform.

For the uniform distribution over all inputs and a single positive entry, we
can apply the common upper bounds for any search algorithm [4] in the slightly
optimized version of [36]: The probability ρ that any quantum search algorithm
for the uniform distribution on a set of N elements (with a single matching
element) is found after TQ steps, satisfies

4T 2
Q ≥ 2N − 2

√
N
√

ρ− 2
√

N
√

N − 1
√

1− ρ.

Using
√

1− x ≤ 1− x
2 , we obtain:

4T 2
Q ≥ 2N − 2

√
N
√

ρ− 2
√

N
√

N − 1
√

1− ρ

≥ 2N − 2
√

Nρ− 2N(1− ρ

2)

≥ Nρ− 2
√

Nρ

= (
√

Nρ− 1)2 − 1.

Since TQ ≥ 1 we can write this as

5T 2
Q ≥ 4T 2

Q + 1 ≥ (
√

Nρ− 1)2

Since we can assume that ρ ≥ 1
N to surpass the dummy adversary, we have

Nρ ≥ 1 and the value
√

Nρ− 1 is thus non-negative. On the left-hand side, we
also have TQ ≥ 1 such that we can take roots to obtain:

√
5TQ ≥

√
Nρ− 1

and thus 4TQ ≥
√

5TQ + 1 ≥
√

Nρ which implies

16T 2
Q

N
≥ ρ.



We can now put the bounds together to obtain a sharp bound (up to constants
and additive terms) on the adversary’s success probability in relation to the
number of steps TAks

Q
, the search space N = 2λ, and the statistical distance ∆

of the key distribution from uniform:

T 2
Aks

Q
· 2−λ ≤ Pr

Gks,µ,∆
Q

Aks
Q

(λ) ≤ 16T 2
Aks

Q
· 2−λ + 2 ·∆

The upper bound holds for adversaries Aks
Q with success probability at least 2−λ,

which equals the dummy adversary’s success probability.

4.3 Upper Bound for the Post-Quantum Bit Security

We give the upper bound of

PQBSGQ

Hell2(λ) = min
Aks

Q

log
(

TAQ

QAdvGQ,AQ

Hell2 (λ)

)

in terms of the given statistical distance ∆. Since the bit security is defined over
the minimum over all adversaries, we may pick a specific adversary and its run
time in dependency of ∆ to get an upper bound. Specifically, we assume that
TAks

Q
≥ 48. For the bounds, we also need that TAks

Q
≤ 2λ/2, which matches the

known upper bound on the run time of Grover’s search algorithm.
For the statistical distance, we stipulate for technical reasons that ∆ ≤ 1

482 .
In other words, we do not consider constant statistical distances ∆ > 1

482 . This
is not a major restriction since constant distances are considered insecure in the
first place, because then a small set of keys, even a single key, can have a constant
probability of being chosen by the key generation algorithm. Technically, this
may also imply that the success probabilities 2−λ + ∆ of the dummy adversary
can be quite very large. With the assumption about ∆, we can conclude that
∆ ≤ 1

482 · T 2
Aks

Q

· 2−λ. This can always be accomplished by picking TAks
Q

as its

maximum 2λ/2. We can therefore write the distance ∆ for factor γ ≤ 1
482 as

∆ = γ · T 2
Aks

Q
· 2−λ.

To derive an upper bound on the bit security we need a lower bound on the
Hellinger distance. Recall that for binary probability distributions P, Q, as in
the case of our key search game, the square of the Hellinger distance can be
written as

dHell(P,Q)2 = 1−
√

ϵP · ϵQ −
√

(1− ϵP) · (1− ϵQ),

where ϵP = P(1) and ϵQ = Q(1) denote the success probabilities. In our setting,
the distributions are given by an arbitrary quantum key search adversary Aks

Q

playing the game Gks,µ,∆
Q , and a baseline dummy adversary Adummy,ks

Q in the
game. Hence, to give an upper bound on the bit security—and therefore a lower



bound on the squared Hellinger distance—we plug in upper bounds for ϵP , ϵQ in
the first term (taking into account the negative sign) and lower bounds for ϵP , ϵQ
in the second term (taking into account the inner and outer negative sign).

