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Abstract. The security of ML-DSA, like most signature schemes, is
partially based on the fact that the nonce used to generate the signature
is unknown to any attacker. In this work, we exhibit a lattice-based attack
that is possible if the nonces share implicit or explicit information. From
a collection of signatures whose nonces share certain coefficients, it is
indeed possible to build a collection of non full-rank lattices. Intersecting
them, we show how to create a low-rank lattice that contains one of the
polynomials of the secret key, which in turn can be recovered using lattice
reduction techniques.

There are several interpretations of this result: firstly, it can be seen as
a generalization of a fault-based attack on BLISS presented at SAC’16
by Thomas Espitau et al.. Alternatively, it can be understood as a side-
channel attack on ML-DSA, in the case where an attacker is able to
recover only one of the coefficients of the nonce used during the genera-
tion of the signature. For ML-DSA-II, we show that 4 × 160 signatures
and few hours of computation are sufficient to recover the secret key on
a desktop computer. Lastly, our result shows that simple countermea-
sures, such as permuting the generation of the nonce coefficients, are not
sufficient.

Keywords: ML-DSA, side-channel attacks, lattice-based cryptanalysis.

1 Introduction

After several years of competition, the NIST published in August 2023 the fi-
nal version of the ML-DSA [NIS23] signature standard, previously known as
Dilithium [BDK+21]. ML-DSA has been selected as the main signature stan-
dard to be used worldwide and in most cases. A proof of security, detailed
in [BDK+21], provides a strong security guarantee for ML-DSA. In addition
many papers [BVC+23] [CKA+21] [KLH+20], [MUTS22] [RJH+18], [EAB+23]
[RCDB22] have studied the security of ML-DSA in the event that the attacker
has access to auxiliary information during signature generation. Other papers
[BBK16] [BP18] [BAE+24] [WNGD23] [KPLG24] have studied its security un-
der the condition that an attacker is able to inject one or more faults during
signature generation.
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In most signature schemes, the generation of a strong nonce – unknown to
the attacker – is one of the keystones of the security, which collapses as soon
as information on the nonce is revealed. For ECDSA, one of the pre-quantum
signature standards, [FGR13] shows that it is sufficient for the attacker to obtain
a set of signatures whose random values share a few bits, to find the secret key
using lattice reduction techniques. Following these results, two papers [EFGT17],
[LZS+21] study the security of ML-DSA under the hypothesis of an attacker
who would be able to recover (explicit or implicit) information about the nonce.
In [EFGT17], the authors show that an attacker capable of introducing a fault
at the time of nonce generation, a polynomial vector named y in ML-DSA, to
obtain a polynomial y of abnormally low degree, can recover the secret key. Their
attack is customized to BLISS, another signature algorithm based on structured
lattices, but can be easily modified to be applied to ML-DSA. In [LZS+21] the
authors prove that an attacker able to retrieve one precise bit of information on
each coefficient of the nonce y will need 10 000 signatures to find the secret key.

In this paper, we extend the ML-DSA security analysis under the hypothesis
of an attacker who is capable of learning information about the nonce y. More
specifically, we show that the ideas used in [EFGT17] give rise to a more gen-
eral attack. We demonstrate that knowing one or more coefficients of the nonce
used to generate a signature allows to reduce the rank of the lattice in which
one of the polynomials of the secret key, namely s1, is contained. If one does
not know sufficiently many coefficients, using a lattice reduction is not practi-
cal. On the other hand, with a collection of signatures, and by intersecting the
different lattices obtained, we can create a lattice of low rank that contains s1
by construction, and thus retrieve s1. The main results of our article can be
summarised as follows:

– Seen as a result of a fault attack, our attack generalizes that of [EFGT17],
and becomes drastically more efficient if an attacker can recover at least two
faulty signatures.

– Seen as a side-channel attack, if we assume that an attacker is able to find
one of the coefficients of y thanks to the signature generation execution
trace, he will need 4× 160 signatures and few hours of computation to find
the secret key, for ML-DSA-II.

– Seen as an exploitation of implicit information on the nonce, we obtain the
same result as [FGR13] transposed to ML-DSA: assuming that the attacker
knows a set of signatures whose nonces share an unknown coefficient in
common, he can retrieve the position of the unknown coefficients and apply
the method described in the previous point to find the secret key.

Outline. This paper is organized as follows. In Section 2, we review the necessary
background about ML-DSA and lattice theory. In Section 3, we define an attack
scenario, and show how it can be reformulated in terms of lattice reduction. In
Section 4, we propose different variations of the result of Section 3. In addition to
the theoretical results presented in Section 3, that apply regardless of the security
level of ML-DSA, we present in Section 5 the practical results we obtained when
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attacking ML-DSA-II. Finally, in Section 6 we discuss the obtained results, their
limitations and their implications.

