Diffuse Some Noise: Diffusion Models for

Measurement Noise Removal in Side-channel
Analysis

1[0009—0000—1598—8400 : ;- 1[0000—0003—3799—7636
i I, Guilherme Perin'! I

0000—0001—7509—4337]

Sengim Karayalcin
and Stjepan Picek?!

! Leiden University, Leiden, the Netherlands s.karayalcin@liacs.leidenuniv.nl
2 Radboud University, Nijmegen, the Netherlands stjepan.picek@ru.nl

Abstract. Resilience against side-channel attacks is an important con-
sideration for cryptographic implementations deployed in devices with
physical access to the device. However, noise in side-channel measure-
ments has a significant impact on the complexity of these attacks, espe-
cially when an implementation is protected with masking. Therefore, it
is important to assess the ability of an attacker to deal with noise. While
some previous works have considered approaches to remove (some) noise
from measurements, these approaches generally require considerable ex-
pertise to be effectively employed or necessitate the ability of the attacker
to capture a ’clean’ set of traces without the noise. In this paper, we in-
troduce a method for utilizing diffusion models to remove measurement
noise from side-channel traces in a fully non-profiled setting. Denoising
traces using our method considerably lowers the complexity of mount-
ing attacks in both profiled and non-profiled settings. For instance, for
a collision attack against the ASCADv2 dataset, we reduced the num-
ber of traces required to retrieve the key by 40%, and we showed sim-
ilar improvements for ESHARD using a state-of-the-art MORE attack.
Furthermore, we provide analyses into the scenarios where our method
is useful and generate insights into how the diffusion networks denoise
traces.

Keywords: Side-Channel Analysis, Deep Learning, Diffusion Models

1 Introduction

While standard cryptographic algorithms are generally considered (or, at least,
believed after sufficient public analysis and scrutiny) theoretically secure, as
retrieving the secret key from only inputs and outputs in a reasonable time is
impossible, their real-world deployment poses additional attack surfaces. Deploy-
ments of these algorithms will unintentionally leak some information about their
computation to the outside world through power consumption, timing, or elec-
tromagnetic emanation. These information leakages, or side channels, can allow
an attacker to recover secret information from a device efficiently. Since being
introduced by Kocher [19], significant research has been done into side-channel

2 S. Karayalgin et al.

attacks (SCA) and their countermeasures. We can broadly categorize SCA into
two categories: 1) non-profiled attacks, where an attacker collects side-channel
leakages and uses statistical distinguishers to extract the secret key [20, 4] and
2) profiled attacks, where the attacker builds a model for the leakage using a
copy (clone) device they have full control over [7]. From the machine learning
perspective, we can divide the algorithms into generative and discriminative
ones.3

While countermeasures for side-channel attacks exist, over recent years, a
significant rise in deep learning-based SCA (DLSCA) has shown that these
countermeasures can, in some cases, be circumvented, see, e.g., [24,37,36]. In
the profiled setting, straightforward applications of discriminative models allow
progressively more efficient attacks [26,17,53,45]. Similar approaches based on
discriminative models have also been applied in the non-profiled setting [42, 9].
To a lesser degree, there are approaches based on generative models that allow
for pre-processing of side-channel traces to simplify /improve attacks [48, 44, 52].

While generative models can be a “natural” setting for SCA (for instance,
the template attack [7] is generative), we see fewer developments with generative
models-based SCA in the last years compared to the discriminative ones. A part
of the reason for this is that discriminative models excel at distinguishing among
classes, which is a common setup for SCA (since we commonly consider the
classification task). On the other hand, generative models generate new data,
which is a natural option for data augmentation, a direction already explored in
SCA.

In this work, we propose a novel approach to denoise traces based on Denois-
ing Diffusion Probabilistic Models (DDPMs). Using these models, we can effec-
tively remove environmental (Gaussian) noise from side-channel traces without
requiring a reference set of 'clean’ traces or profiling labels (see Table 1 for an
overview of comparable approaches). We experimentally validate our approach
against several datasets and show improved attack performance for non-profiled
collision attacks, non-profiled attacks using deep learning, higher order correla-
tion power analysis (HO-CPA), and horizontal attacks. Additionally, when we
consider profiling attacks, our technique can be used to improve the profiling
complexity and ease the difficulty of finding good model architectures using hy-
perparameter search. Our main contributions are:

— We showcase the first use cases for DDPM models to pre-process traces in
SCA.

— We provide an analysis of the trained DDPM models that explains how
traces are denoised and gives insights into situations where denoising is (and
is not) possible.

— We showcase improvements in attack performance for state-of-the-art non-
profiled attacks after denoising using the proposed model. For collision at-
tacks against ASCADv2, the required number of traces to retrieve the key

3 A common division in machine learning-based SCA is into supervised and unsuper-
vised machine learning, but that relates to the task and whether there are labels
available and not how the algorithm works.

DDPMs for Measurement Noise Removal in SCA 3

‘Denoising‘No Countermeasure Disabling‘NO Profiling Labels‘

DAE [48] X

DAE [15] X
DDPMs [51] X X
Ours

Table 1: Comparing necessary assumptions for denoising traces.

is reduced by approximately 40%, and for MORE attacks against ESHARD,
we show similar gains in performance.

— We show significantly decreased difficulty in finding model architectures and
hyperparameter configurations for profiling attacks, especially in settings
with low numbers of profiling traces.

The source code to reproduce the experiments is available in the following
repository?.

2 Background

2.1 Side-channel Analysis

Side-channel attacks [19, 20] are a class of attacks aiming at the implementation
of cryptographic algorithms. The idea is that (physical) side-effects, e.g., tim-
ing [19], power [19], or the electromagnetic emanation [1] of the execution of the
algorithm can leak information about secret internal values. An attacker then
captures a (large) number of traces of the algorithm’s execution by measuring
one of these side channels and utilizes these to mount the attack.

We can broadly categorize side-channel attacks into two threat models. First,
non-profiled attacks where an attacker utilizes statistical distinguishers to dif-
ferentiate the correct (sub)key candidate from the wrong ones. Techniques here
generally compute the hypothetical intermediate value for all possible (sub)key
candidates and attempt to find a connection between these labels and the side-
channel traces [20, 4].

The second category includes profiled attacks. In this case, an attacker has
access to (and full control of) an open copy of the device to be attacked. This
allows the attacker to characterize the (physical) leakage using traces captured
from the copy device, significantly improving the efficiency of attacks against
the target [7,41].

Both of these categories of attacks rely on the fact that values that are
operated on during the algorithm’s execution are related to the measured traces.
This relation is modeled by using a leakage model. A leakage model f:Y — R
mapping from an intermediate value y € Y to the leakage is generally composed
of a part that relates to the hypothetical leakage of the value and a noise part.
Common ways to model the leakage of this value are the Hamming Weight (HW)

* https://github.com/Sengim/diff_release

4 S. Karayalgin et al.

(the number of ones in the binary representation of y) or the Hamming Distance
(HD) (the Hamming weight of the bitwise difference between y and the value it
overwrites in a register).

To leverage this leakage model for key retrieval, the intermediate value an
attacker targets needs to be related to the key and some known values. For AES
implementations, the Sbox output in the first round is commonly used (for the
Hamming weight and Identity leakage models). In this case, y = Sbox(p; ® k;)
where p; and k; are the i-th byte of the known plaintext and secret key. As
these values are bytes, it is computationally feasible to calculate the hypothetical
values for all 256 possible values of k; and “match” those to the measured leakage.
In this way, each key byte can be attacked separately, eventually leading to the
recovery of the full key.

Signal-to-Noise Ratio (SNR) SNR is a leakage assessment metric that quan-
tifies the amount of leakage that is present in a random value. For a set of traces
X with intermediate values Y at sample index i, it is defined as:

 Varyey(E(X,]y))
SNR(X;,Y) = Eyey(ifar(Xﬂy))'

Here, E is the mean, Var is the variance of a random variable, and) is the
set of possible values in Y. We generally compute SNR for secret shares that
leak directly (e.g., masks or masked sensitive values). In this work, we always
compute SNR with 20000 traces and the Identity leakage model.

2.2 Algorithmic Noise vs. Measurement Noise

We consider algorithmic noise to be the parts of the computation that are hap-
pening in parallel with the intermediate values we target. For example, an opti-
mized hardware implementation of AES might execute several Sboxes in parallel,
resulting in the Hamming weight of all output bits leaking together. If we want
to target only one byte, the contribution to the leakage of the other bytes is
considered noise. Measurement noise is then the part of the trace that is part
of taking the physical measurements. This could be due to imperfections in the
measurement setup or environmental factors. We generally assume this noise
follows or is similar to, a Gaussian distribution [27].

The main difference between these types of noise for the purposes of unsuper-
vised pre-processing of side-channel traces is that the algorithmic noise is part
of the signal and is, therefore, not removed. An illustrative example is that if we
take several measurements during the computation of a larger state, the algorith-
mic noise will stay the same for each of these samples, while the measurement
noise will vary.

DDPMs for Measurement Noise Removal in SCA 5

2.3 Datasets

ESHARD. The ESHARD dataset® contains EM measurements of an AES im-
plementation protected with first-order Boolean masking. The dataset contains
1400 sample points corresponding to the loading of the mask values and 100 000
traces with a fixed key. We target the Sbox output in the first round for all
attacks. Note that we use the non-shuffled variant for all our analyses, as the
shuffling was implemented by manipulating plaintexts a posteriori.

