Air-FRI: Acceleration of the FRI Protocol on the
GPU for zkSNARK Applications

Tanmayi Jandhyala and Guang Gong

Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario
Canada
{tjandhyala, ggongl}@uwaterloo.ca

Abstract. Blockchain holds the potential to support the privacy of its
participants by integrating zero-knowledge proofs into its design. zk-
SNARK schemes can effectively prove the validity of blockchain trans-
actions to their owners without disclosing user data. However, the ef-
ficiency and scalability of the underlying cryptographic protocols that
enable these schemes remain a challenge to realize in practice. This
paper presents Air-FRI, a novel GPU-enabled software implementation
of the Fast Reed-Solomon Interactive Oracle Proof of Proximity (FRI)
protocol, which is a core component in post-quantum zkSNARKSs that
reduces computational complexity in systems with substantial mathe-
matical instances. Existing schemes that implement the FRI protocol
entail significant computational times due to large proof sizes. Our op-
timized solution includes a parallelized computation of Reed-Solomon
codewords, the pre-computation of time-intensive finite field operations,
non-interactiveness, and the application of a unified Merkle tree commit-
ment to authenticate the entire proof. Together, the implemented opti-
mizations yield a solution that significantly reduces prover and verifier
times while minimizing proof size, addressing both scalability and per-
formance challenges in zkSNARK-based algorithms. Performance eval-
uations conducted by us across two security levels confirm the imple-
mentation’s high throughput, establishing it as a promising solution for
practicable privacy-preservation. Our results show a 93.3% improvement
on an average in the speed of the protocol on the GPU as compared to a
non-GPU solution for the same parameters, which includes the execution
time of all of its sub-phases: the commit phase, the query phase, and the
round consistency checks to ensure correctness of the proof. This work
establishes a foundation for advancing privacy-preserving post-quantum
cryptography, supporting the development of secure, transparent, and
decentralized digital infrastructures for the future.

Keywords: FRI - zkSNARKSs - GPUs - Software.

1 Introduction

In a digitally-driven society, the balance between data privacy and trust is of-
ten compromised. While individuals expect sensitive data, such as medical or

financial records, to remain secure and accessible only with explicit consent,
these expectations are frequently violated or undermined by institutional mis-
conduct or technological vulnerabilities [8] respectively. Such breaches erode the
foundational trust of centralized systems. Blockchain technology [39] offers a
decentralized and persistent framework for recording transactions and has been
adopted across financial services [43], smart contracts [34], and public services [I].
However, its reliance on distributed public ledgers introduces significant privacy
concerns, as all participants must maintain identical copies of data. Address-
ing these challenges is crucial for organizations to ensure trust while leveraging
blockchain’s potential [4§].

A significant concern within these privacy challenges is the de-anonymization
of data recorded on blockchains. Transactions on public ledgers, once verified,
are permanently stored in open databases. Past network-based de-anonymization
attacks [T4U35I5] have linked blockchain transactions to real-world identifiers,
such as IP addresses. Additionally, user interactions with the blockchain such
as querying transactions, checking account balances, or requesting information
about specific blocks can inadvertently reveal their areas of interest. For instance,
repeatedly checking the balance of a particular wallet may suggest ownership or
a financial association with that wallet [3].

Researchers have developed several cryptographic techniques to address pri-
vacy challenges on the blockchain. Among these, Zero-Knowledge Proofs (ZKPs)
[27], introduced to prove possession of information without revealing it, play a
pivotal role. While initially interactive [4I25], non-interactive proofs were later
proposed [I7U6], enabling their integration into modern cryptographic systems.
Notably, ZCash [32] (based on ZeroCash [I0]) was among the first blockchain
frameworks to employ ZKPs for user anonymity. Zero-Knowledge Succinct Non-
Interactive Arguments of Knowledge (zkSNARKSs) [30/31] extend ZKPs, offering
short, efficient proofs that verify knowledge of computations while preserving
privacy. Such systems also find utility in zk-oriented digital signature schemes
[24].

The challenge is that such systems involve handling extensive computations
which must be efficiently verified. To address scalability, Ben-Sasson et al. intro-
duced the Fast Reed-Solomon Interactive Oracle Proofs of Proximity
(FRI) protocol [7], which leverages algebraic structures for verifying mathemat-
ical computations, particularly in polynomial commitment schemes [I8], where
large polynomials are checked for their degree efficiently. FRI employs a transpar-
ent setup, meeting the requirements of blockchain infrastructures, and operates
as an Interactive Oracle Proof [12] to verify the low-degree property of functions
over finite fields with minimal communication complexity and verification costs.
The protocol has been adopted in notable works such as Polaris [24], Aurora
[11], STARK [9], Fractal [2I], Spartan [46], and PREON [20] which builds on
Aurora’s FRI.

This paper presents a GPU-based implementation of the FRI protocol which
employs Reed-Solomon (RS) codewords, as demonstrated in prior works [7120].
RS codewords encode messages as polynomials over finite fields, evaluated at dis-

tinct field points to form codewords. Our implementation, initially programmed
in C, incorporates optimizations identified within the protocol and further par-
allelizes computationally intensive parts on the GPU. Our optimized GPU im-
plementation achieves a remarkable 93% performance improvement compared
to its unoptimized, CPU-only counterpart. Additionally, this work introduces a
specialized Merkle Tree, designed to accelerate verification while ensuring the
protocol’s authenticity and integrity.

Our Contributions

The contributions in this paper are fourfold, focusing on the optimizing the per-
formance of the FRI protocol in implementation for effective low-degree testing
of polynomials for zkSNARK schemes.

1. Precomputation of inverse elements and implementing repeated hashing of a
random element by the prover for every round.
The FRI protocol operates through multiple rounds, performing low-degree
testing of polynomials represented as Reed-Solomon codewords. At each
round, it needs to compute a finite field inverse element. Our first optimiza-
tion method is to move this computation to a pre-computation done prior
to the start of the protocol and the data is stored to be retrieved during
the execution of the protocol versus on-the-fly. Secondly, we adopt a method
implemented in Factal’s [2I] FRI and we realize this in our standalone imple-
mentation to make the protocol non-interactive by having the prover sample
the random element only once before the FRI protocol begins. This also re-
duces the communication cost, since the prover is given this random element
only once at the beginning, facilitating non-interativeness of the protocol in
practice.

2. Implementation and parallelization of a specialized Merkle tree for efficient
commitment and verification in the FRI Protocol.
We implement an integrated, verifiable Merkle tree, designed to efficiently
commit all codewords in one go. Specifically, the prover commits to its code-
words using a single, specially-constructed Merkle tree, enabling the verifier
to verify the authenticity of all committed codewords without requiring the
prover to construct an independent Merkle tree for the commitment of each
codeword. This implementation not only substantially reduced the proof size
but also enhanced the overall performance of the algorithm.