2 Summary of ML-DSA and lattices

In this section we begin by briefly introducing the notations and main functions
used in ML-DSA. For a detailed description of ML-DSA, the reader is referred
to [BDK+21]. We then review the main definitions and results on lattice theory,
which will be used in the next section.

2.1 Notations

Definition 1 Let α be an even (resp. odd) integer. We define r′ := r mod±(α)
the unique -α2 < r′ ≤ α

2 (resp. − α−1
2 ≤ r′ ≤ α−1

2 ) such that r′ = r mod (α).

We will speak of centered reduction modulo α. We define r′′ := r mod+(α) the
unique 0 ≤ r′′ < α such that r′′ = r mod (α).

Definition 2 We define ϕn = xn + 1 with n a power of 2 and q a prime, and
introduce the following rings:

R := Z[x]/(ϕn) and Rq := Zq[x]/(ϕn).

Definition 3 For w ∈ Zq:

||w||∞ := |w mod± (q)|.

For w =
∑

i wix
i ∈ R :

||w||∞ := max
i

||wi mod±(q)||∞ and ||w|| :=
(∑

i

||wi||2∞
)1/2

and for w = (w[1], ...,w[l]) ∈ Rl,

||w||∞ := max
i

||w[i]||∞ and ||w|| :=
(∑

i

||w[i]||2
)1/2

.

Finally, we define two sets Sη, S̃η ⊂ R as follows:

Sη := {w ∈ R | ||w||∞ ≤ η} and S̃η := {w mod± (2η) | w ∈ R}.

Notation 1 For an element z1 ∈ Rl we will note z1 =(z
[1]
1 , ..., z

[l]
1 ) ∈ Rl and

z
[j]
1,i will be the i− th coefficient of the polynomial z[j]1 .
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2.2 Algorithm description

ML-DSA is a signature scheme based on structured lattice, it uses matrices
and vectors of R or Rq, with the values of n and q fixed at n = 256 and
q = 223−213+1 = 8 380 417 regardless of the security level. In addition, to reduce
the size of the public key and to generate the signature ML-DSA uses algorithms
that splits elements in Zq, namely Decomposeq, Power2Roundq, MakeHintq and
UseHintq. For a complete description of these algorithms, we refer to the ML-
DSA specification [BDK+21].

Key Generation: The key generation algorithm is described in Algorithm 1.
ML-DSA is based on the Module-LWE problem, a variant of the LWE problem
introduced by Regev in [Reg05], which we will not recall here. From some seeds,
A ∈ Rk×l

q , s1 ∈ Sl
η and s2 ∈ Sk

η are generated and then t = As1+s2 is computed.
Two optimisations are made to the public key, which is traditionally (A, t), to
reduce its size. The first optimisation, the most natural, consists of transmitting
only the seed used to generate the matrix A. For the second optimisation, only
t1 (the high part of t computed with Power2Roundq) is considered to be part of
the public key.

Algorithm 1 KeyGen
Ensure: (pk, sk)
1: ζ ← {0, 1}256

2: (ρ, ρ′,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 := H(ζ)

3: A ∈ Rk×l
q := ExpandA(ρ)

4: (s1, s2) ∈ Sl
η × Sk

η := ExpandS(ρ′)

5: t := As1 + s2
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}256 := H(ρ || t1)
8: return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

Signature: The signature algorithm is described in Algorithm 2. The signer de-
rives a masking vector y ∈ Rl

q, from which it calculates w1, the most significant
bits of w := Ay and then a challenge c ∈ R which is a sparse polynomial whose
coefficients are in {−1, 0, 1}. It then calculates z := y + c s1, the main part of
the signature, which verifies the following equation, used for verification:

HighBitsq(Az − ct, 2 γ2) = HighBitsq(Ay − cs2, 2 γ2).

The signer then checks that z does not give information about the secret key;
if it does, it starts again by drawing another masking vector. Once z has passed
the tests, we have the following equation:
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w1 = HighBitsq(Ay − cs2, 2 γ2) = HighBitsq(Az − ct, 2 γ2).

Since t0 is not known, anyone attempting to verify the signature can-
not directly compute HighBitsq(Az − ct, 2 γ2). The signer adds h =
MakeHintq(−ct0,Ay − cs2 + ct0, 2γ2) to allow the verifier to calculate
HighBitsq(Az− ct, 2 γ2), without the knowledge of t0. Finally, the signature is
composed of the challenge c, z, and the hint vector h.