ASCADYf. The ASCAD fixed key dataset (ASCADf)® contains EM measure-
ments from an AES implementation protected with first-order Boolean mask-
ing. The dataset contains 60000 traces with 100 000 samples each. We focus on
a pre-selected window of 700 samples containing leakages for the masked Sbox
computation in the first round for the 3rd key byte (which is the first masked
byte). The dataset has a fixed key for all traces.

ASCADv2. The ASCADv2 dataset” contains power measurements of an
AES implementation protected with an affine masking scheme and shuffling.
The dataset contains 800000 traces with 1 million sample points each. We take
smaller part of the 15000 sample extracted dataset used in [31], which con-
tain 2000 samples corresponding to a concatenation of indices 0-1000 (loading
masks), 6 040-6 540 (processing masked Sbox for third byte), and 11 250-11 750
(removing additive mask). Note that for this analysis, we disable shuffling by
manipulating plaintexts a posteriori.

AES_HD. The AES_HD dataset® is an unprotected AES implementation on
an FPGA board. The dataset contains 500000 power traces using a fixed key.
Each trace consists of 1250 sample points. We target the Hamming Distance of
register writing in the last round (Sbox™'[C; @ k] @ C}).

AES_HD_MM. The AES_HD_MM dataset? is an AES implementation on
an FPGA board protected with first-order Boolean masking. The dataset con-
tains 5 600 000 traces using a fixed key. The measurements contain 3 125 samples
per trace. We target the same intermediate value as for AES_HD.

ASCON. The ASCON dataset'® is an unprotected software implementa-
tion of the ASCON cipher in authenticated encryption mode [10]. The dataset
consists of 200000 traces where 100000 traces use random keys for profiling
and 100000 traces use a fixed key. Each trace consists of 772 sample points
corresponding to the first round of the initialization phase of the authenticated
encryption protocol.

2.4 Discriminative vs. Generative Models

Machine learning algorithms can be divided into two categories: generative and
discriminative. Discriminative algorithms are primarily concerned with simulat-

® https://gitlab.com/eshard /nucleo_sw_aes_masked_shuffled
5 https://github.com/ANSSI-FR/ASCAD /tree/master/ATMEGA_AES_v1/ATM_AES v1_fixed key
" https://github.com/ANSSI-FR/ASCAD/tree/master/STM32_AES _v2
& https://github.com/AISyLab/AES_HD Ext
9 https://chest.coe.neu.edu/?current_page=POWER_TRACE_LINK&software=ptmasked
10 https://zenodo.org/records/10229484

6 S. Karayalgin et al.

plBr|fr-1) plBr_1|Br_z) pl82/61) p(B1160)
folwr, T =1) folwpy, T - 2) fola, 1) fol1,0)

Fig.1: Diagram illustrating the forward and backward process for training
DDPMs, adapted from [14].

ing the conditional probability distribution of the output labels given the input
features. The goal is to understand the decision boundary. On the other hand,
generative algorithms are designed to simulate the joint probability distribution
of the input features (possibly conditioned on labels). To create new samples,
their goal is to learn the underlying data distribution.

2.5 Denoising Diffusion Probabilistic Models (DDPMs)

Denoising Diffusion Probabilistic Models were first introduced by Ho et al. [14].
Over the next few years, models based on the DDPM paradigm have out-
performed state-of-the-art generative models on image generation and other
tasks [50]. DDPM training is based on a relatively straightforward paradigm:
during training, we iteratively add some noise to an image (or some other type
of data) for T steps; this is referred to as the forward process (left direction in
Figure 1). Then, for an image z; where noise has been added ¢ times, we train
the model to predict x;_; and thereby remove noise. This is called the back-
ward process (right direction in Figure 1). The central idea here is that when
we start from fully random noise and iteratively remove noise, we can generate
realistic-looking images as the diffusion models try to ’amplify’ patterns in the
noise.

More formally, the forward process is defined using a Markov chain from x
(the original images) to zp (Gaussian noise) and transitions g(x;|z;—1). We then
have a noise schedule S, 81, . . . , B and corresponding values «g, o . . ., ap (with
ap = 0 increasing to ap = 1). These «; allow us to generate pairs xy, x¢—1 for
arbitrary 1 < ¢t < T using x; = (1—ay)zo+ s Z and z—1 = (1 —y—1)xo+ @12
where Z = N(0,1). These pairs can then be used to minimize the squared error
of our diffusion model parameterized with weights 6, i.e., arg ming(fp(xs,t —
1) — x4_1)? using uniformly sampled ¢ from [0,7] for each mini-batch. For a
more detailed description of diffusion models, see [14].

3 Related Work

The profiling side-channel analysis started with the template attack [7]. A few
years later, the stochastic attack was also introduced [41]. Interestingly, both

DDPMs for Measurement Noise Removal in SCA 7

of those attacks build generative models. With the introduction of “classical”
machine learning in SCA, the community moved the attention to discriminative
models. Still, deep learning-based generative models have been used in the last
few years, with the primary goals to either pre-process the side-channel traces
or generate synthetic traces.

3.1 Pre-processing using Neural Networks

While classical techniques for pre-processing side-channel traces have been ex-
plored, such techniques often require a significant domain expertise and error-
prone manual intervention to achieve optimal results [23,34,38,27]. As such,
the focus of the SCA community has recently moved to automated techniques
utilizing deep learning. A first approach to using denoising autoencoders for re-
moving noise from side-channel traces was proposed by Yang et al. [49]. There,
the authors used trace averaging to imitate a ’'clean’ set of traces, which can
then be used to train an autoencoder to remove noise from the original traces.
Subsequently, Wu and Picek [48] extended the approach to cover more hiding
countermeasures like desynchronization and random delays. Berg et al. [2] fur-
ther investigated hyperparameter configurations for these networks. Finally, Hu
et al. [15] included additional training objectives to improve the performance
of autoencoders for removing noise from traces. Beyond autoencoders, Wu et
al. [44] utilized triplet networks to extract representations from traces that can
be used to mount template attacks.

More recently, several studies have explored generative approaches for pre-

processing. Genevey-Metat et al. [11] utilized a GAN to translate traces between
side-channel domains. Cao et al. [6] used a GAN approach to tackle portability
challenges by transforming measurements from the attack device to the profiling
device. Kréek and Perin [21] use autoencoders to map traces to the same dimen-
sions to reduce hyperparameter tuning efforts. Karayalcin et al. [16] investigated
a Conditional Generative Adversarial Networks (CGANs)-based framework to
emulate feature selection for masked implementations without access to mask
values. Finally, Zaid et al. [52] used variational autoencoders to model the phys-
ical leakage and subsequently leverage these models for attacks.
The main limitation of these approaches for pre-processing is that they only work
in settings with additional assumptions over the standard non-profiled setting.
The approaches using autoencoders in [49, 48, 2] require a set of 'clean’ traces
that serve as a target for the networks. When considering Gaussian noise, this
clean set can be emulated by averaging, but for masked implementations, this
requires access to mask values [49] which is not always feasible even for evalua-
tors [29]. For the methods in [44, 6,16, 52, 15], a labeled profiling set (or access
to masks values for [52]) is necessary for training the models. The trace trans-
lation in [11] requires paired measurements in different side-channel domains,
and it necessitates that the target side-channel domain is easier to attack, essen-
tially mimicking the ’clean’ set of traces in [48]. None of these approaches can
effectively pre-process traces in a fully non-profiled setting.

8 S. Karayalgin et al.

3.2 Other Approaches using Generative Models in SCA

Several works have looked at applications of generative models for SCA. To
generate additional traces, Wang et al. [43] considered CGANSs to expand the
size of the profiling set. Subsequently, Mukhtar et al. [33] improved upon the
network architecture used in [43]. Yap and Jap [51] proposed the use of diffusion
models to generate additional traces. Finally, Lu et al. [25] also use DDPMs to
generate additional traces, but use a model architecture tailored for SCA. In
all of these works, the authors relied on having access to a profiling device to
label traces for training the networks. The resulting networks are then utilized
to generate traces while providing label information to the network to control
the trace generation. Note that while Transformers are often used in generative
contexts in natural language processing, the Transformer architectures in [13, 5,
22,12] are used as classification models (i.e., in a discriminative setting).

4 Denoising Diffusion Probabilistic Models for Removing
Noise in SCA

While utilizing DDPMs for data generation to improve side-channel attacks is a
straightforward direction, the results from Yap and Jap [51] suggest that there
do not seem to be any significant advantages to using DDPMs over previously
used (C)GAN methods [43,33]. Additionally, using DDPMs for trace genera-
tion requires profiling labels (or even mask knowledge) to allow for useful trace
generation, i.e., generating trace-label pairs, which limits the applicability to a
profiled setting. On the other hand, we utilize unsupervised DDPMs to denoise
traces. Notably, using unsupervised DDPMs means that our models cannot be
used to generate new traces with corresponding labels. Conversely, utilizing the
supervised DDPMs for denoising is possible, however, as these models require
label information which means they cannot be used for unlabeled traces and
have significant downsides for pre-processing (see Section 8.2).