3. Parallelization of FRI’s Commit Phase.
As a key contribution, this work presents for the first time to the best of
our knowledge, an implementation of the commit phase of the FRI protocol
(that follows an additive-FFT for polynomial evaluation) on a GPU, lever-
aging the parallel computability of all elements in a codeword round. In this
approach, each thread is assigned to compute the next codeword element
for a specific index during each round, with thread synchronization ensuring
that the hierarchical structure of all indices is preserved across all rounds of
the protocol.

4. Implementation and Performance Report

As a final contribution, we provide a detailed performance evaluation of
our optimized FRI implementation. Our benchmarks measure prover and
verifier runtimes across different field sizes and optimization levels, illus-
trating the tangible performance gains from GPU acceleration and from
the integrated Merkle tree. These results demonstrate the practical viabil-
ity of our approach, offering a pathway for deploying FRI-based zkSNARKSs
in computation-intensive settings. Table [I] introduces performance compar-
isons between having no optimizations (CPU-only implementation) versus
Air-FRI. The L3 and L5 parameter sets defined in Preon [20] correspond to
security levels based on the size of the finite field and degree of the tested
polynomial. Specifically, L3 uses a 256-bit field Fy2s6, while L5 operates over a
larger 320-bit field Fgs20, with correspondingly larger codewords and deeper
recursive rounds. These configurations represent realistic zkSNARK secu-
rity levels, allowing us to evaluate our optimizations under practical, high-
assurance cryptographic workloads.

Security Parameters| CPU Time|GPU Time (Air-FRI)|Speedup (%)
L3 22.00s 1.49s 93.3%

L5 400.00s 13.89s 96.5%
Table 1. Prover time comparison between CPU and GPU implementations of FRI
protocol

This work together is termed Air-FRI, where ‘Air’ indicates the fast perfor-
mance factor of the FRI Protocol, and doubles to mean ‘Acceleration’.

Outline. The rest of the paper has the following structure. Section [2] pro-
vides background on how the FRI Protocol came to be introduced in zkSNARK
schemes. Section [3] mathematically describes the FRI Protocol and its phases.
Section [4] discusses our optimizations in depth. Section [5] and Section [6] detail
our implementation and its results. While Section [7] presents limitations of our
work, Section |8] provides concluding remarks and future work.

2 Background and Related Work

Zero-Knowledge Proofs are a cryptographic tool that allow two parties, a prover
P and a verifier V' to engage in a ‘proof’ that attests to the validity of a statement
without revealing any information beyond the truth of the statement itself. First
introduced [27] in 1985, ZKP systems must satisfy three essential properties, as
interpreted from the definitions in the article by [26]: completeness, soundness,
and zero-knowledge.

The evolution of zero-knowledge proofs (ZKPs) introduced non-interactive
variants, with Goldwasser and Bellare [6] presenting NIZK, enabling generic
theorem validity to be proven without repeated interactions. A NIZK proof

system involves a setup phase to establish shared information, followed by a
non-interactive phase for proof generation. Building on Blum et al.’s work [17],
Rackoff and Simon [44] developed non-interactive proofs of knowledge, securing
public-key cryptosystems against chosen ciphertext attacks and demonstrating
proofs for NP using trapdoor functions. Micali [38] introduced Succinct Non-
Interactive Arguments (SNARGS) to enhance efficiency by reducing proof sizes
and verification times, which paved way for Bitansky et al. [16] to formalize
SNARKSs using assumptions like extractable collision-resistant hash functions.
zkSNARKS, an advanced class of non-interactive proofs, offer succinct, compu-
tationally secure verification and have become pivotal for blockchain privacy by
enabling efficient, verifiable transaction ownership without revealing sensitive
data. Zero-knowledge digital signatures play a critical role in blockchain by en-
suring integrity, authentication, and non-repudiation of transactions. While tra-
ditional digital signatures possess zero-knowledge-like properties, non-interactive
zero-knowledge proofs offer additional benefits, including public verifiability, as
highlighted by [6]. This enables proofs to be validated by any party in the setup,
whether trusted or transparent.

Practical zkSNARKs rely on Arithmetic Circuits (ACs) and Quadratic Arith-
metic Programs (QAPs) [12] to transform computational problems into succinct
proofs. QAPs represent circuits as polynomial equations, allowing zkSNARKSs to
prove correctness without revealing inputs, while maintaining small proof sizes
and efficient verification [I3]. These characteristics make zkSNARKSs highly scal-
able for blockchain applications. Ben-Sasson [8] introduced zkSTARKs, which en-
sure transparency and post-quantum resilience without requiring a trusted setup.
However, zkSTARKS produce proofs roughly 1000 times larger than zkSNARKSs
[8/42], and zkSNARKS generally exhibit better performance for smaller proof
sizes and verification times. The primary advantage of zkSTARKSs lies in their
transparent setup and quantum-resistant primitives, such as collision-resistant
hash functions.

Efficient zkSNARK systems often rely on the FRI-IOP protocol to han-
dle large polynomials without revealing them, employing Reed-Solomon codes
to encode these polynomials into finite field elements [7]. This approach sup-
ports transparent polynomial commitment schemes (PCS) for constructing short
proofs and ensuring efficient verification with minimal or no interaction. The
FRI protocol, utilized in systems like Polaris [24], Aurora [I1], and STARK [§],
enables zkSNARK scalability by producing logarithmically growing proof sizes
while maintaining transparency.

3 The FRI Protocol

In our work, we were able to translate the following information-theoretic math
into code that can efficiently run on the GPU. The mathematical workings of
the protocol and the notations used in this paper is referenced from the authors
of [24] and [5].

3.1 Notations

Let F = Fy~v be a finite field of characteristic 2, and let L C F be a linear
subspace of dimension n, spanned by the basis {8, 81, - , Bn—1}. Each element
«a; € L is formed via binary linear combinations of these basis vectors using
coeflicients ¢; € Fo, such that ¢ = i + 2t + -+ ip_12" 1 and o = 0B +
1181+ -+ in_1Pn_1. The space L thus contains 2" elements indexed as L =
{ag,a1,...,a9n_1}. A Reed-Solomon code of rate o € (0,1) over L is denoted
RS[L, o] and defined as the set RS[L,0] = {fr | f € F[z],deg(f) < k¥’ = 2"c},
where fr, = (f(ao), f(a1),..., f(aan—_1)). This code is linear with (the Hamming
distance of) at least 2™ — K/, since any polynomial f of degree less than &’ has at
most k&’ roots, and hence at most &’ zero entries in the codeword. This follows
from the classical Reed-Solomon distance bound [37].

3.2 Phases of the FRI protocol [5/29]

The FRI Protocol is designed to have three functions/phases: (i) the commit
phase, (ii) the query phase, (iii) the round-consistency check. We denote this as
FRI(com, query, RC'—test). Our optimizations in the protocol are not presented
here yet.

Let Lo = L and RS[L, o). Let f(z) € Flx] with degree < 02" = 2* (o = 2"7F),
so fr € RS[Lg, o]. Given f(z) and f1, € RS[Ly, 0], the protocol intends to prove
to a verifier the following NP statement:

deg(f(x)) < 2F.