Recall that we have ϵP ≤ 16T 2
Aks

Q

· 2−λ + 2∆ for the key search adversaries
and ϵQ ≤ 2−λ + ∆ for any dummy adversary. Similarly, we have ϵP ≥ T 2

Aks
Q

· 2−λ

for the key search adversaries and ϵQ ≥ 2−λ for dummy adversaries. This yields:

dHell

(
PrGQ

AQ
(λ), PrGQ

D[TAks
Q

](λ)
)2

≥ 1−
√

(16T 2
Aks

Q

· 2−λ + 2 ·∆) · (2−λ + ∆)−
√

(1− T 2
Aks

Q

· 2−λ) · (1− 2−λ)

≥ 1−
√

16T 2
Aks

Q

· 2−2λ + 2 ·∆2 + 16T 2
Aks

Q

· 2−λ ·∆ + 2−λ+1 ·∆

−
√

1− 2−λ − T 2
Aks

Q

· 2−λ + T 2
Aks

Q

· 2−2λ.

We start to simplify the second square root by dropping the negative term
−2−λ and bounding the term T 2

Aks
Q

· 2−2λ ≤ 1
2 · T

2
Aks

Q

· 2−λ for λ ≥ 1. The gives:√
1− 2−λ − T 2

Aks
Q

· 2−λ + T 2
Aks

Q

· 2−2λ ≤
√

1− 1
2 T 2

Aks
Q

· 2−λ.

Using the bound (1 + x)r ≤ 1 + rx (Bernoulli’s inequality) for r ∈ [0, 1] and
for x ≥ −1 (which holds in our case because we presume TAks

Q
≤ 2λ/2) we thus

obtain √
1− 1

2 T 2
Aks

Q

· 2−λ ≤ 1− 1
4 T 2

Aks
Q
· 2−λ.

Hence, the Hellinger distance is lower bounded by

dHell

(
PrGQ

AQ
(λ), PrGQ

D[TAks
Q

](λ)
)2

≥ 1
4 T 2

Aks
Q
· 2−λ −

√
16T 2

Aks
Q

· 2−2λ + 2 ·∆2 + 16T 2
Aks

Q

· 2−λ ·∆ + 2−λ+1 ·∆.

Next, we bound the remaining square root. We make a case distinction:

– Case ∆ ≤ 2−λ. In this case, we can upper-bound the square root expression
as √

16T 2
Aks

Q

· 2−2λ + 2 ·∆2 + 16T 2
Aks

Q

· 2−λ ·∆ + 2−λ+1 ·∆

≤
√

16T 2
Aks

Q

· 2−2λ + 2 · 2−2λ + 16T 2
Aks

Q

· 2−2λ + 2−2λ+1

≤
√

32T 2
Aks

Q

· 2−2λ + 4 · 2−2λ

≤
√

36T 2
Aks

Q

· 2−2λ

= 6TAks
Q
· 2−λ



For TAks
Q
≥ 48 we thus obtain

dHell

(
PrGQ

AQ
(λ), PrGQ

D[TAks
Q

](λ)
)2
≥ 1

4 T 2
Aks

Q
· 2−λ − 6TAks

Q
· 2−λ ≥ 1

8 T 2
Aks

Q
· 2−λ.

Therefore, the upper bound for the post-quantum Hellinger bit security
PQBSGQ

Hell2(λ) becomes:

PQBSGQ

Hell2(λ) ≤ min
Aks

Q

log
TAks

Q

1
8 T 2

Aks
Q

· 2−λ
≤ min

Aks
Q

(λ− log TAks
Q

+ 3).

– Case ∆ > 2−λ. In this case, we can bound the square root expression due to
∆ > 2−λ and ∆ ≤ 1

482 T 2
Aks

Q

· 2−λ as follows:

√
16T 2

Aks
Q

· 2−2λ + 2 ·∆2 + 16T 2
Aks

Q

· 2−λ ·∆ + 2−λ+1 ·∆

≤
√

16T 2
Aks

Q

· 2−λ ·∆ + 2 · 1
482 T 2

Aks
Q

· 2−λ ·∆ + 16T 2
Aks

Q

· 2−λ ·∆ + 2 · 2−λ ·∆

≤
√

36T 2
Aks

Q

· 2−λ ·∆

= 6TAks
Q
· 2−λ/2 ·

√
∆

We thus get from the condition ∆ = γ · T 2
Aks

Q

· 2−λ that this is equal to

= 6TAks
Q
· 2−λ/2 · √γ · TAks

Q
· 2−λ/2 = 6√γ · T 2

Aks
Q
· 2−λ.

Plugging this in, and using that √γ ≤ 1
48 , we thus get

dHell

(
PrGQ

AQ
(λ), PrGQ

D[TAks
Q

](λ)
)2
≥ 1

4 T 2
Aks

Q
·2−λ−6√γ ·T 2

Aks
Q
·2−λ ≥ 1

8 T 2
Aks

Q
·2−λ.