Algorithm 2 Sig
Require: sk,M
Ensure: σ = (c̃, z,h)
1: A ∈ Rk×l

q := ExpandA(ρ)

2: µ ∈ {0, 1}512 := H(tr ||M)

3: κ := 0, (z,h) :=⊥
4: ρ′ ∈ {0, 1}512 := H(K ||µ)
5: while (z,h) =⊥ do
6: y ∈ S̃l

γ1
:= ExpandMask(ρ′, κ)

7: w := Ay
8: w1 = HighBitsq(w, 2 γ2)

9: c̃ ∈ {0, 1}256 := H(µ ||w1)

10: c ∈ Bτ := SampleInBall(c̃)

11: z := y + c s1
12: r0 := LowBitsq(w− cs2, 2 γ2)
13: if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
14: (z,h) :=⊥
15: else
16: h := MakeHintq(−ct0,w− cs2 + ct0, 2γ2)
17: if ||c t0||∞ ≥ γ2 or |h|hj=1 > ω then
18: (z,h) :=⊥
19: κ := κ+ l

20: return σ = (c̃, z,h)

Verification: The verification algorithm is described in Algorithm 3. To verify
the signature, it is sufficient to reconstruct the matrix A and the polynomial
c on which the signer has commited. Using the vector h of the signature, we
can recalculate w1 = HighBitsq(Az− ct, 2 γ2), by using UseHintq. Finally, the
signature will be accepted if it is possible to reconstruct the correct c from w1

and if z meets the security conditions imposed during signature generation.

5



Algorithm 3 Ver
Require: pk, σ
1: A ∈ Rk×l

q := ExpandA(ρ)

2: µ ∈ {0, 1}512 := H(H(ρ || t1) ||M)

3: c := SampleInBall(c̃)

4: w′
1 := UseHintq(h,Az− ct1 · 2d, 2γ2)

5: return [[||z||∞ < γ1 − β]] and [[c̃ = H(µ ||w′
1)]] and [[|h|hj=1 ≤ ω]]

2.3 An overview of Lattice Theory

The classic lattice definitions and unproven results from this Section are quoted
from the book “The LLL Algorithm” [NV09].

Definition 4 Let b1, . . . ,bd ∈ Qn. Denote by L(b1, . . . ,bd) the set of all inte-
gral linear combinations of the bi’s:

L(b1, . . . ,bd) = {
d∑

i=1

nibi | n1, . . . , nd ∈ Z}.

When L = L(b1, . . . ,bd), we say that L is the lattice spanned by the bi’s,
and that the bi’s are generators. When the bi’s are further linearly independent,
we say that (b1, . . . ,bd) is a basis of the lattice L in which case:

∀v ∈ L, ∃!n1, . . . , nd ∈ Z, v =

d∑
i=1

nibi.

Definition 5 We define the dimension or rank of a lattice L in Rn, denoted by
dim(L), as the dimension d of its linear span denoted by span(L). The lattice is
said to be full-rank when d = n.

Definition 6 The dual of a lattice L is the set L∗ define as:

L∗ = {x ∈ span(L) | ∀y ∈ L, ⟨x,y⟩ ∈ Z}.

Proposition 1 The dual of a lattice with basis B is a lattice with basis D =
B(B⊺B)−1.

Definition 7 A non-singular matrix B = (b1, . . . ,bn) ∈ Zm×n is in Hermite
normal form (HNF) iff

– There exists 1 ≤ i1 < · · · < ih ≤ m such that bi,j ̸= 0 =⇒ j < h and i ≥ ij.
– For all k > j, 0 ≤ bij ,k < bij ,j i.e all elements at rows ij are reduced modulo

bij ,j.

Proposition 2
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1. There exists a polynomial algorithm that transforms a matrix into HNF in
a polynomial number of operations.

2. If L(B) = L(H) and B,H are HNF then B = H.
3. Let B ∈ Zm×n, there exists an HNF matrix H such that L(B) = L(H).

Proposition 3 There exists a polynomial time algorithm that, on input a lattice
basis B ∈ Zm×n and an affine subspace S, outputs a new basis B̃ = (b̃1, . . . , b̃n)
such that L(b̃1, . . . , b̃d) = S ∩ L(B), where d is the dimension of S ∩ span(B).

Proposition 4 There exists a polynomial time algorithm that, on input two
lattice bases B1,B2 ∈ Zn×n, outputs a new basis D such that L(D) = L(B1) ∩
L(B2)

Proof. See [Mic08] for proof.

We note that Proposition 4 can be generalized to the case of non-full-rank lat-
tices. To the best of our knowledge, this generalization is not known in the
literature, we state it below together with a proof.

Proposition 5 There exists a polynomial time algorithm that, on input two
lattices basis B1 ∈ Zm1×n,B2 ∈ Zm2×n, outputs a new basis D such that L(D) =
L(B1) ∩ L(B2).

Proof. Let B′ a basis of span(B1)∩ span(B2). We can easily compute a basis B̃i

of L(Bi) ∩ span(B′) according to Proposition 3. We have

L(B1) ∩ L(B2) = L(B̃1) ∩ L(B̃2).