The process is to iteratively reduce the degree of f by half at each step of the
proof computation. The protocol begins with the input consisting of a polynomial
function f(z), the initial subspace Lo, o, and the RS codeword f;, € RS[Lg,o].
The output is a binary value b € {0,1}, indicating whether the verification
passed.

Commit Phase The commit phase of the FRI protocol involves both the prover
and verifier interacting to commit to codewords derived from a polynomial over
several rounds. The prover starts with the input f () : Ly — F, which represents
an initial Reed-Solomon (RS) codeword corresponding to the polynomial fo(X)
with a rate p. The commitment process is described. For each round £k =0, ..., r—
1, the following steps occur:

1. Prover Commitment:
The prover recursively defines codewords f*) : L, — F for each round.
It then computes a Merkle tree commitment for each codeword and sends
the Merkle root to the verifier.
2. Verifier Challenge:
The verifier sends a uniformly random element o(¥) € F to the prover.

3. Codeword Definition:
The prover constructs the next codeword f**1 with domain L1 such
that, for every i where 0 < i < |Lg41], the following holds:

qk(L[2i]) = qr(Lk[2i + 1]) = Li41]i].

Each element of the new codeword f**1 is derived from the previous code-
word:

Jr(Lg[24]) — fr(Lg[2i +1])

Tl Lepi @ L)+ (L) @

Fer1(Lg[i]) =

The term Ly[2i] — Lg[2i + 1] is 8" ROBE2R].
At the final round k = r, the prover constructs the codeword f(: L, — F.
This last codeword is directly sent to the verifier as the final commitment.

Query Phase In the query phase, the verifier extracts the Merkle roots, the
challenges a(®, o™ ... a1 and the final codeword f(). The verifier also
gains oracle access to all intermediate codewords (@, f1) . £=1) In symbol,
this is represented as f*) = (fre,0s Frets s FrLje—1)-

First, the verifier performs Interpolant Verification by computing the inter-
polant polynomial f,(X) using points from f(). If the degree of f,(X) exceeds
p - |Ly| — 1, the verifier rejects the proof. Second, the Round Consistency Check
ensures consistency between consecutive codewords through ¢ iterations. In each
iteration, a random index s(®) = is selected, where 0 < i < | L/, and for every
0 <k <r— 1, the index is updated as s**1) = |5 /2|. If s(") is sampled more
than once, the verifier resamples s(°). Lastly, during the Verification of Codeword
Values, the verifier queries the values fi1(Lgi1[s*11)]), fk(a:gk)), and fk(xék)),
where xgk) = Li[2s*+V)] and xék) = Li[25%*+1D) 4+ 1]. The correctness of these
queried points is ensured by verifying their Merkle paths.

Round Consistency Check The verifier checks the following equation for
every k € {0,1,...,r—1}:

Fe(@™y = fr(al k k
fra1(Liga[s®TY]) = (1(,3 (,E) :)(a(k) - xg)+ fk(zg).
L1 — Ty

If any of these checks fail, the verifier rejects the proof.
Acceptance: If all checks pass, the verifier accepts the proof, confirming that the
original polynomial fo(X) has a degree no more than p - |Lg| — 1.

4 Air-FRI

As zkSNARKSs progress to support more intricate circuits and transparent se-
tups, achieving computational and memory challenges encountered during their

deployment for large-scale cryptographic applications remains a challenge. In
traditional zkSNARK implementations, the prover faces substantial overhead
when managing large arithmetic circuits or evaluating polynomials, especially
when encoding computations into Rank-1 Constraint Satisfiable (R1CS) sys-
tems. This bottleneck becomes even more pronounced in protocols like Aurora
[11] and Fractal [21I], where polynomial commitments using FRI demand signif-
icant memory management and intensive field operations [45] [36].

A key challenge addressed in this work is the prover’s time complexity. Exist-
ing FRI-based zkSNARK systems, while providing post-quantum security and
transparent setups, often present a trade-off between proof size and prover ef-
ficiency. For instance, Aurora achieves proof sizes in the range of 100-150 KB
with logarithmic verification times but incurs increased prover workload scal-
ing with O(nlogn) for large circuits. Similarly, Fractal reduces verification time
but imposes considerable computational demands on the prover due to multi-
round polynomial evaluations. These limitations underscore the need for novel
optimizations to reduce the prover’s computational burden while preserving the
succinctness and transparency of FRI-based proofs.

This paper introduces optimizations aimed at parallelizing polynomial com-
putations and integrating Merkle tree commitments into GPU-accelerated work-
flows. By utilizing CUDA-enabled GPU kernels to offload polynomial evaluations
and streamline Merkle commitments, our proposed solution reduces memory
overhead and prover time without compromising on the transparency and secu-
rity guarantees inherent to FRI-based systems. These enhancements are expected
to accelerate proof generation and improve the scalability of zkSNARK appli-
cations, particularly in blockchain environments, where throughput and latency
are critical for adoption.

The optimizations proposed in this paper are categorized into four main
contributions, as detailed below.

4.1 Precomputation of Inverse Elements and Repeated Hashing of
a Random Element

The line computation in the FRI protocol plays a critical role in recursively
transforming polynomial evaluations across rounds to ensure proximity to low-
degree polynomials. This transformation is mathematically expressed by Equa-
tion , where the verifier provides a uniformly random challenge a*), and the
transformation depends on the denominator term

B = Ly[2i] — Ly[2i + 1].

Computing the inverse of ﬁ(()k) in each round introduces considerable overhead
due to the cost of division operations in finite fields F,. To mitigate this bot-
tleneck, we precompute these inverses before the recursion begins. The stored
values are then retrieved during protocol execution, replacing expensive on-the-
fly inverse computations with efficient multiplications, which are more favorable

in field arithmetic [ITJ21]. This optimization substantially reduces the prover’s
computational load, especially for large circuits with many recursive steps.

Additionally, rather than following an interactive protocol, we implement
a non-interactive variant by having the prover sample a random element «g
once from the extension field at the start of the protocol. This element is reused
across all rounds by computing the challenges deterministically through repeated
hashing. Specifically, the next round’s challenge is computed as

a1 = Hash(ayg || root),
and for all subsequent rounds,
ap+1 = Hash(ag), 1<k<r,

where r denotes the total number of FRI rounds. The verifier reconstructs the
challenges using the initial oy and the hash function, eliminating the need for
back-and-forth communication. This non-interactive design adheres to the Fiat-
Shamir heuristic [23] and aligns with techniques used in prior work such as
Fractal [2I] and the framework of Interactive Oracle Proofs [12]. By minimizing
interaction, this strategy improves scalability and seamlessly supports GPU-
based acceleration for both hashing and proof generation [TTJ21].

4.2 Integrated FRI Merkle Tree Construction

The primary motivation to the following contribution of our work is to reduce the
prover’s computational overhead while ensuring the verifier’s ability to validate
the integrity of the proof through a recursive structure of polynomial evaluations.
This construction, as described in the previous section, is based on Reed-Solomon
(RS) codewords evaluated over a sequence of domains and committed using a
single Merkle tree, ensuring both scalability and security in the zkSNARK setting
[LT21].