The key idea here is to take a diffusion model parameterized with 0, fy :
X" x T X™, where X™ is a side-channel trace with m samples and T = Z,
that we train using standard diffusion model training (see Section 2.5) on our
measured traces. After training, we then input actual traces (or z() and try
to remove noise (or predict x_1) from these traces. This then results in every
original trace being transformed into a denoised version. We note that using
diffusion models directly to take real samples as input and output a cleaner
version has (to the best of our knowledge) not been done before. Image super-
sampling using DDPMs has been done but generally requires specialized training
setups and architectures [32].

The reasoning here is that we can consider the side-channel traces as a com-
bination of signal S and environmental/measurement noise Z. If we then write
x; = gi*x;+ (1 —q;) * Z, where g; is some schedule for the forward process (note
that ¢; < gi_1), the optimization objective becomes ming(fo(w;,i) — x;_1)%. As
the trained model has been trained to remove Gaussian noise, the model should

DDPMs for Measurement Noise Removal in SCA 9

then be able to remove some of the actual noise Z present in the original trace.
Notably, this assumes that the distribution of the environmental/measurement
noise Z is (somewhat similar to) a Gaussian distribution, but this is a common
assumption in the SCA domain, see, e.g., [7,27,48].

The main advantage of this approach is that the models are trained to be
agnostic of implementation specifics. The only requirement is that the noise we
are trying to remove follows a Gaussian distribution. As the diffusion model
tries to reconstruct the trace, its output will also still follow the original trace’s
structure in terms of intermediate values. While this also holds for the denoising
autoencoders in [49, 48], the training procedure of the autoencoders necessitates
access to a reference set of 'clean’ traces, which requires the ability to disable
countermeasures on a profiling device. Note that while in [48], the authors also
emulate this reference set by averaging traces, this still requires a large number of
additional measurements, complicating the process and making it only possible
for unmasked implementations. Indeed, in masked implementations, an attacker
cannot know in which traces the same intermediate values are processed (i.e.,
which traces to average) without access to masking randomness [49].

4.1 Network Architecture

To keep the focus of this work on the viability of DDPMs for denoising traces
in an unsupervised context, we only use synchronized traces. This allows us
to restrict our architecture to shallow MLPs as these have been shown to be
effective for processing synchronized side-channel traces [37]. As such, the design
choices for our architecture are relatively simple: we follow the general structure
of a U-Net [39] where we first downsample for several layers, then keep the
same dimensions for some layers to induce a compressed latent representation,
and finally upsample again to the original trace dimensions. We utilize batch-
normalization layers in the downsampling section of our network to stabilize
training. The network architecture can be seen in Figure 2.

= = ~ E

od o j= N

- c = c = ® = i< 5
= = @ (Z = @ = 0 = @ @ o
S —§—> 2z &3Pz 1EPE EPE >z >
- = @ = @] =] @ c
=] =]] (] @

L] L8]]

Fig.2: General model architecture for the input of size X.

10 S. Karayalgin et al.

— Share

)

— Share 1 14 — Share1 14 — Share1
Share 2 12 Share 2 Byte 0 Share 2 Byte 0
— Share3 . —— Share2Byte 1 —— Share2Byte 1

10- —— Share 2 Byte 2 10 —— Share 2 Byte 2

220 o 20 08 o8
Z Z E]
P15 P15 LA o
10 10 ‘ 04- 04
o I aa ‘ l uﬂ“ "y ol
| L
I, X t o 0.0 e 00 -
3 o

500 1000 1500 2000 o 500 1000 1500 2000 250 500 750 1000 1250

Ed
5

— Share3

0 250 500 750 1000 1250

(a) Original (b) Diffused (c) Original (d) Diffused

Fig.3: SNR values for secret shares for ASCADv2(left) and ESHARD(right).

4.2 Hyperparameter Setup

To train the DDPM models across all experiments, we use the Adam opti-
mizer [18]. The learning rate is scheduled according to an exponential decay!!
schedule with an initial learning rate of 0.001, the decay rate of 0.96, and 10000
decay steps. We train all models for 200 epochs using batch size 200. We use
the tanh activation function for every intermediate layer and the linear activa-
tion for the output. We use T' = 16 for all of the experiments with a linear
noise-schedule [14]. These hyperparameters perform well and allow for reason-
ably effective denoising against the considered targets. We arrived at these values
after preliminary testing. Note that these are not optimal, but we refrain from
further optimization. We consider finding optimal architectures/hyperparame-
ters to be out of the scope of this work. We provide further experiments to show
the effects of some hyperparameter variations in Appendix C, which indicate
that hyperparameter optimization is not as difficult for these models as it is for
conventional DLSCA.

For the denoising of the traces after training, we observe in the initial set
of experiments that predicting traces with ¢t = T'— 1 = 15 (fp(xo,15)) works
significantly better than using ¢ = 0 (fy(x0,0)). As such, we use ¢t = 15 for all
experiments unless otherwise specified. Our intuition here is that for higher ¢,
the model gets noisier inputs during training, which forces it to find patterns
in its input data more aggressively, resulting in better denoising performance.
However, we do not claim that this is always best, and further work exploring
inference time uses/augmentations of diffusion models could result in further
improvements.

4.3 Proof of Concept

To provide a proof of concept for our method, we first look at testing against (rel-
atively) noisy trace sets from software targets. First, we consider the ASCADv2
target as this is currently the most difficult public software target. There, the
leakage of the masked output is noisy (SNR around 0.08), which potentially al-
lows for significant benefits. Second, the ESHARD target provides measurements
of a software implementation where both the mask and masked Sbox output leak

" https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules /ExponentialDecay

DDPMs for Measurement Noise Removal in SCA 11

Fig.4: Histogram for the HW values in the highest SNR samples for Original
(top) and Diffused (bottom) traces for (left-right) ESHARD, ASCADv2 share
1, and ASCADv2 share 3.

with relatively low SNRs (see original ESHARD SNRs in Figure 3). Note that in
this section, we only consider software targets where the measurements contain
at least a moderate amount of measurement noise to highlight success cases of
our method.

We train the models using all available traces and subsequently use the
trained model to obtain denoised traces. We use the SNR of the secret shares in
the traces (using the Identity leakage model) as a measure of how successful the
noise removal was. In Figure 3, we see the SNR results for a trimmed version of
the ASCADv2 dataset. The results clearly show that the SNR peaks for all three
shares are significantly improved. For ESHARD, we also see significant improve-
ments in SNR in Figure 3. These results show that our networks are effective
at amplifying the side-channel signal. However, there are significant differences
in the magnitude of the improvement for various secret shares and features. In
Section 4.4, we aim to explain these differences using simulated traces.

In Figure 4, we showcase histograms of the values in the highest SNR point
for the secret shares. We can observe that, especially for share 1 of ASCADv2 and
for ESHARD, the distributions are visibly much smoother, and the separation
between classes is clearer for the diffused traces. These results indicate that the
diffusion networks can effectively smooth out the noise from side-channel traces
while maintaining the leakages.

4.4 Simulations

Next, we explore in what situations we can improve the SNR of side-channel
measurements using our DDPMs. To accomplish this, we utilize simulations

12 S. Karayalgin et al.

Max SNR peak
Max SNR peak

—— Diffused SNR
Original SNR

—— Diffused SNR
Original SNR 6x1073

40

0 3
10 20 30 40 Number of informative features
Number of informative features

Fig.5: Maximum SNR value for diffused traces simulations for varying numbers
of informative points with low(left) and high(right) added noise.

with varying noise levels and a varying number of informative points. We follow
the procedure:

1. we generate traces of 100 points noise following a normal distribution, and
then,

2. for 0 < n < 40 of these points (to allow different settings), we include the
Hamming weight of an 8-bit intermediate value y uniformly sampled from
the range [0, 255].

The main purpose of varying the number of leaky points is to determine
how the DDPMs are amplifying the side-channel signal. While the results in
Section 4.3 show clear improvements in terms of SNR for individual features,
the networks cannot create more information than what is present in the orig-
inal trace. As such, the increased SNR in individual features must come from
other trace points. Intuitively, combining information from several points leaking
the same value is a straightforward way to amplify the signal in each of these
points. As can be seen in Figure 5, there is a clear link between the number of
leaky features and the level of SNR achieved. Notably, for both the high and low
noise scenarios, the model does not increase the SNR if only one leaky feature
is present. In the low-noise scenario, the model already shows significant im-
provement over baseline SNR when two leaky features are included, improving
further with more leaky features. In the high-noise scenario, more leaky features
are required before the SNR levels are improved over the baseline.

Overall, these results strongly suggest that diffusion models learn to differen-
tiate the side-channel signal from noise by looking for correlated features in the
trace. By finding and combining information from those related points, the model
can decrease the error in its output. This is relevant for real-world side-channel
traces when we take several measurements during an operation that leaks some
sensitive value, e.g., the oscilloscope has a high sampling rate or some sensitive
value is manipulated in several trace points.

4.5 Gradient Visualization

To validate that the DDPMs learn to combine information across correlated
features in real-world settings, we visualize what features contribute to one of
the output features. We use gradient visualization techniques that have been

DDPMs for Measurement Noise Removal in SCA 13

200 SNR 0000200 SNR

175 mmm Gradients | 0.0 = Gradients 00008

oooo0g § H
00002 §

ors 0000075

nnnnn

L R A are |4 || m 4 it 0000025 002
il L il Y N
- e oo { ¥ b 00000

70 1000 1250 15 S0 750 1000 1250
samples. samples.