Moreover,

rank(span(B̃i)) = rank(span(Bi) ∩ span(B′)) = rank(span(B′))

and
span(B̃1) = span(B̃2).

So L(B̃1) and L(B̃2) are full rank lattices in L(B̃1, B̃2). We then use Propostion
2 to compute basis of L(B̃1, B̃2) and Propostion 4 to compute the intersection
L(B̃1) ∩ L(B̃2) in L(B̃1, B̃2).

Remark 1 The lattice intersection algorithm is based on the calculation of the
HNF and the calculation of some dual basis. It is not difficult to implement an
algorithm that calculates the HNF in a polynomial number of operations, however
the resulting algorithm may run in super-polynomial time due to the explosion
of the size of the coefficients during intermediate calculations.

Worse still, for a lattice L ⊂ Zn, it is not generally true that L∗ ⊂ Zn.
The HNF must therefore be calculated for matrices with coefficients in Q, whose
numerators and denominators explode. In the case of the lattices considered in
practice in Section 5, this can lead to rounding errors when calculating the HNF
and an explosion in calculation time. For this reason, in Section 3, we will take
a different approach to intersect lattices from the state-of-the-art.
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Hard lattices problems:

Definition 8 Let L be a lattice of Rn. For all 1 ≤ i ≤ dim(L), the i−th min-
imum λi(L) is defined as the minimum of max1≤j≤i(||vj ||) over all i linearly
independent lattice vectors v1, . . . ,vi ∈ L.

Problem 1 Shortest Vector Problem (SVP): Given a lattice basis B find a
nonzero lattice vector of lenght at most λ1(L(B)).

Problem 2 Closest Vector Problem (CVP): Given a lattice basis B and a target
vector t find a nonzero lattice vector within distance dist(t,L(B)).

Definition 9 The Gram determinant of b1, . . . ,bm ∈ Rn, denoted by
∆(b1, . . . ,bm) is the determinant of the m×m Gram matrix (⟨bi,bj⟩)1≤i,j≤m.
Furthermore, when the bi’s are linearly independent,

√
∆(b1, . . . ,bm) is the

m−dimensional volume of the parallelepiped spanned by the bi’s.

Definition 10 The volume of a lattice L = L(b1, . . . ,bd) is defined as:

vol(L) =
√
∆(b1, . . . ,bd)

which is independent of the choice of the basis (b1, . . . ,bd) of the lattice L.

Definition 11 Let L be a sublattice in Rn. A sublattice of L is a lattice M
included in L: sublattices of L are the subgroups of L. If the rank of M is equal
to the rank of L, we say that M is a full-rank sublattice of L. In which case the
group index [L : M ] is finite and:

vol(M) = vol(L)× [L : M ].

Theorem 1 The LLL algorithm given as input a basis of a d−dimensional in-
teger lattice L ⊂ Zn, outputs a basis (b1, . . . ,bd) of L in time polynomial in the
size of the basis such that:

||b1|| ≤ 2(d−1)/4vol(L)1/d.

More precisely, the complexity is O(d5(d + log(B))log(B)) where B =
maxi(||bi||2).

Theorem 2 The NearestPlane algorithm given as input a basis of a integer
lattice L = L(B) ⊂ Zn and a target vector t output a lattice point v of L in time
polynomial in the size of the basis such that:

∀i ∈ {1, . . . , n}, ⟨t − v,b∗
i ⟩/||b

∗
i || ∈ [−1/2, 1/2),

where B∗ = (b∗
1, . . . ,b

∗
n) denote the Gram-Schmidt matrix of B.
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Assumption 1 Let L be a d−dimensional lattice in Rn. The Gaussian Heuristic
"predicts" that λ1(L) would be close to:(

vol(L)
νd

)1/d

≈
√

d

2πe
vol(L)1/d,

where νd denotes the volume of the closed unitary ball of Rd.

Remark 2 It is common to assume that if a vector v ∈ L is smaller than the
Gaussian heuristic, then it is the smallest vector of L. It is then possible to
solve the SV P , because a shortest vector of L can be found in its LLL-reduced
basis, provided that the bound of Theorem 1 is sufficiently small. Similarly, the
CV P can be solved by pre calculating the LLL-reduced basis and then applying
the NearestPlane algorithm.