As our second essential contribution, we construct and employ a verifiable and
integrated Merkle tree for simultaneous commitment of all codewords. Specifi-
cally, the construction combines codewords and Merkle hash computations into
one tree structure. The details are as described below.

RS Tree Structure The recursive nature of the FRI protocol can be repre-
sented as a binary tree. The elements of the initial codeword fy are placed as
the leaf nodes at layer 0. Each subsequent layer k + 1 is constructed from the
elements of layer k using the linear combination described earlier in . At the
final layer r, there are |L,.| nodes. This recursive binary structure is referred to
as the RS tree with height r and initial codeword fy. The tree is denoted by
RST(fo,r), where fy(x) is the original polynomial evaluated over Ly.

Merkle Tree Commitment of RS Codewords To guarantee the integrity
of Reed-Solomon (RS) codewords, we construct a Merkle tree that integrates
seamlessly with the RS tree structure. This Merkle tree provides an efficient
commitment scheme by hashing pairs of codeword elements along with their

corresponding RS codeword values at each index at each layer. The construction
proceeds as follows.

For layers 0 < k < r, we compute hash values iteratively:

hi,; = h(fo,2i, fo,2i+1)s 0 <i<|Ly,
hai = h(h12i || f1,2i, h12ie1 || f1,2i41), 0 <i<|Lgl,

hit1, = h(hi,2i || fr,2i, Pe2itr || fr2it1), 0<% < |Lgya|
For subsequent layers, where » < k < n, we compute hashes without append-
ing RS values:
Pt = h(hy2i, b 2iv1), 0<i<2"7F

The final hash at the top layer provides the Merkle root:

B0 = h(hp—1,0,hn-11)-

This root serves as the commitment for the FRI protocol’s Merkle tree,
thereby ensuring that all RS codewords are securely and efficiently commit-
ted. We use SHA3-256, which outputs 256-bit hashes, and allows an input size
of up to 1320 bits, enabling efficient processing of codeword elements: 1024-bit
inputs are used for layers 0 < k < r, while 512-bit inputs are employed for layers
beyond r.

Figure [1f shows the structure of our specialized Merkle tree constructed for
the purpose of efficiently parallelizing the FRI protocol.

fng root

[1 ‘

last codeword

initial codeword

Fig. 1. Integrated FRI Merkle Tree

10

Time efficiency of this optimization. As compared to that of the CPU
implementation (sequentially committing the codeword elements), the number
of computations that are reduced is highlighted here. For simplicity, we denote
N = 2", where n is the dimension of the first codeword fy. The number of
computations for codewords looks like fy = 27, fi = 2!, and so on. So, for the
entire Integrated FRI Merkle Tree leading up to the root, the total number of
sequential computations (including computing all codewords and Merkle hashes)
is:
2"t —1—n

where the final subtraction accounts for structural hash reuse across FRI rounds.
If a separate Merkle tree is constructed for each codeword fi, then each such
tree would require:

2"~k codeword elements+ (2" *~1 ... +1) hashes = 2" %! _1 computations.

Summing this across all n layers, the total number of sequential computations
for the Merkle commitment model yields:

n—1
Z(2TL—]€+1 _ 1) — 21’L+2 _ 1 —n.
k=0

In contrast, the integrated Merkle tree design requires only 27! — 1 — n com-
putations, as it avoids redundant hashing at each round by committing to the
FRI structure in a unified tree. Thus, the total number of operations saved is:

(2"t2 —1—n) — (2" —1 —n) = 27T,

This shows that the integrated Merkle tree design improves efficiency by elimi-
nating 2”1 unnecessary operations, making it particularly well-suited for high-
performance GPU-based implementations.

Verification and Authentication Paths To verify the authenticity of two
neighboring points, starting with sg € Ly at layer 0 and extending to sx € Ly
for 0 < k < r, the verifier uses authentication paths in the Merkle tree. These
paths contain the concatenated hash values of the queried elements and their
corresponding RS codewords. Notably, while the leaf layer hashes fy separately,
the intermediate layers fi (for 1 < k < r) do not require separate hashing, as
their values are integrated into the hash tree structure.

The integration of RS codewords with Merkle tree commitments within the
FRI protocol ensures both scalability and security. The recursive construction of
the RS tree enables efficient polynomial evaluations, while the Merkle tree offers
a compact and secure method for committing to the underlying codewords. We
believe that these combined structures could be crucial for deploying zkSNARKSs
in practical applications, such as blockchain networks, where performance and
security are of utmost importance.

11

4.3 Parallel Computation of Codeword Elements on the GPU

zkSNARK systems that have the FRI protocol as one of their core components
have large parameter sets to conduct proofs, despite ironically being termed
‘succinct’. Depending on the security requirement of the system, arithmetic is
performed over finite fields of varying bit-widths. For instance, elements from
different domains are represented as 192-bit, 256-bit, or 320-bit field elements,
as noted in Preon’s documentation [20]. Direct computation of these elements in
a sequential fashion is both time- and memory-intensive. To address this, GPU
parallelization is employed to distribute the computation of codeword elements
across multiple threads, substantially accelerating proof generation.

A novel contribution of this paper is elucidated below. The FRI protocol
reduces the codeword size recursively at each round. For a given round k, the
next codeword element fyi1(Lgy+1[i]) is computed from two elements of the
previous codeword, as described in . Each GPU thread computes one element
of the next codeword in parallel, avoiding sequential bottlenecks. CUDA kernels
assign threads to independently compute each codeword element.

4.4 Implementation and Performance Report

To support our proposed optimizations, we developed a modular and exten-
sible implementation of the FRI protocol tailored for GPU acceleration. The
codebase is designed to run both serially on the CPU and in parallel on the
GPU, enabling comparative analysis and performance benchmarking. Key com-
putational subroutines including codeword generation, line computations, and
Merkle tree hashing are implemented in CUDA-C, while orchestration and mem-
ory management are handled in C.

The implementation carefully manages data transfer between host and de-
vice memory, pre-allocating buffers for each FRI round to ensure scalability
across increasing security parameters. GPU kernels were written with thread-
block synchronization to preserve the hierarchical structure of codeword indices
across rounds. Where necessary, bit-width precision was customized to handle
256-bit and 320-bit field elements as required by zkSNARK parameter sets.

The modularity of the implementation allows seamless integration into zk-
SNARK frameworks such as Polaris [24] or Aurora [11]. In the following section,
we outline the software components, toolchains, and dependencies involved in
building the system, while Section [6] evaluates the empirical performance under
various cryptographic parameter settings.

5 Implementation

The architectural details of the protocol, on a system level, can be broken down
into several key modules, each handling different aspects of the protocol.

12

5.1 Components

Figure [2] shows the overview of the software components that make the im-
plementation. The tiles in green represent code that is borrowed from Preon’s
[20] implementation. The purple tiles show our code. The blue tile represents
open-source library functions.