Fig. 6: Gradients vs. SNR values share 1 and 3 of ASCADv2.

previously used in SCA [30]. In Figure 6, we provide the gradient visualizations
for the maximum SNR feature. We clearly see that sample points correlated
with the most informative sample influence the model’s output. Notably, these
results explain the significant differences in the magnitude of the SNR increases
for different secret shares of ASCADv2 we saw in Figure 3. As can be seen in
Figure 6, the diffusion model can only utilize a small number of samples to com-
bine information for share 3, while in the case of share 1, there are significantly
more samples to learn from. These differences follow the demonstrated trends
in Section 4.4. Note that the results for other targets are qualitatively the same
using this analysis.

5 Experimental Results

5.1 Non-profiled Attacks

Multi Output Regression Enhanced (MORE) This section provides re-
sults for state-of-the-art non-profiled attacks using DL [40]. The basic idea of
this attack is to train one model labeled for every possible key and conduct the
regression task. As the labels generated using the correct key are the only ones
that are related to the trace, the model should then most accurately predict
labels of the correct key. A ranking for key candidates can then be created by
measuring the network error for each candidate. We only show results against
ESHARD as breaking the ASCADv2 target is still infeasible using the MORE
methodology, while for ASCADf and the hardware targets, diffusing traces does
not make a difference in terms of attack performance. We generate a distribu-
tion of key ranks using 40 separate random models following the hyperparameter
ranges used in [40]. We choose this method as it allows us to assess the impact of
diffusing traces on the difficulty of defining an appropriate model configuration,
and it reflects directly on the effectiveness of the ensemble-based attacks that
use these random models. The diffusion model in this case is the same as in
Appendix A using 10000 traces. We use the HW leakage model and target the
third key byte. The results in Figure 7 showcase that diffusing the traces helps
significantly. Attacks using diffused traces perform similarly at 20000 traces to
the attacks using 50 000 original traces. This indicates that diffusion models sig-

14 S. Karayalgin et al.

200

Key Rank

Il Original
Bl Diffused
— wJ‘ == T T =T
10000 20000 30000 40000 50000
Number of Traces

Fig. 7: MORE results for ESHARD.

nificantly help the consistency of training discriminative models, especially in
more restricted settings.

Collision Attack against ASCADv2 To demonstrate the practical relevance
of our approach, we first showcase attacking results in a non-profiled context. We
focus on the collision attacks as described by Wu et al. [46], which aim to recover
the bitwise difference between sub-keys (key-deltas). These key-deltas can then
be used to brute-force one key byte, leading to full key recovery (given correct
key-deltas). We include this attack as it is the only attack that can break the
ASCADvV2 dataset in a non-profiled setting.!? Note that Cristiani et al. [8] also
showcased successful attacks against the same implementation, but they require
a different acquisition campaign with significantly more traces.

For training the DDPM, we use the intervals given in [46]. Note that for
these attacks, the shuffling countermeasure is disabled, and we simulate a fixed
attack key for the profiling set (see [46] for details). To simplify the analysis,
we concatenated the used 100 sample intervals into one 1600 sample trace and
trained the diffusion model on 20000 such traces to limit computational over-
head. We then executed 50 runs on randomly sampled traces from the 500000
profiling traces and averaged key-delta ranks to achieve a Guessing Entropy(GE)
estimate. The results in Figure 8 clearly favor the diffused traces. In fact, using
diffused traces can successfully reduce GE for all key-delta candidates below 1
using 60 000 traces, while three of the deltas are not fully recovered using 100 000
traces for the original traces.

Horizontal Attacks against Public Key Implementation To illustrate
that our method is generally useful for analyzing side-channel traces, we showcase
improvements to the horizontal attack from [35] which targets individual bits of
the ECC key by classifying trace segments. In this attack, initial labeling that is
only slightly better than random guessing (around 52%) is iteratively improved

12 With shuffling disabled.

DDPMs for Measurement Noise Removal in SCA 15

—— ks®ko [SEARSE!
—— ko ®kio ki3 ® ks
— kw®kn kia ®kis

102

6 rank

10t

0 T ———— —
]'POUOO 20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of attack traces

102 — ko®ky —— ky®ks —— ks@®ko k12 @ k13
— ki®k; —— ks®ks —— ko®kio ki3 ® k14
— k2 ®k3 —— ke ®ky k10 ® k11 kia ® k1s

ks®ky —— k;®kg k11 @ k1

E— —
0 | —
1PC!OOO 20000 30000 40000

50000 60000 770000 80000 90000 100000
Number of attack traces

Fig.8: ASCADv2 collision attacks for Original (top) and Diffused (bottom)
traces.

upon using CNNs. In this work, results are presented using both an optimized
fixed CNN architecture and a new random CNN at each iteration (for more
details, see [35]). Note that in subsequent work, it was shown that similar attack
performance could be achieved in some cases using only one neuron instead
of larger CNNs [3]. We only show results on the cswap_arith dataset as the
cswap_pointer is significantly easier to attack, and almost every network setup
achieves 100% accuracy on both the original and diffused traces. The diffusion
model is trained in the standard way using the 63 750 traces. For this dataset,
we use batch size 1000 and obtain denoised traces with ¢ = 0 instead of ¢ = 15
as this achieved better results.

The results in Table 2 again show significant improvements to accuracies by
using diffused traces. In all cases, the maximum accuracy using diffused traces
is higher than using original traces. Especially in the case where only the sim-
plest perceptron from [3] is used, we obtain 99.2% maximum accuracy using
diffused traces while only 80% using the original traces. For CNNs, we see the
fixed CNN improves between 10% and 15%, and using random CNNs, we find
the only attack achieving 100% maximum accuracy uses diffused traces. Still,
average accuracies are not always improved. This is mainly due to the number of
iterations optimized for the original traces. For the diffused traces, the average
accuracy is maximized in earlier iterations and subsequently decreases sooner.

‘ One neuron CNN ‘ CNN + Random CNN Random CNN +
Dropout Dropout

Original || 70.9/79.2% (63.6/73.7%55.2/75.7%| 71.7/80.0% 98.6/99.6%

Diffused || 96.3/99.2% |70.8/87.1%|50.1/83.5%| 62.6/81.1% 99.6/100%

Table 2: Comparison of Average/Max single trace accuracy for key bits using
the one neuron perceptron from [3] and CNN setups from [35].

16 S. Karayalgin et al.

6 Datasets with Algorithmic Noise

In previous sections, we have shown significantly improved attack performance
against targets that have limited algorithmic noise. In these cases, it is clear
from the results in Section 4.3 that the measurement noise is mitigated by using
diffusion models. However, when we consider targets that process larger states,
the denoising is less relevant.

In Figure 9, we see that the DDPMs cannot improve the peak SNR for
any of the targets without added noise. Only for AES_HD_MM, we see that
the SNR of the other samples is increased by a marginal amount. Note that
this does not seem to affect attack performance; for profiling attacks using 100
random MLP models using the ranges from Table 4, GE is 60.78 £ 23.95 and
59.85+21.00 for original and diffused traces, respectively. Looking at traces with
added Gaussian noise, we see improved SNR for ASCON and AES_HD_MM.
For AES_HD, SNR does not improve, presumably, as the noise level is relatively
high and the intermediate value is only leaked in a very small number of samples
following the results on simulations in Section 4.4.

These results indicate that the diffusion models are not as useful for mea-
surements with mostly algorithmic noise. However, even for hardware targets, we
can see some improvements to SNR in specific samples, indicating that removing
(some) measurement noise is still achievable in these cases. Additionally, when
we add Gaussian noise, we see clear improvements in SNR for both the ASCON
and the AES_HD_MM targets, reinforcing the usefulness of our diffusion models
in scenarios with noisier measurements. Since noisier settings are more relevant
from a practical perspective, and even the current results with deep learning per-
form well in scenarios with little noise, we consider our approach highly relevant
and applicable in real-world settings.

7 Comparison with Denoising Autoencoders and Signal
Processing

While several works have examined the use of techniques from the deep learning
domain for pre-processing side-channel traces, almost none of these techniques
are directly applicable in a non-profiled setting. As mentioned before, most either
require profiling labels [44, 16, 15] or the ability to capture some ‘clean’ target
traces [49,48,11]. However, as mentioned in Section 4.1 of [48], denoising au-
toencoders can be used for the same purpose.'® We also include signal-processing
techniques that can remove noise. We use moving averages and principal com-
ponent analysis (PCA). For each of these, we try window sizes and number of
components up to 100 and report the best results.