3 Problem definition and attack methodology

Following the same motivations as in [FGR13], we examine the security of ML-
DSA in a scenario where an attacker obtains m messages signed under the same
secret key and such that the nonces used during the generation of the signature
share a certain number of coefficients. To simplify the presentation, in this sec-
tion we assume that the common coefficients between the nonces are those of
highest degree. Furthermore as y ∈ Rl

q is a vector of polynomials, we present
the reasoning only on y[1], the first polynomial of y. For the moment we assume
we know m signatures σ1, . . . , σm of Sig signed under the same secret key, such
that:

∀i ∈ {1, . . . ,m}, y[1]
i =

d∑
j=0

y[1]
i,jx

j +

n−1∑
j=d+1

y[1]
1,jx

j

where 0 ≤ d ≤ n− 2 is unknown. By definition, z := y+ c s1 so even if it means
subtracting z1 from all the other zi, without loss of generality we can assume
the last coefficients shared by the nonce to be zero, formally:

∀i ∈ {1, . . . ,m}, z[1]i = y[1]
i + cis

[1]
1 with deg(y[1]

i ) ≤ d < n.

Lemma 1 Assuming that for i ∈ {1, . . . ,m} ci ∈ Rq behaves like a random
element of the ring Rq, ci is invertible in Rq with probability at least 99%.

Proof. By the Chinese remainder theorem, Rq
∼= Zn

q , assuming that for i ∈
{1, . . . ,m} ci behaves like a random element of Rq, the probability that ci is
invertible is (1− (1/q))n ≈ 0.999969.

Therefore, in the rest of the article, the vectors ci will be considered invertible
without loss of generality. For each i ∈ {1, . . . ,m}, it exists a Pi ∈ R such that
ci × c−1

i = 1+ qPi, where c−1
i denotes the inverse of ci seen as a element of Rq.

Therefore, c−1
i z[1]i = c−1

i y[1]
i + s[1]1 + qPis

[1]
1 and for all i ∈ {1, . . . ,m}:
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s[1]1 ∈ Li := L
(
c−1
i z[1]i , {c−1

i xj}j∈{0,...,d}, {qxj}j∈{0,...,n−1}

)
.

This relation can be rewritten as:

∀i ∈ {1, . . . ,m}, s[1]1 ∈ Li := spanFq

(
c−1
i z[1]i , {c−1

i xj}j∈{0,...,d}

)
.

We have reformulated the problem of finding s[1]1 , as the calculation of a lattice
intersection (or as an intersection of Fq vectorial spaces), indeed:

s[1]1 ∈
⋂

1≤i≤m

Li and s[1]1 ∈
⋂

1≤i≤m

Li.

Switching between Fq subspaces and lattices: One method would be to
calculate the intersection of the lattices Li using duality and the results of Sec-
tion 2, although polynomial this method can be inefficient for large lattices,
mainly due to rounding errors when calculating the HNF. The definition of Li’s
simplifies this, allowing to calculate only intersections of vector spaces. Unfortu-
nately, it is not possible to find a small element in a vector space directly. This
is why we apply the following method:

1. Compute a basis B = (b1, . . . ,bα) of the Li’s intersection, named L.
2. View L as a integer lattice, by considering L = L(B, {qxj}j∈{0,...,n−1}).
3. Retrieve s[1]1 using LLL, according to the Gaussian heuristic, s[1]1 will be the

shortest vector of L.

This method allows to efficiently compute the intersection of Li’s because the
lattice L calculated in steps 1 and 2 satisfies:

L =
⋂

1≤i≤m

Li.

Remark 3 Steps 1 and 2 provide a generic way of computing intersections of
modular lattices. This method is more efficient than the classical one (which uses
duality) described in Section 2.

Since L is of full rank in Zn, LLL cannot be applied directly (as the ap-
proximation factor depends exponentially on the dimension). A classical way to
overcome the problem, described in [EFGT17], consists in projecting L in lower
dimension to recover s[1]1 piece by piece.

Theorem 3 Let M1, . . . ,Mm be m messages with the associated signatures
σ1, . . . , σm such that, for i ∈ {1, . . . ,m}, deg(y[1]

i ) = d. Under Assumption 1,
s[1]1 can be computed in polynomial time as soon as:
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d < n− 2 and m ≥ n− α

n− d− 1

where α ∈ N denotes an integer where it is considered realistic to recover the
shortest vector by applying LLL or any other lattice reduction algorithm, on a
lattice of dimension α.

Proof.
∀i ∈ {1, . . . ,m}, dimFq

(
Li

)
= d+ 1 < n− 1,

Let us consider, for i ∈ {1, . . . ,m}, ϕi : Fn
q → Fn−(d+1)

q which verifies, Li =
kerFq

(ϕi). Therefore, by defining ϕ : x → (ϕ1(x), . . . , ϕm(x)) :

dimFq

 ⋂
1≤i≤m

Li

 = dim(kerFq
(ϕ))

= n− rankFq
(ϕ).

Assuming ϕ to be a random application, it has maximum rank and thus:

dimFq

(
L
)
= dimFq

 ⋂
1≤i≤m

Li

 = n−m(n− (d+ 1)) ≤ α.