- . e D
“/Fiat-shamir\‘ (SHA3 ‘
_Serialization | N Functions J
\ Y - _
s T
= a
ye N S R
Ve [W S — eemelcodaly N (" Merkle Tree ‘
[commit | N4 | Functions
AN J R A e
- ~ 1
(@ B H
[Prover | e p —
\ J Field [Polynomial)
L D S Eed N n
~ - \ rations | _ Operations |
P N \l?pe atiol s \ ¢ P)
(\ »
)] / Merktepath
— _ < > _ Verification |
ya \ [Colinearity A 4
[Verifier | » Test | *
{ J) !
NS 4 AN , :
;]
H
-
Ve N\
| Domain Bases |
L 7

Fig. 2. Software Components of Our Implementation

Implementation Assumptions. The implementation of this FRI protocol is
based on several key assumptions that ensure both functionality and performance
in cryptographic settings. First and foremost, it is assumed that any entities or
participants involved in using this protocol have access to GPU systems capable
of executing CUDA-based applications. The use of CUDA-C allows the proto-
col to take full advantage of modern GPU architectures, enabling the parallel
execution of tasks like polynomial evaluation, hashing, and consistency checks
in the commit and verify phases. The CUDA toolkit and NVCC compiler are
dependencies to compile and execute the code.

We use Keccak [33] (or more specifically, the SHA3-256 variant) to com-
pute cryptographic commitments such as Merkle tree roots and authentication
paths. The open-source implementation of Keccack’s SHA3-256 is made GPU-
compatible for use in our implementation. On the performance side, libcud-
art facilitates interaction between the code and the GPU, managing tasks such
as memory allocation, kernel execution, and synchronization of GPU threads.
In particular, it is responsible for handling CUDA-specific operations such as
transferring data between the host (CPU) and device (GPU) and launching the
parallel kernels that compute the polynomial evaluations and Merkle tree com-
mitments.

Borrowing Preon’s |20] Parameters. To make the protocol work, our code
uses the FRI Domain parameters, finite field functions, and Polynomial evalua-
tion functions as used in Preon’s Optimised Implementation, which is available

13

in the public domain. These functions were made compatible with the GPU
nodes using CUDA-related function qualifiers.

5.2 Proof Stream and Verification

The proof stream serves as the main interaction channel between the prover and
verifier in the protocol. The prover adds commitments, authentication paths,
and related data into the stream, while the verifier retrieves this data during
verification. Proper memory management is noted to be essential to ensure that
all proof elements remain accessible and valid, particularly when dealing with
dynamically generated proof paths. This guarantees that the verifier has all the
information needed to validate the proof.

For non-interactiveness of the protocol, a custom serialization method in-
spired by the Fiat-Shamir heuristic is employed, enabling the prover to sequen-
tially add objects such as codewords, Merkle roots, and sampled values to a
global proof stream. The verifier processes these objects in the same order to
verify correctness. However, since the serializer used in C does not track data
types, the sequence of adding and retrieving objects must be precisely aligned.

5.3 Testing

We highlight and discuss the performance of our implementation. Mainly, the
section aims to bring to light the various metrics for our performance testing,
how much time the prover and verifier take for their respective execution, and a
bit about the memory management that went into the code. We outline the test
plan employed for evaluating the performance and correctness of the Fast Reed-
Solomon Interactive Oracle Proof of Proximity (FRI) protocol here. The tests are
divided into two main categories: unit tests to verify functional correctness and
performance tests to assess execution times under various optimization levels.
Description of unit tests are assumed to be self-evident and are omitted from
this paper.

Performance Test Design The performance tests are divided into two cat-
egories: CPU-based tests and GPU-accelerated tests. Each test is run multiple
times (up to 100 iterations) to ensure the consistency and reliability of the timing
results.

1. CPU-based tests: The performance of the C-based FRI protocol is mea-
sured for baseline comparison. Initial tests use no optimizations, followed by
tests with precomputed inverses, repeated hashes (Fiat-Shamir), and FRI
Merkle tree implementation.

2. GPU-accelerated tests: Performance is evaluated on the GPU version of
the code. The tests include precomputed inverses and parallel line computa-
tion, with the final implementation featuring FRI Merkle tree optimizations.
These tests assess how GPU parallelism improves the runtime of each phase
of the protocol.

14

Test Environment & Test Metrics.

The tests were conducted on a system with the following configuration. The sys-
tem’s CPU was a standard ARM processor with 8 CPU cores and 8GB of unified
memory. For GPU acceleration, an NVIDIA A40 GPU was used, equipped with
10, 752 CUDA cores and 48GB of VRAM [40)]. The time was measured in seconds,
and the system clock was used for recording execution times. The performance
evaluation of the FRI protocol focuses on execution times across different im-
plementations. Key metrics include prover time, measuring the time taken for
proof commitment, and verifier time, capturing proof validation tasks. To en-
sure reliability, the average time is calculated over multiple iterations, while the
minimum and mazimum times represent the best- and worst-case scenarios. Ad-
ditionally, the speedup factor quantifies performance gains from GPU accelera-
tion compared to CPU implementations. These metrics provide a comprehensive
assessment of the protocol’s performance.

6 Results

This section presents the results for various parameters and briefly compares
them with existing implementations.

6.1 Performance of the Code Run with L3 Parameters

The code for our implementation is majorly written for Preon’s [20] L3 param-
eters.

Parameter Mapping. Throughout this section, we instantiate the symbolic
parameters used in earlier sections as follows: (1) N = 2!7 is the length of
the initial codeword, corresponding to the size of the evaluation domain L C
Fo2s6. (2) n = logy N = 17 is the height of the Merkle tree used to commit
to the initial codeword. (3) k = 22 is the degree bound of the polynomial
being tested in the FRI protocol. (4) The field F = Fy2s6 is used throughout
the protocol’s L3 security implementation to represent codeword elements and
evaluate polynomial values. (5) The codeword is reduced over r = 12 rounds of
FRI folding, from size N = 27 down to 2°, with each round halving the domain
size. (6) An expansion factor of 32 is used, implying a rate p = % = 3; = %

To verify the correctness of the protocol, 14 co-linearity tests are conducted
during the process. The hash function used in the Merkle tree commitment
processes inputs of 1024 bits and generates outputs of 256 bits.