This gives us, once more, the upper bound on the post-quantum Hellinger
bit security:

PQBSGQ

Hell2(λ) ≤ min
Aks

Q

log
TAks

Q

1
8 T 2

Aks
Q

· 2−λ
≤ min

Aks
Q

(λ− log TAks
Q

+ 3).

4.4 Lower Bound for the Post-Quantum Bit Security

To determine a lower bound on post-quantum bit security, yielding an upper
bound on the squared Hellinger distance, we use the upper bound of the squared
Hellinger distance in terms of the statistical distance:

dHell(P,Q)2 ≤ dTV(P,Q).



The statistical distance for the binary random variables P and Q is given by
|ϵP − ϵQ| which, in our case, can be upper bounded by

dTV(P,Q) ≤ 16T 2
Aks

Q
· 2−λ + 2 ·∆− 2−λ ≤ 16T 2

Aks
Q
· 2−λ + 2 ·∆.

We make a case distinction:

– Case ∆ ≤ T 2
Aks

Q

· 2−λ. Then we conclude that

dHell(P,Q)2 ≤ ∆(P,Q) ≤ 18T 2
Aks

Q
· 2−λ,

such that we derive a lower bound for the post-quantum bit security as

PQBSGQ

Hell2(λ) ≥ min
Aks

Q

log
TAks

Q

18T 2
Aks

Q

· 2−λ
≥ min

Aks
Q

(λ− log TAks
Q
− 5).

– Case ∆ > T 2
Aks

Q

· 2−λ. In this case the dominating term in the upper bound
16T 2

Aks
Q

· 2−λ + 2 ·∆ is the statistical distance ∆ and we can conclude that

PQBSGQ

Hell2(λ) ≥ min
Aks

Q

log
TAks

Q

18∆
≥ min

Aks
Q

(log TAks
Q
− log ∆− 5).

If we rewrite ∆ as ∆ = γ · T 2
Aks

Q

· 2−λ for factor γ > 1 then we derive

PQBSGQ

Hell2(λ) ≥ min
Aks

Q

(λ− log TAks
Q
− log γ − 5).

Hence, we only get a slightly worse bound, losing log γ additional bits. Note
that γ > 1 in this case here, such that we indeed reduce the lower bound for
post-quantum bit security compared to the other case.

5 Interpretation of Results

We discuss here the significance of our results in light of the potential choices
of the statistical distance ∆. We note that we technically require that ∆ ≤ 1

482

as well as 48 ≤ TAks
Q
≤ 2λ/2 for the upper bounds. For the lower bounds, we

usually also make the assumption that any adversary, over which we minimize,
is bounded by run time 2λ/2, as quantum key search already succeeds with
probability close to 1 in this case.

5.1 The Case ∆ ≤ 2−λ

If we choose the statistical to be very small, ∆ ≤ 2−λ, we have a matching upper
and lower bound. The upper bound tells us

PQBSGQ

Hell2(λ) ≤ min
Aks

Q

(λ− log TAks
Q

+ 3),



and the lower bound for ∆ ≤ 2−λ ≤ T 2
Aks

Q

· 2−λ says

PQBSGQ

Hell2(λ) ≥ min
Aks

Q

(λ− log TAks
Q
− 5).

Hence, both bounds match up to a constant number of bits. Furthermore, if we
consider adversaries with run time TAks

Q
= Θ(2λ/2), then we can conclude that

we get a bit security of approximately λ− λ/2 = λ/2. This matches the known
expectations for the quadratic speed-up for search with quantum computers, e.g.,
a uniform 256-bit AES key gives bit security of 128. Our result here confirms
that this is indeed the case according to formal models and still holds if the
statistical distance of the key distribution from uniform is ∆ ≤ 2−λ.

Remarkably, our result also shows that decreasing the statistical distance
further, e.g., to ∆ ≤ 2−2λ, does not yield any advantage in terms of bit security.
Our lower bound indicates that this is not known to increase bit security since
the bound is independent of the statistical distance ∆ in case ∆ ≤ 2−λ. Our
upper bound proves that this is not only due to a loose lower bound but that
the bit security, indeed, cannot increase.