Let L = L(B, {qxj}j∈{0,...,n−1}), where B is a basis of L and I ⊂ {0, . . . , n− 1},
with |I| = l and φI : Zn → Zl the projection associated with I, then LI :=

φI(L) is an integer lattice in Zl and φI(s
[1]
1 ) ∈ LI . According to the ML-DSA

parameters, ||s[1]1 ||2 ≤
√
nη where η ∈ {2, 4} depending on the security level, so

||φI(s
[1]
1 )||2 ≤

√
lη. Furthermore,

vol(LI) =
vol(qZl)

[LI : qZl]
= ql−α.

s[1]1 will be the shortest vector of LI , as soon as:

||φ(s[1]1 )||2 =
√
lη ≪

√
n

2πe
vol(LI)

1/l =

√
l

2πe
q1−m/l.

In other words, with C =
√
2πeη:

l ≥ α

1− log(C)/log(q)
≈ α(1 +

log(C)

log(q)
).

If it is considered realistic to solve the SV P in LI of dimension l, then s[1]1

can be found by applying LLL or any other lattice reduction algorithm.
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3.1 Affine space optimisation

Even if Theorem 3 is sufficient to find s[1]1 efficiently with a reasonable number of
signatures, the Li’s are Fq-subspaces of dimension d+1, and for their intersection
to be non-trivial, it is necessary that d < n− 2. In the following sub-section, we
propose an affine optimisation which allow to intersect the Li’s in a non trivial
way, even when the degree of the nonce is n−2 (i.e. when only the last coefficient
of y is 0). More precisely, we had for all i ∈ {1, . . . ,m}:

s[1]1 ∈ Li := L
(
c−1
i z[1]i , {c−1

i xj}j∈{0,...,d}, {qxj}j∈{0,...,n−1}

)
.

But since c−1
i z[1]i = c−1

i y[1]
i + s[1]1 + qPis

[1]
1 , the coordinate of s[1]1 in c−1

i z[1]i is
always 1, it is possible to consider affine lattices, of dimension d. Formally for
i ∈ {1, . . . ,m} :

s[1]1 ∈ LAi
:= c−1

i z[1]i + L
(
{c−1

i xj}j∈{0,...,d}, {qxj}j∈{0,...,n−1}
)
.

As described previously, it is possible to write this intersection using
Fq−subspaces:

∀i ∈ {1, . . . ,m}, s[1]1 ∈ LAi := c−1
i z[1]i + spanFq

(
{c−1

i xj}j∈{0,...,d}
)
.

So, finally:

s[1]1 ∈ LA :=
⋂

1≤i≤m

LAi and s[1]1 ∈ LA :=
⋂

1≤i≤m

LAi .

We cannot apply directly the results of Section 2, since the Ai’s are affine spaces
and not a vector spaces. The following strategy is proposed:

1. Compute a basis B = (b1, . . . ,bα) and a vector v such that:

LA = v + span(B).

2. View LA as an affine lattice, by considering:

LA = v + L
(
B, {qxj}j∈{0,...,n−1}

)
.

3. Retrieve s[1]1 using the NearestPlane algorithm, according to the Gaussian
heuristic, s[1]1 − v will be the closest vector of −v in LA.

Theorem 4 Let m messages M1, . . . ,Mm with the associated signatures
(zi, ci)i∈{1,...,m} such that for i ∈ {1, . . . ,m}, deg(y[1]

i ) = d. Under Assump-
tion 1, s[1]1 can be computed in polynomial time as soon as:

d < n− 1 and m ≥ n− α

n− d

where α ∈ N denotes an integer where it is considered realistic to recover the
shortest vector by apply NearestPlane or any other CVP solver algorithm on a
lattice of size α.
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Proof. Since the proof of Theorem 3 is similar, fewer details are provided.

∀i ∈ {1, . . . ,m}, dimFq

(
LAi

)
= d < n− 1,

and therefore:

dimFq

(
LA

)
= dimFq

 ⋂
1≤i≤m

LAi

 = n−m(n− d) ≤ α.

Let LA = v + L(B, {qxj}j∈{0,...,n−1}), where B is a basis of the vectorial space
LA and v ∈ LA. LA is an affine lattice, and s[1]1 will be the shortest vector on
LA, as in the proof of Theorem 3 we cannot use lattice reduction due to the
dimension of LA, but using an appropriate projection, one can retrieve s[1]1 using
the NearestPlane algorithm, according to the Gaussian heuristic, s[1]1 − v will
be the closest vector of −v in L(B, {qxj}j∈{0,...,n−1}).

4 Generalisation and further developments

In Section 3, it was assumed that the nonces had the same coefficients of higher
degree. This section demonstrates that the two theorems of Section 3 continue
to apply even when the positions of the common coefficients are unknown to the
attacker.