Table 2| shows the progressive decrease in Average Time taken to run the pro-
tocol for the same parameters with each optimization implementation. Rows 1,
2, 3 show the times taken by the implementation in C, while 4 and 5 clearly show
the advantages of our major and novel optimizations using the GPU. For the
implementation of the protocol for the low-degree test of 4096, we measure the
individual prover and verifier times over 10 iterations to account for additional
overhead incurred outside the isolated prover and verifier functions, including
memory transfers and proof stream serialization costs, the results of which are

15

Table 2. Performance Comparison of the FRI protocol on CPU vs GPU for L3 Pa-
rameters

S.No.|Category Iterations|Average (s)| Max (s) | Min (s)
1 |C Code - No Optimizations 100 22.516272 |24.487644|21.283454
2 |C Code - Precomputed Inverses & Fiat-Shamir 100 17.949764 |18.285129|17.674678
3 |C Code - Precomputed Inverses, Non-interactiveness, & Verifiable FRI Merkle Tree 100 13.466491 |14.387460(12.974454
4 |GPU Code - Precomputed Inverses, Non-interactiveness, Parallel Line Computation 100 9.355615 [10.225553 | 9.138932
5 |GPU Code - Parallel Line Computation & Verifiable FRI Merkle Tree 100 1.490716 |1.626001|1.459887

shown in Table [3] As such, the timings in Table [3] represent a lower bound on
computational performance, whereas Table [2| captures end-to-end system-level
costs.

Metric |Prover Time (s)|Verifier Time (s)
Minimum 0.66909 0.16506
Maximum 0.67360 0.16651

Average 0.67026 0.16586

Table 3. Minimum, Maximum, and Average Times for Prover and Verifier for degree
2'2 gver 10 iterations

The Figure [below shows the times for various degrees as tested on the
GPU. One of the implications of an uneven curve could be the fact that time
efficiency is also dependent on the number of threads and blocks that a GPU
kernel is allocated before invocation. This is in-turn dependent on the length
of the input. Effective scheduling and memory coalescing techniques can reduce
bottlenecks in such GPU workloads by ensuring that memory access is stream-
lined across multiple threads, thus improving throughput for numerically-driven
computations.

Fig. 3. FRI Degree Testing Time on the GPU with L3 Parameters
T T T T

I
8 N
=)
=l
§ 6f]
O
%)
2
) 4+ -
£
=
2 N
| | |

| |
512 4,096 8,192 16,384 32,768
Degree Tested

16

200

100

Time (Seconds)

o]

16,384

o

512 4,096 8,192 32,768

Degree Tested
—&— GPU Time —— CPU Time

Fig. 4. CPU vs GPU Execution Times for FRI Degree Testing for L3 Parameters

Based on the CPU and GPU times for the same degrees, we measure the
percentage in performance efficiency termed as the ‘Speedup Factor’ (Table .
Since the degree test for 2'2 is the main focus of our implementation, we consider
the speedup factor of this degree as the benchmark for our work.

DegreeCPU Time (s)|{GPU Time (s)|Speedup Factor (%)
512 2.798574 0.543291 80.59%
1024 5.476513 0.881827 83.90%
2048 10.856021 1.043323 90.39%
4096 22.425451 1.490716 93.35%
8192 45.155425 3.776132 91.64%
16384 104.365670 3.696402 96.46%
32768 205.366330 8.953130 95.64%

Table 4. Speedup Factor (%) of GPU over CPU for Various Degrees for L3 Parameters

6.2 Performance on L5 Parameters

For L5 security, Air-FRI’s results show notably seminal performance despite large
codeword lengths to begin the protocol with.

The parameters for the L5 implementation of the FRI protocol are carefully
chosen to ensure robust performance and security. The finite field used is Foazo,
and the protocol tests polynomials with a degree of 216, An expansion factor of
32 is applied, with the initial codeword length set to 22! (2,097,152) and the
least codeword length reduced to 25 (32) after successive rounds. The protocol
undergoes 16 rounds of codeword reductions, with 10 co-linearity tests conducted
to verify correctness. To secure commitments, a Merkle tree with a height of 21

17

is constructed, where each node involves a hash computation that takes 1152
bits as input and produces a 256-bit output.

Tested on the metrics mentioned above, Table [f|shows the prover and verifier
times measured over 10 iterations on the GPU. As compared to L3’s results, it
is shown that the proof generation takes only a few seconds more even when
the codeword constraints are large. This shows significant promise in realizing
our implementation in post-quantum secure algorithms which require such large
constraints and strong security levels.

Metric |GPU Prov. (s)|GPU Verif. (s)|CPU Prov. (s)|CPU Verif. (s)
Minimum 13.85859 1.12372
Maximum 13.88316 1.12699 400 ~1.9
Average 13.87129 1.12488

Table 5. Minimum, Maximum, and Average Times for Prover and Verifier over 10 it-
erations using L5 parameters (Fys20, degree 216). The estimated sequential CPU prover
time was approximately 400 seconds, which is not practical at all.

6.3 Performance of Current FRI Implementations

To compare our test results with the existing FRI implementations, which are
currently compatible to be run only on the CPU, we ran the pre-written tests
of the libiop library [45], which Aurora [IT], Ligero [2], and Fractal [21] use to
run their entire protocol. The tests are generated with the library’s build and
metrics like the vector size and subgroup size are much lesser as compared to
those tested for in our implementation. Table [6] shows the times for the three
algorithms that use the libiop library for their low-degree test implementation.
Further, to compare the entire performance, we also consider the Merkle tree
test times for these algorithms.

Table 6. Performance Comparison of Existing FRI Implementations on the CPU

Implementation|Prover Time (s)|Verifier Time (s) Vef:tor Subgroup
Size Size
Aurora (libiop) 0.077 0.006 27 212
Fractal (libiop) 0.071 0.009 29 212
Ligero (libiop) 0.049 0.022 2° 212

The Merkle tree test for libiop implementations recorded an execution time
of 1.008 seconds, with verification requiring approximately 1 second per index
in a single tree.

Note: Preon’s [20] FRI implementation is tested for a large polynomial of degree
2'2 with a subgroup size of 2!7, while the Aurora, Fractal, and Ligero implemen-
tations from the libiop library are tested for a smaller polynomial degree of 2°

18

within a subgroup of 2'2. In scale, when the size of the extension field expo-
nentially increases, the prover time approximately doubles (see|3). This is why,
although Preon calls Aurora for its inner working, including for running the FRI
Low-Degree Test, the time taken by Preon’s code is much greater to account to
the exponential growth in codeword sizes and to cater to parameters of larger
extension basis. This is shown in Table [7] below.

These timings on the CPU shown in Table [/} when compared with our im-
plementation the GPU, has significant performance improvements through our
optimizations. This shows promise that our software-oriented solution for accel-
erating the FRI protocol can serve algorithmic efficiency when carefully deployed
in those zkSNARK schemes which contain the FRI as one of their core compo-
nents.

Metric |Prover Time (seconds)|Verifier Time (seconds)
Minimum 126.926 0.803
Maximum 139.683 1.167

Average 129.248 0.875

Table 7. Preon’s Prover and Verifier Times for Testing of Degree 2'2 over 50 Iterations
on the CPU

7 Limitations

Our implementation does not account for software-induced vulnerabilities, such
as susceptibility to side-channel attacks, which remains a limitation. Further, the
proof system dynamically allocates memory in C to manage objects of varying
sizes, but there is a risk of memory mismanagement if more memory is allocated
than utilized. To enhance memory safety while leveraging GPU performance,
Rust and Rustacuda [47] could be explored as alternatives. Additionally, the
integrated Merkle tree implementation does not facilitate on-the-fly computation
of authentication paths, requiring the prover to either store the Merkle tree data
or access all codewords across FRI rounds during the query phase, increasing
memory management complexity and security vulnerabilities.