5.2 The Case 2−λ ≤ ∆ ≤ 2−λ/2

The quadratic speed-up in quantum search halves the bit security. A natural
idea is then to also allow for a larger statistical distance, say, ∆ = 2−λ/2, which
reduces, for example, the number of truncated bits for privacy amplification. In
this case, the upper bounds remain unchanged. For the lower bound, we then
have 2−λ/2 ≥ ∆ = γ · T 2

Aks
Q

· 2−λ and therefore γ ≤ T −2
Aks

Q

· 2λ/2. This gives us

PQBSGQ

Hell2(λ) ≥ min
Aks

Q

(λ− log TAks
Q

+ 2 log TAks
Q
− λ/2− 5)

= min
Aks

Q

(λ/2 + log TAks
Q
− 5).

Hence we get a lower bound of at least λ/2 bits, matching the upper bound, if
we consider TAks

Q
= 1.

Note that the run time TAks
Q

for the upper and lower bound may differ.

For the upper bound, any choice of TAks
Q

gives an upper limit for PQBSGQ

Hell2(λ)
which is defined over the minimum over all adversaries. For the lower bound, we
therefore have to consider all adversaries with all possible choices of TAks

Q
and

then take the minimum of all these values. In the example above we would thus
take TAks

Q
= 1 for the minimum, whereas we choose TAks

Q
= 2λ/2 for the upper

bound.
It may now seem as if the statistical distance ∆ = 2−λ/2 should be preferable

over ∆ = 2−λ since it yields the same bound at a relaxed requirement. This
interpretation, however, crucially relies on the estimated global upper bound
of TAks

Q
. Above, we assume that this is at most 2λ/2. If one instead assumes



that the best quantum algorithm can make at most 2λ/8 steps, e.g., because
of engineering constraints, then we obtain a different picture. In this case, the
upper bound would be in the order of λ−λ/8 = 7λ/8, whereas the lower bound
would still be λ/2. This is because we get the negative term log γ in the lower
bound in this case here, unless in the first case of ∆ ≤ 2−λ, and this value log γ
can be quite significant if the run time TAks

Q
is smaller.

In summary, a conservative choice, which works independently of some upper
bound on TAks

Q
beyond 2λ/2, is to set ∆ = 2−λ.

5.3 The Case ∆ > 2−λ/2

Increasing the statistical distance even beyond 2−λ/2 may be tempting. Recall
that we have ∆ = γ · T 2

Aks
Q

· 2−λ and that the lower bound tells us

PQBSGQ

Hell2(λ) ≥ min
Aks

Q

(λ− log TAks
Q
− log γ − 5).

We may pick TAks
Q

= 1 such that γ = ∆ · 2λ and log γ = λ + log ∆; we discuss
below that this indeed minimizes the bound. Plugging this into the inequality,
we derive

PQBSGQ

Hell2(λ) ≥ − log ∆− 5.

If the statistical distance ∆ now goes significantly above the bound 2−λ/2, then
this yields a notably decreased lower bound. For example, if we choose ∆ =
2−λ/4, we only get a guarantee of λ/4 bits of security. In this case, however, our
upper bound is not tight. This leaves the possibility that the actual bit security
may be higher.

We note that picking TAks
Q

= 1 and thus adversaries which only test a single
key is not surprising in this context. In the worst case, only one key may en-
compass the entire (large) statistical distance ∆ such that testing only this key
may be a valid strategy. In terms of our bound, both negative terms log TAks

Q

and log γ enter linearly into the bound for bit security. Yet, in ∆ = γ ·T 2
Aks

Q

· 2−λ

for given ∆ the run time enters quadratically. We thus maximize the loss in bits
by setting TAks

Q
= 1 and picking γ as large as possible.

6 Implications to Quantum Key Distribution

Several works in the area of quantum key distribution investigate the security
bounds from a cryptographic point of view [25,23,30,21,31,5,24,18,26]. These
works usually divide the error ε = εcorrect + εsecure of the overall protocol into
an error εcorrect for the two parties not arriving at the same key, and an error
εsecure for an adversary learning information about the secret. Our work does not
consider the former type of error because we only investigate key generation as
a monolithic inner process. The latter error somewhat corresponds to our notion



of statistical distance: In particular, the final step in the protocols consists of
the privacy amplification step, resulting in a close-to-uniform key. In this step,
the works [25,23,31,5,24,26] consider the trace distance as the quantum analog
to the statistical distance; still, the trace and statistical distances are tightly
related [24].3

One can argue if one should combine the errors for correctness and secrecy
within a single parameter ε = εcorrect + εsecure. If the two parties do not derive
the same key, then it may be easy to check for the parties, e.g., by running a
key confirmation protocol before any sensitive data is transmitted. A small but
non-negligible error εcorrect of, say, 10−6 may be acceptable, forcing the parties
to restart the execution occasionally. This issue has also been pointed out in
[30], but that work still uses the sum to discuss example figures.