From the results in Table 3, we can see that autoencoders trained directly to
reconstruct traces, i.e., without a ‘clean’ set, are not effective at removing mea-
surement noise. Both the convolutional architecture from [48] and our DDPM

13 Note that autoencoders trained in this way are equivalent to training DDPMs with
one fixed noise step.

DDPMs for Measurement Noise Removal in SCA 17

007 0200
Diffused Diffused 020 Diffused
L owrs . T
008 Original Original Original
o150
005
015
o1z
004
H % 0100 | % o010
003
o075
002
0.050 005
001
0025
0.00 ! 0.00
0 200 40 0 80 100 1200 o 10 200 3,0 0 0 oo 700 800 O 00 100 1500 200 250 3000
sample sample sample
. Diffused Diffused o7 Diffused
1 012 — N
Original Original 0150 Original
005 0.10
0125
001
008 } o100
% o0 H H
006 0075
002
0050
oot
o001 I il HATh 0.025
002
0004 » ? 0.000
0 200 %0 o0 8o 00 100 0 10 200 3,0 %0 00 0 700 800 0 0 1000 100 200 2500 3000
Sample Sample sample

Fig.9: SNR values for intermediate values for various datasets for original traces
(top) and traces with added noise (bottom).

architecture trained as autoencoders fail to increase SNR over the original traces.
While tuning the architectures for each specific dataset could lead to improve-
ments, we note that this is not necessary for our DDPMs. In addition, the au-
toencoders trained to reconstruct traces can easily overfit and memorize their
training traces, increasing the difficulty of finding an appropriate architecture,
especially in non-profiled contexts. Overall, it seems clear that in a scenario with-
out a set of clean target traces (or label/mask knowledge), autoencoders are not
appropriate for removing noise.

When we compare it to signal processing, we see that the performance is
more competitive. In these cases, we mainly highlight that the optimal config-
uration differs for each setup. Notably, finding appropriate parameters depends
on the physical leakage characteristics, and the appropriate parameters differ
for different shares in the same traces (see ASCADv2 in Table 3). We note that
it should generally be possible to use classical signal-processing techniques to
achieve similar (or better) performance for individual shares but that doing this
effectively in non-profiled settings (without access to masks/keys to verify the
approach) is highly dependent on evaluator expertise.

18 S. Karayalgin et al.

. DEA usin
Original DDPM‘DAE CNN from [48] DDPM MLP nftwork MA(n) | PCA(n)
ASCADf| 1.30 1.24 0.76 1.17 1.63(20)[1.63(21)
Eshard| 0.39 | 1.06 0.20 0.03 1.40(7) |1.63(40)
ASCADv2 share 1| 2.00 | 8.90 1.35 1.93 2.69(14)| 2.35(41)
ASCADv2 share3| 0.08 | 0.19 0.06 0.03 0.09(5) | 0.03(99)

Table 3: Comparison of max SNR peaks for denoising autoencoder (DAE) ap-
proach, moving averages (MA), and PCA. The (n) denotes the window size for
MA and the number of components, respectively.

8 Discussion

Our results showcase that DDPM models can learn useful representations of side-
channel traces in unsupervised contexts. Additionally, the analysis in Section 4.4
shows how the networks learn these representations and give an intuition for why
the denoising can work. The mechanism is quite straightforward. To remove
noise from a leaky sample point, the network needs more information about
the leaking value. To accomplish this, it can find features that leak the same
value and combine the information from these features to arrive at a less noisy
version of the feature (see Section 4.5 for validation). In effect, we compress the
information from several leaky samples into a singular sample.

The benefits of this for non-profiled attacks are clear. For these attacks, we
often utilize only a single feature to represent each secret share [8]. In these
contexts, our models allow for the implicit utilization of several leaky samples
without having access to mask values. Additionally, for collision attacks, the
stronger separation between classes can clearly reduce the number of traces
necessary to detect key differences.

For profiled attacks, the benefits are less obvious. In principle, using LDA
to reduce the dimension from a sufficiently large number of informative samples
effectively compresses the information from all of those samples and thus elim-
inates the benefits of diffusing traces. Similarly, a well-trained neural network
should implicitly combine the information available across a trace. However, in
practice, we see significant benefits to denoising traces before training neural
networks. Our results in Section 5.1(and in Appendix B) clearly indicate that
the difficulty of finding appropriate hyperparameters for neural networks and
the required number of traces for profiling is significantly reduced.

While our results show significant gains for the showcased attacks against
some targets (specifically ESHARD and ASCADv2), it is clear that these bene-
fits are not universal. Our method does not improve the SNR for datasets that
contain mostly algorithmic noise. However, the SNR also does not seem to be
harmed by pre-processing the traces using diffusion models, limiting the down-
side of using our method to the (limited) computational overhead required for
training the diffusion model. The artificial addition of Gaussian noise in Sec-
tion 6 also showcases that the method is still effective in more difficult scenarios
when the measurements are more noisy.

DDPMs for Measurement Noise Removal in SCA 19

The main takeaway from these results is that including diffusion models for
pre-processing traces within the evaluation can significantly reduce the overhead
caused by environmental noise while not requiring the same level of expertise
to tune as other methods from the DL domain. The tuning of diffusion mod-
els in the SCA context seems relatively straightforward, and the pre-processing
can be used to simplify any subsequent analysis. Especially in contexts where
individual samples are used to represent the leakage from sensitive values, like
(higher-order) CPA, our method allows for the combination of information from
several samples without any additional access assumptions or alterations to the
attack methodology. While the practical results presented in Section 5 showcase
strong benefits in terms of attack performance, these are clearly influenced by
our choice of datasets. Overall, the attack improvements are only present when
the SNR of secret shares is similarly improved. For targets aside from ESHARD,
ASCADv2, and cswap_arithmetic, utilizing our DDPMs does not seem to make a
significant difference for practical attacks in our experiments unless we artificially
inject Gaussian noise to simulate noisier measurement setups. Note that there
may be some benefits (minor SNR improvements we see for AES_ HD_MM and
ASCON), but this did not make a difference for the considered attacks. Another
consideration for interpreting our results is that the network and hyperparam-
eter settings leave significant room for improvement. We aimed to present the
denoising method using DDPMSs, not to optimize the denoising performance for
each specific scenario. In fact, even the results in Appendix C show that larger
improvements than those presented in Section 5 are relatively straightforward
to achieve by changing only one or two hyperparameters. Consequently, this
suggests that future research looking into more complex network architectures
and hyperparameter optimizations would still be beneficial in evaluating the full
potential of our approach.

8.1 On Computational and Profiling Cost

While training generative models is often associated with significant computa-
tional and data requirements, our results showcase the opposite. We use rel-
atively small models that require limited training data. The time required to
train each of these models'# requires between 10 minutes and 2 hours, impacted
quite heavily by the number of profiling traces used. Note that the time required
to train these models is almost identical for autoencoders with the same model
architectures.

Furthermore, we see that the requirement for large numbers of training data
for reasonable performance is not that strong. In the success cases, training
DDPMs for denoising using significantly fewer traces than are required to suc-
cessfully attack already improves the attack performance. Notably, this is be-
cause the models are not required to generate fully new traces and do not have
to learn the relationship between traces and target values (see Section 8.2 for
more discussion). In fact, as supported by simulation results in Section 4.4,

14 On a workstation equipped with an NVIDIA RTX 4080 and 64 GB of RAM.

20 S. Karayalgin et al.

what the models need to learn to denoise effectively is that certain values leak
in several samples. This then means the models can combine the information in
these points to amplify the leakage if the noise in these points is (somewhat)
independent as we discuss in Section 6.

8.2 On the Relevance of Unsupervised Pre-processing

It may seem somewhat counter-intuitive to neglect using labels during pre-
processing for profiled attacks given their availability. However, from our per-
spective, pre-processing methods that use label information suffer from the key
limitation that they rely on learning the relation between traces and labels,
which is the core challenge for conventional classification models. If the labels
help the pre-processing, it is clearly possible for the pre-processing network, and
probably a conventional classification network, to learn this relationship without
the pre-processing.

Furthermore, any network that takes label information as its input to pre-
process a trace cannot be used to pre-process traces from an attack set where the
key is not known. Note that in non-profiled settings, it is potentially possible to
use plaintext as a stand-in for the intermediate value to mitigate this issue [47].
However, this still does not mitigate the above downsides of such a label-based
approach.

9 Conclusions and Future Works

We have presented an approach for utilizing DDPMs to remove noise from side-
channel traces. As shown in Section 4.4, our approach is effective at increasing
SNR levels of traces when several samples in the side-channel trace leak the same
information. In these cases, DDPMs can combine information from several sam-
ples to remove noise from each of the individual samples. Notably, this is, to the
best of our knowledge, the first approach that can effectively denoise traces in a
fully non-profiled setting without a “clean” set of target traces. Furthermore, we
showed significant improvements in attack performance for several state-of-the-
art non-profiled attacks and similar improvements in the profiling complexity
of deep learning models for profiled attacks. One of the main limitations of our
work is that we focus on aligned traces. While directly training our models on
misaligned traces does not pose any technical difficulties, achieving satisfactory
performance in such a context is more difficult. In future work, we plan to in-
vestigate mechanisms for effectively applying our method to misaligned traces,
as well as to investigate more complex network architectures. Besides this, there
are a number of use cases within the SCA domain for our models, which could
potentially be interesting. Some initial ideas include pre-training (parts of) clas-
sification models since diffusion models could aid in the training of profiling
models and exploring whether the implicit compression of leakage from several
features can be used to limit the computational overhead of subsequent attacks.

DDPMs for Measurement Noise Removal in SCA 21

References

1.