8 Conclusions and Future Work

This paper presents novel and efficient optimizations of the FRI protocol for
low-degree polynomial testing, implemented on the GPU. Implementation pa-
rameters, particularly the domain elements, are adapted from Preon’s values
[20]. Key optimizations include the pre-computation of domain base inverses to
accelerate codeword generation and the sampling of a random element by the
prover, which is repeatedly hashed by the verifier during co-linearity checks,
enabling a non-interactive protocol. Further performance gains are achieved by
parallelizing codeword computations and constructing a verifiable Merkle tree on
GPU kernels using NVIDIA’s CUDA-C, significantly reducing proof size and im-
proving scalability. Compared to a CPU-based implementation, our GPU-based
approach achieves a 93.3% efficiency gain for codeword computations in Fazss,
reducing prover time from an average of 22 seconds to 1.49 seconds. For Faazo,

19

corresponding to L5 security parameters, the prover time is 13.89 seconds, only
11 seconds higher than for L3 parameters, despite larger codewords and more
reduction rounds. As expected, verifier times remain significantly lower than
prover times, reflecting the protocol’s efficiency-focused design. These results
underscore the importance of optimization in cryptographic implementations,
particularly for scalable systems. While this implementation was developed for
integration with Polaris [24], it remains broadly applicable to any system utiliz-
ing the FRI protocol as a core component. Future work may explore additional
performance refinements and broader deployment contexts.

Further Reduction of the Proof Size. For a finite field byte size of 256,
the current implementation shares approximately 9,000 objects with the verifier
via the proof stream, primarily for co-linearity tests across all rounds. Reducing
this number could involve adjusting localization parameters and decreasing the
number of co-linearity tests while maintaining protocol correctness.

Implementing Zero-Knowledge with this FRI Protocol. To integrate
this code with any zkSNARK-based system, the zero-knowledge property can
be achieved by masking the polynomial whose degree is being tested. At each
reduction step of the FRI protocol, an additive masking polynomial can be ap-
plied to conceal the original polynomial. This ensures that the verifier learns
nothing beyond the degree bound. The masking terms are designed to cancel
during verification, maintaining proof integrity while preserving privacy.
Comparison of Energy Consumption between CPU and GPU Imple-
mentations of the Protocol. While GPUs improve protocol performance,
it is important to assess their energy consumption to understand the ecologi-
cal trade-offs. Uncoalesced global memory accesses are known to significantly
impact energy use in NVIDIA GPUs [I9], and nearly half of a 100A GPU’s
energy is consumed by a static kernel [22]. Future work should aim to quan-
tify the energy differences between CPU and GPU implementations, balancing
performance with sustainability.

Memory Profiling of the GPU Code. Since the protocol’s performance relies
heavily on shared memory between the host (CPU) and device (GPU kernel),
a robust implementation should incorporate memory profiling results to make
optimization decisions about thread and block usage, ensuring efficient GPU
kernel launches across varying codeword lengths and Merkle tree computations.
Specifically, a GPU-oriented memory profiling using nvprof or nsys profile [41]
tools provided within the cuda-toolkit can be employed.

Integrating Air-FRI with Full-Fledged zkSNARKs and Blockchain
Applications. An important direction for future work is the integration of
Air-FRI into complete zkSNARK systems, particularly for scalable blockchain
applications. This requires extending Air-FRI’'s GPU-accelerated commitment
and verification phases to support the various models in zkSNARKSs. Addition-
ally, replacing the current FFT implementation (borrowed from Preon [20]) with
a more efficient FFT algorithm such as one using specialized bases and subfield
structures [29] could further accelerate polynomial evaluation and improve over-
all system performance.

20

Acknowledgement

This work is supported by MITACS-BTQ research grant.

References

1.

10.

11.

12.

13.

Akins, B., Ng, J., Verdi, R.S.: The use of blockchain for public services. Journal of
Public Economics (2013)

Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Proceedings of the 2017 acm sigsac
conference on computer and communications security. pp. 2087-2104 (2017)
Aslam, S., Tosié¢, A., Mrissa, M.: Secure and privacy-aware blockchain design: Re-
quirements, challenges and solutions. Journal of Cybersecurity and Privacy 1(1),
164-194 (2021). https://doi.org/10.3390/jcp1010009

Babai, L.: Trading group theory for randomness. In: Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing (STOC). pp. 421-429 (1985)
Badakhshan, M., Luo, G., Jandhyala, T., Gong, G.: Ursa minor: The implementa-
tion framework for polaris. In: International Workshop on the Arithmetic of Finite
Fields (WAIFI). Ottawa, Canada (June 2024), accepted for publication

Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) Advances in Cryptology — CRYPTO’ 89 Proceedings. pp. 194-211. Springer
New York (1990)

Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Fast reed-solomon interac-
tive oracle proofs of proximity. In: Chatzigiannakis, 1., Kaklamanis, C., Marx,
D., Sannella, D. (eds.) 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic. LIPIcs,
vol. 107, pp. 14:1-14:17. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2018),
https://doi.org/10.4230/LIPIcs.ICALP.2018.14

Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. In: Advances in Cryptology —
CRYPTO 2018. pp. 201-234 (2018)

Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Paper
2018/046 (2018), https://eprint.iacr.org/2018/046

Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, 1., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: Proceedings of
the 2014 IEEE Symposium on Security and Privacy. pp. 459-474 (2014)
Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for rlcs. In: Advances in Cryptology—
EUROCRYPT 2019: 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part I 38. pp. 103-128. Springer (2019)

Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Theory of
Cryptography: 14th International Conference, TCC 2016-B, Beijing, China, Octo-
ber 31-November 3, 2016, Proceedings, Part II 14. pp. 31-60. Springer (2016)
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: Proceedings of the 23rd USENIX
Conference on Security Symposium. p. 781-796. SEC’14, USENIX Association
(2014)

21

https://doi.org/10.3390/jcp1010009
https://doi.org/10.3390/jcp1010009
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://eprint.iacr.org/2018/046

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in
bitcoin p2p network. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. p. 15-29. CCS ’14, Association for Com-
puting Machinery (2014). https://doi.org/10.1145/2660267.2660379, https:
//doi.org/10.1145/2660267 .2660379

Biryukov, A., Tikhomirov, S.: Deanonymization and linkability of cryptocurrency
transactions based on network analysis. In: 2019 IEEE European symposium on
security and privacy (EuroS&P). pp. 172-184. IEEE (2019)

Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision re-
sistance to succinct non-interactive arguments of knowledge, and back again. In:
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference.
p. 326-349. Association for Computing Machinery (2012). https://doi.org/10.
1145/2090236.2090263), https://doi.org/10.1145/2090236.2090263

Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its ap-
plications. In: Proceedings of the Twentieth Annual ACM Symposium on The-
ory of Computing. p. 103-112. Association for Computing Machinery, New York,
NY, USA (1988). https://doi.org/10.1145/62212.62222, https://doi.org/10.
1145/62212.62222

Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Recursive zk-snarks from
any additive polynomial commitment scheme. Cryptology ePrint Archive (2020)
Chen, J., Li, B., Zhang, Y., Peng, L., Peir, J.k.: Statistical gpu power analysis
using tree-based methods. In: 2011 International Green Computing Conference
and Workshops. pp. 1-6 (2011). https://doi.org/10.1109/IGCC.2011.6008582
Chen, M.S., Chen, Y.S., Cheng, C.M., Fu, S., Hong, W.C., Hsiang, J.H., Hu, S.T.,
Kuo, P.C., Lee, W.B., Liu, F.H., et al.: Preon: zk-snark based signature scheme
(2023)

Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive
proofs from holography. In: Advances in Cryptology-EUROCRYPT 2020: 39th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I 39. pp. 769-793.
Springer (2020)

Delestrac, P., Miquel, J., Bhattacharjee, D., Moolchandani, D., Catthoor, F., Tor-
res, L., Novo, D.: Analyzing GPU Energy Consumption in Data Movement and
Storage . In: 2024 IEEE 35th International Conference on Application-specific
Systems, Architectures and Processors (ASAP). pp. 143-151. IEEE Computer
Society (Jul 2024). https://doi.org/10.1109/ASAP61560.2024.00038, https:
//doi.ieeecomputersociety.org/10.1109/ASAP61560.2024.00038

Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO’
86. pp. 186-194. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

Fu, S., Gong, G.: Polaris: transparent succinct zero-knowledge arguments for rlcs
with efficient verifier. Proceedings on Privacy Enhancing Technologies (2022)
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their va-
lidity. Proceedings of the 27th Annual Symposium on Foundations of Computer
Science (FOCS) pp. 174-187 (1986)

Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. Journal of Cryptology 7(1), 1-32 (1994)

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186-208 (1989). https://doi.
org/10.1137/0218012, https://doi.org/10.1137/0218012

22

https://doi.org/10.1145/2660267.2660379
https://doi.org/10.1145/2660267.2660379
https://doi.org/10.1145/2660267.2660379
https://doi.org/10.1145/2660267.2660379
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/62212.62222
https://doi.org/10.1109/IGCC.2011.6008582
https://doi.org/10.1109/IGCC.2011.6008582
https://doi.org/10.1109/ASAP61560.2024.00038
https://doi.org/10.1109/ASAP61560.2024.00038
https://doi.ieeecomputersociety.org/10.1109/ASAP61560.2024.00038
https://doi.ieeecomputersociety.org/10.1109/ASAP61560.2024.00038
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Gong, G.: Fri. Unpublished note (December 2023), department of Electrical and
Computer Engineering, University of Waterloo, Waterloo, ON, Canada.

Gong, G.: Uni/multi variate polynomial embeddings for zksnarks. Cryptography
and Communications pp. 1-32 (2024)

Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Ad-
vances in Cryptology-ASTACRYPT 2010: 16th International Conference on the
Theory and Application of Cryptology and Information Security, Singapore, De-
cember 5-9, 2010. Proceedings 16. pp. 321-340. Springer (2010)

Groth, J.: On the size of pairing-based non-interactive arguments. In: Advances
in Cryptology-EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II 35. pp. 305-326. Springer (2016)

Hopwood, D., Bowe, S., Hornby, T., Wilcox, N., et al.: Zcash protocol specification.
GitHub: San Francisco, CA, USA 4(220), 32 (2016)

Keccak Team: Keccak specifications summary (2024), https://keccak.team/
keccak_specs_summary.html, accessed: November 11, 2024

Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In: Proceedings of
the IEEE Symposium on Security and Privacy. pp. 839-858 (2016)

Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in bitcoin using p2p
network traffic. In: Christin, N., Safavi-Naini, R. (eds.) Financial Cryptography
and Data Security. pp. 469—485. Springer Berlin Heidelberg, Berlin, Heidelberg
(2014)

Levinin, A.: libiop-fp2: A c++ library for iop-based zksnarks over elliptic curves.
https://github.com/levanin/libiop-£p2|(2023), accessed: October 13, 2024
MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. Elsevier
(1977)

Micali, S.: Cs proofs (extended abstract). Proceedings of the 35th Annual Sympo-
sium on Foundations of Computer Science (FOCS) pp. 436-453 (1994)
Nakamoto, S., Bitcoin, A.: A peer-to-peer electronic cash system. Bitcoin 4(2), 15
(2008), https://bitcoin.org/bitcoin.pdf

NVIDIA Corporation: NVIDIA A40 datasheet. https://images.nvidia.com/
content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf (2020), ac-
cessed: October 23, 2024

NVIDIA Corporation: Cuda profiler user’s guide. https://docs.nvidia.com/
cuda/profiler-users-guide/ (2024), accessed: November 12, 2024

Panait, A.E., Olimid, R.F.: On using zk-snarks and zk-starks in blockchain-based
identity management. In: Innovative Security Solutions for Information Technology
and Communications: 13th International Conference, SecITC 2020, Bucharest, Ro-
mania, November 19-20, 2020, Revised Selected Papers 13. pp. 130-145. Springer
(2021)

Peters, G.W., Panayi, E.. Understanding modern banking ledgers through
blockchain technologies: Future of transaction processing and smart contracts on
the internet of money. Journal of Banking Regulation 16(3-4), 217-233 (2015).
https://doi.org/10.1057/jbr.2015.19

Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Annual international cryptology conference. pp. 433—
444. Springer (1991)

SCIPR Lab, contributors: libiop: A c++ library for iop-based zksnarks. https:
//github.com/scipr-lab/libiop| (2017-2024), accessed: October 13, 2024

23

https://keccak.team/keccak_specs_summary.html
https://keccak.team/keccak_specs_summary.html
https://github.com/levanin/libiop-fp2
https://bitcoin.org/bitcoin.pdf
https://images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf
https://images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf
https://docs.nvidia.com/cuda/profiler-users-guide/
https://docs.nvidia.com/cuda/profiler-users-guide/
https://doi.org/10.1057/jbr.2015.19
https://doi.org/10.1057/jbr.2015.19
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libiop

46.

47.

48.

Setty, S.: Spartan: Efficient and general-purpose zkSNARKSs without trusted setup.
Cryptology ePrint Archive, Paper 2019/550 (2019), https://eprint.iacr.org/
2019/550

The RustaCUDA Developers: Rustacuda: A safe wrapper for the cuda driver
api (2024), https://docs.rs/rustacuda/latest/rustacuda/, accessed: Novem-
ber 10, 2024

Zhang, R., Xue, R., Liu, L.: Security and privacy on blockchain. ACM Computing
Surveys (CSUR) 52(3), 1-34 (2019)

24

https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550
https://docs.rs/rustacuda/latest/rustacuda/

	Air-FRI: Acceleration of the FRI Protocol on the GPU for zkSNARK Applications