In this section, we know m messages M1, . . . ,Mm with their associated sig-
natures σ1, . . . , σm such that the yi’s used during the signature share a block of ℓ
coefficients in common3, whose position is unknown. Again even if it means sub-
tracting z1 from all the other zi’s, one can consider that the coefficients shared by
y1, . . . ,ym are zero. To simplify the calculations, we make the heuristic assump-
tion that the coefficients of the zi’s are uniformly distributed in {−γ1 + 1, γ1}.
According to the definition of c and s1, ||cs1||∞ ≤ β. So ℓ coefficients lie in
{−β, β}. However, for any m signatures, the probability of this happening is:(

2β + 1

2γ1

)ℓ×m

. (1)

As soon as this probability is low enough, we can find the block of ℓ coefficients
in common by looking at the family of coefficients of the zi’s. The same kind
of reasoning can be applied if an attacker is able to retrieve a coefficient of y
without knowing its exact position. Formally, we know a message M associated
with its signature σ = (c̃, z,h) and α, for which there exists an unknown i in
{1, . . . , 256} such that y[1]

i = α. It is possible to find i as soon as∣∣∣{z[1]i }i∈{1,...,n}
⋂

{α− β, . . . , α+ β}
∣∣∣ = 1.

3 The case considered in Section 3 corresponds to a block of size ℓ = n− d.
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If not, the attacker cannot exploit the signature and proceeds with another one.
Therefore, it will be possible to find i with probability:

(
1− 2β + 1

2γ1

)n−1

. (2)

We have chosen to present our result in the case where the nonce share a block
of ℓ common coefficients, but in reality, due to the nature of R, this result can
be extended to many other contexts as we will discuss below.

Blocks of hidden shared bits: The attack described previously can be gen-
eralized to the case where the nonces share multiple blocks of coefficients. Ac-
cording to the beginning of the present section, it is possible to statistically find
the position of the common coefficients: We therefore assume that we know m
messages M1, . . . ,Mm with their associated signatures σ1, . . . , σm such that the
yi’s used during the signature share a total of ℓ coefficients in common, divided
into δ different blocks as shown in Figure 1.

Fig. 1. Biased nonces

Formally for all i in {1, . . . ,m}:

y[1]
i =

δ∑
k=1

∑
j∈Ik

y[1]
1,jx

j +
∑

j /∈∪Ik

y[1]
i,jx

j

where I1, . . . , Iδ represent the coefficients of each block. If ℓ1, . . . , ℓδ denote the
length of each block, by definition

∑
ℓi = ℓ. Even if it means subtracting z1

from all the zi’s, it can be assumed that the shared coefficients of (yi)i∈{1,...,m}
are zero. Moreover by posing Pk(x) = xn+1−bk , where bk denote the last element
on the interval Ik for k in {1, . . . , δ}:

deg(Pky
[1]
i ) ≤ n− 1− bk.

It is then sufficient to apply the attack described in Section 3 to the family
{Pkzi}(i,k)∈{1,...,m}×{1,...,δ}.
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Applications to fault attacks: Our attack, inspired by the result
in [EFGT17], can also be seen as a fault attack on the generation of y, since
an attacker who injects a fault to stop the generation of the coefficients of y[1]

prematurely will obtain a signature with a corresponding y[1] of unusually low
degree. In [EFGT17] the authors focus on the injection of a single fault on the
BLISS signature scheme, we show that this attack works on ML-DSA and is
drastically more effective when an attacker is able to retrieve more than one
faulty signature. In particular, with sufficiently many faults injected, any part
of the generation of y is vulnerable.

Applications to side-channel attacks: This attack also applies to the case
where, by analyzing the generation of the signature, an attacker is able to find
one (one more) of the coefficients of the nonce used to generate the signature.
To simplify the presentation, we assume that we know m messages M1, . . . ,Mm

with their associated signatures (zi, ci)i∈{1,...,m} and i1, . . . , im such that the
attacker knows y[1]

1,i1
, . . . ,y[1]

m,im
. To reduce the problem to the one described in

Section 3, it is sufficient to pose the following.

∀j ∈ {1, . . . ,m}, Pj(x) = (y[1]
j,ij

)−1xn−1−ij .

Therefore, according to the definition of the Pj ’s, the last coefficient of each
Pjy

[1]
j is 1, so this returns to the case of nonce which have their highest degree

coefficients in common, as described in Section 3.