Agrawal, D.,; Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Jr., B.S.K., Kog, C.K., Paar, C. (eds.) Cryptographic Hardware and Embed-
ded Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA,
USA, August 13-15, 2002, Revised Papers. Lecture Notes in Computer Science,
vol. 2523, pp. 29-45. Springer (2002). https://doi.org/10.1007/3-540-36400-5“ 4,
https://doi.org/10.1007/3-540-36400-5_4

van den Berg, D., Slooff, T., Brohet, M., Papagiannopoulos, K., Regaz-
zoni, F.: Data under siege: The quest for the optimal convolutional au-
toencoder in side-channel attacks. In: International Joint Conference on
Neural Networks, IJCNN 2023, Gold Coast, Australia, June 18-23, 2023.
pp. 1-9. IEEE (2023). https://doi.org/10.1109/IJCNN54540.2023.10191779,
https://doi.org/10.1109/1JCNN54540.2023.10191779

Boussam, S., Albillos, N.C.: Keep it unsupervised: Horizontal attacks
meet simple classifiers. In: Bhasin, S., Roche, T. (eds.) Smart Card
Research and Advanced Applications - 22nd International Conference,
CARDIS 2023, Amsterdam, The Netherlands, November 14-16, 2023, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 14530,
pp. 213-234. Springer (2023). https://doi.org/10.1007/978-3-031-54409-5 11,
https://doi.org/10.1007/978-3-031-54409-5_11

Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage
model. In: Joye, M., Quisquater, J. (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2004: 6th International Workshop Cambridge, MA,
USA, August 11-13, 2004. Proceedings. Lecture Notes in Computer Science,
vol. 3156, pp. 16—29. Springer (2004). https://doi.org/10.1007/978-3-540-28632-
5“2, https://doi.org/10.1007/978-3-540-28632-5_2

Bursztein, E., Invernizzi, L., Kral, K., Moghimi, D., Picod, J.M., Zhang, M.:
Generalized power attacks against crypto hardware using long-range deep learn-
ing. TACR Transactions on Cryptographic Hardware and Embedded Systems
2024(3), 472-499 (Jul 2024). https://doi.org/10.46586/tches.v2024.i3.472-499,
https://tches.iacr.org/index.php/ TCHES /article/view /11685

. Cao, P., Zhang, H., Gu, D., Lu, Y., Yuan, Y.: AL-PA: cross-device profiled side-

channel attack using adversarial learning. In: Oshana, R. (ed.) DAC ’22: 59th
ACM/IEEE Design Automation Conference, San Francisco, California, USA, July
10 - 14, 2022. pp. 691-696. ACM (2022). https://doi.org/10.1145/3489517.3530517,
https://doi.org/10.1145/3489517.3530517

Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Jr., B.S.K., Kog, C.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002,
4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Re-
vised Papers. Lecture Notes in Computer Science, vol. 2523, pp. 13-28. Springer
(2002). https://doi.org/10.1007/3-540-36400-5“3, https://doi.org/10.1007/3-540-
36400-5_3

Cristiani, V., Lecomte, M., Hiscock, T., Maurine, P.: Fit the joint moments:
How to attack any masking scheme. IEEE Access 10, 127412-127427 (2022).
https://doi.org/10.1109/ACCESS.2022.3222760

Do, N.T., Le, P.C., Hoang, V.P., Doan, V.S., Nguyen, H.G., Pham,
C.K.: Mo-dlsca: Deep learning based non-profiled side channel analysis us-
ing multi-output neural networks. In: 2022 International Conference on
Advanced Technologies for Communications (ATC). pp. 245-250 (2022).
https://doi.org/10.1109/ATC55345.2022.9943024

22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S. Karayalgin et al.

Dobraunig, C., Eichlseder, M., Mendel, F., Schlaffer, M.: Ascon v1.2: Lightweight
authenticated encryption and hashing. J. Cryptol. 34(3), 33 (2021).
https://doi.org/10.1007/S00145-021-09398-9, https://doi.org/10.1007/s00145-
021-09398-9

Genevey-Metat, C., Heuser, A., Gérard, B.: Trace-to-trace translation for SCA. In:
Grosso, V., Péppelmann, T. (eds.) Smart Card Research and Advanced Applica-
tions - 20th International Conference, CARDIS 2021, Liibeck, Germany, Novem-
ber 11-12, 2021, Revised Selected Papers. Lecture Notes in Computer Science, vol.
13173, pp. 24-43. Springer (2021). https://doi.org/10.1007/978-3-030-97348-3“'2,
https://doi.org/10.1007/978-3-030-97348-3_2

Hajra, S., Chowdhury, S., Mukhopadhyay, D.: Estranet: An ef-
ficient shift-invariant transformer network for side-channel anal-
ysis. TACR Trans. Cryptogr. Hardw. Embed. Syst. 2024(1),
336-374 (2024). https://doi.org/10.46586/ TCHES.V2024.11.336-374,
https://doi.org/10.46586/tches.v2024.i1.336-374

Hajra, S., Saha, S., Alam, M., Mukhopadhyay, D.: Transnet: Shift invariant
transformer network for side channel analysis. In: Batina, L., Daemen, J. (eds.)
Progress in Cryptology - AFRICACRYPT 2022: 13th International Confer-
ence on Cryptology in Africa, AFRICACRYPT 2022, Fes, Morocco, July 18-
20, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13503, pp.
371-396. Springer Nature Switzerland (2022). https://doi.org/10.1007/978-3-031-
17433-9“'16, https://doi.org/10.1007/978-3-031-17433-9_16

Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual (2020),

https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179cadb-

Abstract.html

Hu, F., Shen, J., Vijayakumar, P.: Side-channel attacks based on multi-
loss regularized denoising autoencoder. IEEE Trans. Inf. Forensics Se-
cur. 19, 2051-2065 (2024). https://doi.org/10.1109/TIFS.2023.3343947,
https://doi.org/10.1109/TIFS.2023.3343947

Karayalcin, S., Kréek, M., Wu, L., Picek, S., Perin, G.: It’s a kind of magic: A novel
conditional gan framework for efficient profiling side-channel analysis. In: Chung,
K.M., Sasaki, Y. (eds.) Advances in Cryptology — ASTACRYPT 2024. pp. 99-131.
Springer Nature Singapore, Singapore (2025)

Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems pp. 148-179
(2019)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), http://arxiv.org/abs/1412.6980

Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 18-22, 1996, Proceedings. Lecture Notes in Computer Science,
vol. 1109, pp. 104-113. Springer (1996). https://doi.org/10.1007/3-540-68697-5“9,
https://doi.org/10.1007/3-540-68697-5_9

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

DDPMs for Measurement Noise Removal in SCA 23

Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J.
(ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceed-
ings. Lecture Notes in Computer Science, vol. 1666, pp. 388-397. Springer (1999).
https://doi.org/10.1007/3-540-48405-1“25, https://doi.org/10.1007/3-540-48405-
1.25

Kréek, M., Perin, G.: Autoencoder-enabled model portability for reducing hyper-
parameter tuning efforts in side-channel analysis. Journal of Cryptographic Engi-
neering 14(3), 475-497 (2024)

Kulkarni, P., Verneuil, V., Picek, S., Batina, L.: Order vs. chaos: A language model
approach for side-channel attacks. IACR Cryptol. ePrint Arch. p. 1615 (2023),
https://eprint.iacr.org/2023/1615

Le, T., Clédiere, J., Serviere, C., Lacoume, J.: Noise reduction in side
channel attack using fourth-order cumulant. IEEE Trans. Inf. Foren-
sics Secur. 2(4), 710-720 (2007). https://doi.org/10.1109/TIFS.2007.910252,
https://doi.org/10.1109/TIFS.2007.910252

Lu, X., Zhang, C., Cao, P., Gu, D., Lu, H.: Pay attention to the raw traces: A
deep learning architecture for end-to-end profiling attacks. ITACR Transactions on
Cryptographic Hardware and Embedded Systems (2021)

Lu, Z., Longde, Y., Fei, W., Aidong, C., Ning, Y., Xiang, L., Jiancheng,
Z., Yanlong, Z., Shuo, W., Jing, Z.: Scarefusion: Side channel analy-
sis data restoration with diffusion model. Microelectronics Journal 156,
106546 (2025). https://doi.org/https://doi.org/10.1016/j.mejo.2024.106546,
https://www.sciencedirect.com/science/article/pii/S1879239124002509

Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: International Conference on Security, Privacy,
and Applied Cryptography Engineering. pp. 3-26. Springer (2016)

Maghrebi, H., Prouff, E.: On the use of independent component analysis to de-
noise side-channel measurements. In: Fan, J., Gierlichs, B. (eds.) Constructive Side-
Channel Analysis and Secure Design - 9th International Workshop, COSADE 2018,
Singapore, April 23-24, 2018, Proceedings. Lecture Notes in Computer Science, vol.
10815, pp. 61-81. Springer (2018). https://doi.org/10.1007/978-3-319-89641-0% 4,
https://doi.org/10.1007/978-3-319-89641-0_4

Mangard, S.: Hardware countermeasures against DPA 7 A statistical analysis of
their effectiveness. In: Okamoto, T. (ed.) Topics in Cryptology - CT-RSA 2004,
The Cryptographers’ Track at the RSA Conference 2004, San Francisco, CA,
USA, February 23-27, 2004, Proceedings. Lecture Notes in Computer Science,
vol. 2964, pp. 222-235. Springer (2004). https://doi.org/10.1007/978-3-540-24660-
2418, https://doi.org/10.1007/978-3-540-24660-2_18

Masure, L., Cristiani, V., Lecomte, M., Standaert, F.: Don’t learn what
you already know scheme-aware modeling for profiling side-channel anal-
ysis against masking. IACR Trans. Cryptogr. Hardw. FEmbed. Syst.
2023(1), 32-59 (2023). https://doi.org/10.46586 /tches.v2023.i1.32-59,
https://doi.org/10.46586 /tches.v2023.i1.32-59

Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep
learning for side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020(1), 348-375 (2020). https://doi.org/10.13154/tches.v2020.i1.348-375,
https://doi.org/10.13154 /tches.v2020.i1.348-375

Masure, L., Strullu, R.: Side-channel analysis against anssi’s protected AES im-
plementation on ARM: end-to-end attacks with multi-task learning. J. Cryp-

24

32.