Conversely, secrecy is generally not verifiable, i.e., the parties cannot easily
determine that the adversary can learn more information than desired. A smaller
value εsecure ≪ εcorrect may thus be preferable. In the combined sum, however,
the value εcorrect then overshadows the other term, suggesting that εsecure could
be chosen close to 10−6, too. Some practical demonstrations like [3] confirm the
use such a choice with εsecure = εcorrect = 10−9.

Indeed, the mix-up of the correctness and secrecy parameters also makes it
hard to interpret the suggested figures for ε in [30,21,31,5,18,26] with respect to
the choice for εsecret. The works [30,31,18] give a bound of ε = 10−10. Mizutani
et al. [21] set ε to be 10−8 or 10−10. Renner and Wolf [26] list typical values
for parameter ε in the range of 10−6 to 10−12. The work by Bunandar et al. [5]
states explicitly in their example that εcorrect = 10−15 and εsecure = 10−10.
Müller-Quade and Renner [23] explicitly mention εsecure = 10−10 as an example
instantiation. We are unaware of the origin of these figures, e.g., if they are
based on values used in practice, recommendations, or merely provide numerical
examples. It is also unclear whether these figures have been evaluated against a
concrete security goal, like the key search game in our work here. Remarkably,
the work by Zhang et al. [37] nonetheless states for instance that a choice of
ε = 10−5 “is considered to be realistic for cryptography applications.”

One may now interpret the suggested parameter ε = 10−10 in [30,21,31,18,26]
to use εsecure ≈ εcorrect, approximately also matching the concrete suggestions in
[23,5] for εsecure. However, this parameter selection appears optimistic in light of
our results regarding bit security. Even for a short 256-bit AES key of quantum
security level 128, choosing, for example, εsecure ≈ 10−12 ≈ 2−40 may be insuf-
ficient. According to our results, a more conservative choice with a significantly
smaller value is advisable unless one has further information about the actual
distributions.

If, on the other hand, one assumes that the aforementioned works suggest
using significantly smaller εsecure ≪ εcorrect for ε = 10−10, then they leave open

3 We note that some works in this domain also define a third criterion, robustness
(see, for example, [23,24]). This property can be roughly described as correctness in
the absence of an adversary, i.e., noise resilience. In cryptography, one usually uses
the two terms correctness and robustness oppositely.



how to choose εsecure, as the term εcorrect dominates the sum. This is even more
remarkable because the actual choice of εsecure can influence the key rate notably,
challenging the practical results in this area: Computing, for example, a 256-bit
AES key for εsecure = 2−40 requires to cut approximately 2 log 1/εsecure = 80 bits
for privacy amplification (also in the quantum case [32]), whereas for εsecure =
2−256 one loses 2 log 1/εsecure = 512 bits. Hence, in one case, one requires at
least 336 reconciled bits to produce an AES key; in the other case, at least
768 reconciled bits. This even neglects the overhead of maintaining the seed for
privacy amplification and the extra time needed to evaluate the amplification
step for the smaller statistical bound.

7 Conclusion

When one implements a key generation procedure for λ-bit keys close to uniform,
our results suggest using a statistical distance ∆ equal to 2−λ. This gives the
best bit security level against quantum key search one can hope for. It guarantees
a level of approximately λ− log TQ where TQ ≤ 2λ/2 is an upper bound on the
run time of quantum algorithms. In particular, one achieves the expected bit
security bound of at least λ/2.

Choosing a smaller statistical distance than 2−λ gives no additional advan-
tage according to our results. If necessary, one may increase ∆ up to 2−λ/2, in
which case one still gets the expected security lower bound of λ/2 bits. How-
ever, this lower bound is not known to match potentially improved bounds
if the global time bound TQ of quantum adversaries is actually smaller than
2λ/2. Choosing statistical distances (significantly) larger than 2−λ/2 is generally
not recommended. Depending on the concrete distribution, one may, however,
achieve better results than via the abstract view on the statistical distance.

We emphasize that our results give conservative bounds for general key dis-
tributions for which only the statistical distance from uniform is known. If one
has specific information about the distribution of keys, one could, in principle,
derive more exact bounds. This may be relevant for the case of quantum key
distribution (cf. Section 6) where smaller statistical distances are often preferred
for efficiency reasons. Additionally, our results assume that ordering the keys
according to the likelihood comes for free. Quantifying the effort for this part
may also allow to argue bounds for smaller statistical distances.
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