5 Experimental results

To demonstrate our theoretical results in practice, we focused on finding the first
polynomial of s1, s[1]1 . However, the reasoning for finding the other polynomials
of s1 is strictly identical. Furthermore, the theory presented does not depend on
the level of security, we have only tested the results on ML-DSA level 2 security.
As the code is a proof of concept, the results are far from being optimized, all the
tests and results presented in this section were carried out using SageMath, on a
laptop computer equipped with an Intel(R) Core(TM) i7-10850H 2.70GHz CPU.
The code used for the attack is available at https://github.com/AzevedoPaco/
AttackML-DSA. The various constants for the three ML-DSA security levels are
shown in Table 2. For Tables 3, 4 and 5, the success statistics are based on an
average of 10 keys.
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Security level II III V
(k, l) (4, 4) (6, 5) (8, 7)

γ1 217 219 219

γ2 (q − 1)/88 (q − 1)/32 (q − 1)/32

η 2 4 2

τ 39 49 60

β 78 196 120
Table 1. Settings for different security levels of ML-DSA

Statistics for ML-DSA’s parameters: The probabilities formally described
in Section 4 are calculated. One wants to find the position of ℓ coefficients
in common for the nonces corresponding to m different messages, as the fol-
lowing paragraphs will show, the parameters useful in practical tests are typ-
ically: (m, ℓ) ≈ (1, 150) (which was the case studied in the paper [EFGT17]),
(m, ℓ) ≈ (2, 75) and (m, ℓ) ≈ (150, 1). For these values the quantity m× ℓ is con-
stant. Table 2 calculates the probabilities described in Section 4, for the three
security level of ML-DSA.4

Security level II III V
Numeric application in (1) 2−1605 2−1707 2−1813

Numeric application in (2) 0.736 0.826 0.889

Table 2. Numeric application for probabilities in (1) and (2)

Retrieving s1 with a single faulty signature: As mentioned in Section 4,
the attack can be seen as a generalisation of the one described in [EFGT17],
with a single signature, our results fall back to those against BLISS described
in [EFGT17]. For a single signature and if we note d the degree of y[1] at the
time of its generation, lmin the minimum dimension in which the network can
be projected, Table 3 summarizes the obtained results.

d 20 40 60 80 90

Theoretical lmin 27 53 79 105 118

l in practice 27 53 79 115 188

Probability of success 1 1 1 1 4/5

recover s[1]1 0.272s 2.65s 13.69s 60.49s 866.9s
used algorithm LLL BKZ25 BKZ25 BKZ30 BKZ30

Table 3. Attack results with a single signature against ML-DSA-II

4 for m and ℓ such that m× ℓ ≈ 150.
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Retrieving s1 with few faulty signatures: The main interest of our gener-
alization is to show that the attack described in [EFGT17] becomes drastically
more efficient when we assume the attacker is capable of injecting the same fault
for at least two executions, Table 4 summarizes the results obtained for two
faulty signatures (where the degree of each y[1] is d).

d 90 110 130 150 170

dimFq (L) 1 1 6 46 86

Theoretical lmin 1 1 8 53 98

l in practice 50 50 50 60 110

Success for our l 1 1 1 1 1

recover s[1]1 0.18s 0.198s 0.42s 2.44s 29.6s
used algorithm LLL LLL LLL LLL BKZ25

Table 4. Attack results with two signatures against ML-DSA-II

With just one additional faulty signature, the attack is much more effective,
when m ≤ 125, using lattice reduction is useless since the intersection is trivial
(it is a line directed by s[1]1 ). By using 3 or more faulty signatures, it would be
possible to find s[1]1 with fewer y coefficients set to 0.

Retrieving s1 with a single known coefficient: This paragraph presents
the results of the attack, as it was originally described in Section 3, Table 5
summarizes the attack results when the nonce of m signatures share the same
last coefficient of highest degree.

m 220 200 180 160

dimFq (L) 36 56 76 96

Theoretical lmin 41 64 87 109

l in practice 50 65 90 120

Success for our l 1 1 1 1

recover s[1]1 89.38s 84.27s 84.9s 1744.9s
used algorithm LLL BKZ25 BKZ25 BKZ30

Table 5. Attack results with m signatures against ML-DSA-II

6 Conclusion

This paper, built on [EFGT17]’s ideas, proposes an attack on ML-DSA under
the assumption that an attacker has access to information (implicit or explicit)
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on the nonce. More precisely, our attacks assume redundancy of information
on the nonces used during the generation of some signature, either in the form
of unknown common coefficients or null coefficients or in the case where the
attacker can know the value of one of the coefficients. In all these cases, we show
that ML-DSA’s secret key can be extracted from such a set of signatures, in a
reasonable time and always with less than 4× 160 signatures for ML-DSA-II.

Finding appropriate countermeasures against our new attacks is not obvious.
For instance, a technique based on swapping the order of generation of the
coefficients of y was suggested by the authors of [EFGT17] and seemed sufficient
to thwart their attacks. However, this technique alone is not able to protect
ML-DSA implementations against our improved fault attacks. This suggests the
absence of a simple countermeasure and seems to indicate that it is necessary to
mask the entire sampling algorithm.
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