33.

34.

35.

36.

37.

38.

39.

40.

S. Karayalgin et al.

togr. Eng. 13(2), 129-147 (2023). https://doi.org/10.1007/S13389-023-00311-7,
https://doi.org/10.1007/s13389-023-00311-7

Moser, B.B., Shanbhag, A.S., Raue, F., Frolov, S., Palacio, S., Den-
gel, A.: Diffusion models, image super-resolution and everything: A survey.
CoRR abs/2401.00736 (2024). https://doi.org/10.48550/ ARXIV.2401.00736,
https://doi.org/10.48550/arXiv.2401.00736

Mukhtar, N., Batina, L., Picek, S., Kong, Y.: Fake it till you make it:
Data augmentation using generative adversarial networks for all the crypto
you need on small devices. In: Galbraith, S.D. (ed.) Topics in Cryptology -
CT-RSA 2022 - Cryptographers’ Track at the RSA Conference 2022, Virtual
Event, March 1-2, 2022, Proceedings. Lecture Notes in Computer Science, vol.
13161, pp. 297-321. Springer (2022). https://doi.org/10.1007/978-3-030-95312-
613, https://doi.org/10.1007/978-3-030-95312-6_13

Oswald, D.F., Paar, C.: Improving side-channel analysis with optimal linear
transforms. In: Mangard, S. (ed.) Smart Card Research and Advanced Appli-
cations - 11th International Conference, CARDIS 2012, Graz, Austria, Novem-
ber 28-30, 2012, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 7771, pp. 219-233. Springer (2012). https://doi.org/10.1007/978-3-642-37288-
9«15, https://doi.org/10.1007/978-3-642-37288-9_15

Perin, G., Chmielewski, L., Batina, L., Picek, S.: Keep it unsupervised: Hor-
izontal attacks meet deep learning. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2021(1), 343-372 (2021). https://doi.org/10.46586/ TCHES.V2021.11.343-
372, https://doi.org/10.46586 /tches.v2021.i1.343-372

Perin, G., Chmielewski, L., Picek, S.: Strength in numbers: Improving gener-
alization with ensembles in machine learning-based profiled side-channel anal-
ysis. IJACR Transactions on Cryptographic Hardware and Embedded Systems
2020(4), 337-364 (Aug 2020). https://doi.org/10.13154 /tches.v2020.i4.337-364,
https://tches.iacr.org/index.php/TCHES /article/view /8686

Perin, G., Wu, L., Picek, S.. Exploring feature selection scenar-
ios for deep learning-based side-channel analysis. TACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2022(4),
828-861 (Aug 2022). https://doi.org/10.46586 /tches.v2022.14.828-861,
https://tches.iacr.org/index.php/ TCHES /article/view /9842

Pozo, S.M.D., Standaert, F.: Blind source separation from single measure-
ments using singular spectrum analysis. In: Giineysu, T., Handschuh, H. (eds.)
Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th Inter-
national Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings.
Lecture Notes in Computer Science, vol. 9293, pp. 42-59. Springer (2015).
https://doi.org/10.1007/978-3-662-48324-4“'3, https://doi.org/10.1007/978-3-
662-48324-4_3

Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for
biomedical image segmentation. In: Navab, N., Hornegger, J., III, W.M.W.,
Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Interven-
tion - MICCAI 2015 - 18th International Conference Munich, Germany, Oc-
tober 5 - 9, 2015, Proceedings, Part III. Lecture Notes in Computer Science,
vol. 9351, pp. 234-241. Springer (2015). https://doi.org/10.1007/978-3-319-24574-
428, https://doi.org/10.1007/978-3-319-24574-4_28

Savu, 1., Kréek, M., Perin, G., Wu, L., Picek, S.: The need for more: Unsupervised
side-channel analysis with single network training and multi-output regression. In:

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

DDPMs for Measurement Noise Removal in SCA 25

Wacquez, R., Homma, N. (eds.) Constructive Side-Channel Analysis and Secure
Design. pp. 113-132. Springer Nature Switzerland, Cham (2024)

Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side chan-
nel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) Cryptographic Hardware and
Embedded Systems - CHES 2005, 7th International Workshop, Edinburgh, UK,
August 29 - September 1, 2005, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 3659, pp. 30—46. Springer (2005). https://doi.org/10.1007/11545262“ 3,
https://doi.org/10.1007/11545262_3

Timon, B.: Non-profiled deep learning-based side-channel attacks with
sensitivity — analysis. TACR Trans. Cryptogr. Hardw. FEmbed. Syst.
2019(2), 107-131 (2019). https://doi.org/10.13154 /tches.v2019.i2.107-131,
https://doi.org/10.13154 /tches.v2019.i2.107-131

Wang, P., Chen, P., Luo, Z., Dong, G., Zheng, M., Yu, N., Hu, H.: En-
hancing the performance of practical profiling side-channel attacks using
conditional generative adversarial networks. CoRR abs/2007.05285 (2020),
https://arxiv.org/abs/2007.05285

Wu, L., Perin, G., Picek, S.: The best of two worlds: Deep learning-
assisted template attack. TACR Trans. Cryptogr. Hardw. Embed. Syst.
2022(3), 413-437 (2022). https://doi.org/10.46586/ TCHES.V2022.13.413-437,
https://doi.org/10.46586/tches.v2022.i3.413-437

Wu, L., Perin, G., Picek, S.: I choose you: Automated hyperparameter tuning for
deep learning-based side-channel analysis. IEEE Transactions on Emerging Topics
in Computing pp. 1-12 (2022). https://doi.org/10.1109/TETC.2022.3218372

Wu, L., Perin, G., Picek, S.: Not so difficult in the end: Breaking the lookup table-
based affine masking scheme. In: Carlet, C., Mandal, K., Rijmen, V. (eds.) Selected
Areas in Cryptography — SAC 2023. pp. 82-96. Springer Nature Switzerland, Cham
2024

%Vu,)L., Perin, G., Picek, S.: Weakly profiling side-channel analysis.
TACR Transactions on Cryptographic Hardware and Embedded Systems
2024(3), 707-730 (Nov 2024). https://doi.org/10.46586 /tches.v2024.i3.707-730,
https://tches.iacr.org/index.php/TCHES /article/view /11901

Wu, L., Picek, S.: Remove some noise: On pre-processing of side-channel
measurements with autoencoders. TACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020(4), 389-415 (2020). https://doi.org/10.13154 /tches.v2020.i4.389-415,
https://doi.org/10.13154 /tches.v2020.i4.389-415

Yang, G., Li, H., Ming, J., Zhou, Y.: CDAE: towards empowering denoising in
side-channel analysis. In: Zhou, J., Luo, X., Shen, Q., Xu, Z. (eds.) Information
and Communications Security - 21st International Conference, ICICS 2019, Beijing,
China, December 15-17, 2019, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 11999, pp. 269-286. Springer (2019). https://doi.org/10.1007/978-3-
030-41579-2'16, https://doi.org/10.1007/978-3-030-41579-2_16

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y., Zhang, W., Cui, B., Yang,
M.: Diffusion models: A comprehensive survey of methods and applications. ACM
Comput. Surv. 56(4), 105:1-105:39 (2024). https://doi.org/10.1145/3626235,
https://doi.org/10.1145/3626235

Yap, T., Jap, D.: Creating from noise: Trace generations using diffusion model for
side-channel attack. In: Andreoni, M. (ed.) Applied Cryptography and Network
Security Workshops. pp. 102-120. Springer Nature Switzerland, Cham (2024)
Zaid, G., Bossuet, L., Carbone, M., Habrard, A., Venelli A.:
Conditional variational autoencoder based on stochastic at-
tacks. TACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(2),

26 S. Karayalgin et al.

310-357 (2023). https://doi.org/10.46586/ TCHES.V2023.12.310-357,
https://doi.org/10.46586/tches.v2023.i2.310-357
53. Zaid, G., Bossuet, L., Habrard, A., Venelli A.: Methodology for

efficient cnn architectures in profiling attacks. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2020(1),
1-36 (Nov 2019). https://doi.org/10.13154 /tches.v2020.i1.1-36,

https://tches.iacr.org/index.php/TCHES /article/view /8391

A Correlation Attacks

First, we investigate improvements to second-order CPA-based attacks. As these
attacks utilize one sample for each secret share, the expectation is that we will see
significant improvements as the diffusion models allow for the implicit utilization
of information leaked across several correlated features. We showcase scenarios
for ASCADf and ESHARD to show the effects of a diffusion model on the attack
performance when SNR is improved (ESHARD) and when it is not (ASCADf).
Note that as peak SNR is not improved for ASCADf{, diffusing traces should
have no impact on the performance of CPA-based attacks [28]. We select the
highest SNR samples for each share in the original traces for these attacks and
combine them using absolute difference as a shortcut to avoid testing all possible
feature combinations.

The results in Figure 10 indicate that clear improvements in attack perfor-
mance are achieved. Note that for these attacks, the CPA results are not entirely
representative of real-world attacks. In fact, we require more traces than are
available in the attacks to train the diffusion models. Thus, to simulate repre-
sentative attacks, we should train diffusion models for every subset of traces we
attack in each of the attack simulations, which is impractical, especially when
training diffusion models using low trace counts. However, for noisier targets
where (very) large numbers of traces are necessary for key retrieval, this limita-
tion is not an objection, as the diffusion model can be trained using the larger set.
As such, the results in Figure 10 indicate that trained diffusion models provide
significant benefits for improving CPA attacks (or other attacks that represent
the leakage of a secret share using a single sample point).

B Profiling Attacks

In this section, we explore the impact of using diffusion models to denoise traces
in a profiled setting. We report the distribution of the attack performance of
random models to assess the impact of using diffused traces on the difficulty of
finding good model configurations.

B.1 Experimental Setup

To investigate the impact of using denoised traces for profiling attacks, we will
examine the profiling complexity of attacks against several datasets. To do this,

DDPMs for Measurement Noise Removal in SCA 27

609 —— Diffused Full 160 —— Diffused Full
140 Diffused 10k 10 Diffused 5k
120 —— Original 120 —— Original

0 25 500 750 1000 1250 1500 1750 2000 0 25 500 750 1000 1250 1500 1750 2000
Number of Traces Number of Traces

Fig.10: CPA results for ESHARD (left) and ASCAD(right). Diffused 5k/10k
refer to denoising with DDPMs trained with 5000 or 10000 traces respectively

we randomly search small MLP models using the ranges in Table 4. This search
is run using a varying number of profiling traces for original and diffused traces.
We use two diffusion models, one trained with the maximum considered number
of profiling traces and one with the minimum considered number of traces (5000
and 25000, and 10000 and 70000 for ASCADf and ESHARD, respectively).

Table 4: Hyperparameter search ranges for MLP architecture as a profiling attack
model.

Hyperparameter Options

Dense layers 1,2,3,4

Neurons 10, 20, 50, 100, 200, 300, 400, 500

Activation Function [selu, relu,

Learning Rate 0.005, 0.001, 0.0005, 0.0001

Optimizer Adam, RMSprop

Batch Size 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000
Weight Initialization|random uniform, he uniform, glorot uniform

B.2 Results

Figure 11 shows the distribution of attacking results for the 100 random MLPs
against ESHARD. The attack performance is significantly improved by utiliz-
ing diffused traces. For all the tested settings, we see that more of the models
trained on diffused traces result in successful attacks. In fact, the distribution
of attack performances at 30000 diffused profiling traces is already better than
the distribution using 70000 original profiling traces. Additionally, in settings
with lower numbers of profiling traces, only attacks using diffused traces can
successfully recover the key in 2000 traces.

In Figure 11, the results for ASCADf are less impressive. In fact, in this
case, there does not seem to be any difference between using diffused and orig-
inal traces. These results indicate that for datasets where the diffusion models

28 S. Karayalgin et al.

o€ 200 GE 200
GE 150 GE 150

GE 100 GE 100

GEs0 GE 50

oEo GEO]

NT 2000 l NT 2000

NT 1500 J ‘ ‘ l NT 1500

NT1000 | mE Original NT 1000 | I Original

W Diffusion 10k Bl Diffusion 5k

NT 500 NT 500 U
= Diffusion Full mmm Diffusion Full

NTO NTO
10000 20000 30000 40000 50000 60000 70000 5000 10000 15000 20000 25000

Number of Profling Samples Number of Profiling Samples

I

Fig. 11: Distribution of Guessing Entropy(GE)/number of traces to reach GE =
0 for 100 random MLPs for ESHARD(top) and ASCAD(bottom). Diffused
5k/10k refer to denoising with DDPMs trained with 5000 or 10000 traces re-
spectively

successfully improve SNR, it becomes significantly easier to define and train pro-
filing models that can retrieve the key, while for cases where the models do not
improve SNR, the difficulty remains the same.

C Hyperparameter Evaluation

As we only utilize one architecture and hyperparameter configuration to achieve
the results, we provide insights into the effects of varying this architecture/hy-
perparameter setup. All of these results are evaluated on the maximum SNR
peaks of the first secret share of ESHARD (the mask) and the third share of
ASCADv2 (the masked Sbox output). We chose these two secret shares as our
standard architecture works well on these targets, and they are rather different
in terms of the number of features that leak the secret shares (which can be
seen in Section 4.3). Note that, we make the default values bold to improve
readability.

C.1 Noise Schedules

The noise schedule is a key hyperparameter, and in Table 5, we see that switching
to different schedules harms performance. However, for ESHARD, each schedule
still significantly improves over the original SNR. For ASCADv2, none of the
other schedules performed better than the original SNR, but the SNR is also
not lowered. We note that other schedules may work better for different num-
bers of steps or other hyperparameter changes. Our results here do not mean
the quadratic schedule is always best, and more specific work optimizing noise
schedules for different side-channel setups could be an interesting direction for
future work.

C.2 Architecture

The effects of varying the number of downsampling (and corresponding upsam-
pling) layers are quite different for different targets. When only one downsam-

DDPMs for Measurement Noise Removal in SCA 29

‘quad‘linear‘ cos ‘ sig
ASCADv2| 0.18 | 0.08 ‘0.09 0.08

ESHARD| 1.13 | 0.92 [0.97]0.92
Table 5: SNR peaks for varying noise schedules.

pling layer is used, Table 6 shows that the difference from the original SNR
is limited for both targets. When the number is increased, we see that for ES-
HARD, the SNR increases over our standard configuration, while for ASCADv2,
the SNR decreases. In Table 7, varying the activation function results in some-
what decreased performance for ASCADv2, while for ESHARD, there does not
seem to be much of an effect. Overall, defining an appropriate architecture is
mainly the question of defining an appropriate depth. Using two blocks seems
like a reasonable middle-ground for the network, not ignoring certain leakages
that only contribute to a small number of features while still providing enough
expressive power in the network to remove noise effectively.

| 1]2]3]4
ASCADv2|0.08|0.18/0.08|0.02
ESHARD|0.63|1.13[1.61{1.48
Table 6: SNR peaks for varying numbers of downsampling blocks in the network.

[tanh[relu [selu [linear
ASCADv2[0.18 0.15‘0.09 0.08

ESHARD| 1.13 |1.43(1.21] 1.24
Table 7: SNR peaks for varying activation functions.

C.3 Training Time Hyperparameters

As can be seen in Table 8, the initial learning rate is quite an important fac-
tor. Only the standard 0.001 can effectively denoise ASCADv2. For ESHARD,
it matters significantly less, and while the performance is best for our standard
case, varying it still results in significant improvements over the original traces.
Varying the number of steps T in Table 9 shows significant room for improve-
ment over our baseline model. Especially for ASCADv2, we achieve another
50% improvement in peak SNR by optimizing T'. Overall, this indicates that the
specifying batch size and T are not too sensitive, and values in a broad range
are effective. On the contrary, defining learning rates that are inappropriate can
quickly result in models that do not learn anything for some targets.

30 S. Karayalgin et al.

[0.01]0.0010.0001]0.0005|1e-05|5¢-05
ASCADv2 0.02‘ 0.18 [0.05 ‘ 0.08 ‘0.02 0.04

ESHARD|0.02| 1.13 | 0.98 | 0.99 | 0.98 | 0.97
Table 8: SNR peaks for varying initial learning rates.

| 4 | 8 [1632 |128]|512]1024

ASCADv2{0.10{0.18|0.18|0.20{0.27{0.09| 0.02
ESHARD|1.27(1.28(1.13|1.15|1.16{1.53| 1.56

Table 9: SNR peaks for varying number of steps 7T'.

| 10 | 25 | 50 |100|200]400
ASCADv2(0.03/0.08(0.11{0.15|0.18|0.20
ESHARD|1.09{1.08{1.18|1.20{1.13|1.13

Table 10: SNR peaks for varying numbers of epochs.

|10 000]20 000/30 000|40 000|50 000|60 000

ASCADv2| 0.16 | 0.15 | 0.17 | 0.18 | 0.20 | 0.24
ESHARD| 0.89 | 1.02 | 1.04 | 1.20 | 1.13 | 1.26
Table 11: SNR peaks for varying numbers of traces.

C.4 Epochs and Number of Traces

Table 11 shows that the models are surprisingly effective when given only a rela-
tively small number of training traces. In fact, while using more traces obviously
does not hurt, the benefits are only marginal, and for the fairly difficult case of
ASCADv2’s third share, we can already see a doubling of the SNR using only
10000 traces. The number of epochs is somewhat more sensitive. In Table 10,
for ESHARD, the model performance is already good with only 10 epochs, while

for ASCADvV2, good performance starts at 100 epochs.

