Minimalist Model for Impossible Differentials

Patrick Derbez! and Marie Euler!-?

! Univ Rennes, Inria, Centre National de la Recherche Scientifique (CNRS), Institut
de Recherche en Informatique et Systemes Aléatoires (IRISA), Rennes, France
patrick.derbez,marie.euler@irisa.fr
2 DGA MI, Bruz, France

Keywords: Impossible differential - MILP - AES - ARADI - MIDORI - PRESENT
- SIMON - Simeck - SKINNY - SPECK

Abstract. This paper introduces a new MILP modeling to find impos-
sible differential (ID) distinguishers and attacks. Standard models for ID
are negative models, in the sense that a differential is impossible if and
only if the model has no solution. Our new modelling technique focuses
on probable ID, differentials that are probably impossible. While this
might lead to false positives, the main advantage is that searching for
such probable ID can be achieved through a positive model. This facili-
tates the search for the best impossible differential attacks without first
exhausting all possible ID distinguishers on a target. We also propose to
simplify the modelling by only considering two possible states for inter-
nal cells: inactive and unknown. In this case there are no longer direct
contradictions but only indirect ones, assuming that it is impossible that
all cells are inactive.

With these two simple ideas, we are able to retrieve the longest impossible
differentials distinguishers on MIDORI, SKINNY, PRESENT, SIMON, Simeck
and SPECK. Furthermore, as the model looking for candidates is based
on satisfiability, it can be incorporated in a larger model which looks
directly for the best attacks in order to enumerate the distinguishers in
the order of the complexity of the associated attacks, which we did for
the AES, ARADI, SIMON and SKINNY.

1 Introduction

Impossible differential (ID) cryptanalysis is a powerful method for eliminating
incorrect keys by exploiting the observation of an impossible event. In this tech-
nique, the attacker partially encrypts and decrypts a pair of messages through a
cipher while guessing round-key bits to uncover an impossible differential tran-
sition in the middle rounds. Specifically, this transition involves a pair of dif-
ferences (Ax, Ay) that occurs with zero probability in the remaining rounds of
the cipher. Such a pair of differences is referred to as an impossible differential
distinguisher. If this event is observed, the corresponding key guess is discarded
as invalid. The attack concludes with an exhaustive search over the remaining
key candidates.



This technique was introduced simultaneously in 1998 by Knudsen [22], who
applied it to his AES candidate DEAL, and by Biham et al. [7], who successfully
attacked 31 out of 32 rounds of SkipJack. Since its inception, ID cryptanalysis
has proven to be a robust cryptanalytic tool. For instance, it remains one of the
most effective techniques against 7 rounds of AES-128 [9).

The complexity of an ID attack is largely determined by the quality of the im-
possible differential distinguisher. As such, much of the prior research has focused
on techniques to identify long impossible distinguishers. The primary method re-
lies on the miss-in-the-middle approach introduced by Biham et al. [7]. In this
approach, the forward propagation of A;, with probability one contradicts the
backward propagation of Ay, also with probability one, after a few rounds.
Initially applied manually, this concept has been extended through a variety of
automated techniques, including the ¢/-method [21], the UID-method [26], and
the WW-method [40]. These methods rely on the propagation of four types of
differences: zero difference, fixed nonzero difference, unspecified nonzero differ-
ence, and unknown difference.

In 2017, Sasaki and Todo [33] introduced a new approach leveraging Mixed-
Integer Linear Programming (MILP). Their method involves modeling the dif-
ference propagation while fixing input and output activity patterns. If the MILP
solver cannot find a solution (i.e., a valid differential characteristic), the differ-
ential is deemed impossible. However, for S-boxes operating on more than 4 bits,
the MILP model often becomes too slow to yield results. To address this, they
proposed an approximation using arbitrary S-boxes, where any active input bit
implies a fully active output. Although this approximation simplifies the search,
it sacrifices precision, as it does not account for detailed compatibility between
successive S-boxes. This technique allows analysts to identify impossible differen-
tials without requiring manual anticipation of contradiction patterns. However,
it has drawbacks, such as a lack of explainability for why a differential is impos-
sible and the need to test multiple input and output activity patterns separately,
which becomes cumbersome for exhaustive security proofs.

To mitigate the issue of exhaustive testing, Sun et al. [35] demonstrated in
2016 that in the arbitrary S-box model, for SPNs or Feistel ciphers with SP-type
round functions, any impossible differential of » rounds implies the existence of
a weight-1 ID distinguisher for the same number of rounds. This result reduces
the number of required activity pattern tests from 22™ to m?2, where m is the
number of bits or cells in the input.

In 2022, Hu, Peyrin, and Wang [19] introduced a new method for proving the
security of specific ciphers without relying on the arbitrary S-box approximation.
Their approach partitions the space of ID candidates and uses an MILP model
incorporating the S-box difference distribution table (DDT). This advancement
improves accuracy in identifying impossible differentials but retains the limita-
tions of being a negative model, where a distinguisher’s impossibility is proven
only if no solutions exist.

Both MILP-based approaches share a key drawback: they are negative models
that cannot be directly integrated into broader frameworks for finding the most



efficient attacks. Furthermore, the low-weight ID distinguishers suggested by
these models may not always lead to the most effective attacks.

Since 2023, Hadipour et al. [11,/17,|18] have introduced a Constraint Pro-
gramming (CP)-based adaptation of the U-method. Initially limited to strongly
aligned ciphers with predefined contradiction locations [18], their models have
evolved to handle bitwise representations, incorporate advanced key-recovery
strategies |17], and even address indirect contradictions in ARX ciphers [11].
This line of research offers two major advantages: positive modeling, which facil-
itates integration into broader attack optimization frameworks, and flexibility in
application across various cipher classes. Despite these advancements, Hadipour
et al. have primarily focused on identifying good distinguishers before optimizing
the corresponding key-recovery steps.

The first tool explicitly designed to find optimal ID attacks is that of Derbez
and Fouque [14], which does not rely on generic solvers. However, their algo-
rithm remains somewhat opaque, as the paper lacks detailed information on its
inner workings, making it difficult to compare with other approaches. Recently,
the automatic cryptanalysis tool CLAASP has been improved using the recent
works of Hadipour et al. to generate CP models searching for attacks. It has
been applied to both LBlock and HIGHT [5] but does not include the indirect
contradiction search.

Our contributions In this work, we address the challenge of designing a simpler
positive MILP model that can seamlessly handle cell-based ciphers, bit-oriented
ciphers, AndRX and ARX ciphers. Our approach eliminates the need for an-
alysts to exhaustively enumerate all contradictions manually. Furthermore, we
demonstrate how this model can be integrated into a comprehensive framework
for directly searching for the best impossible differential attacks in a unified
process.

The core idea is to combine the validation strategy of Sasaki and Todo [33],
which checks the validity of impossible differentials, with a novel positive model.
This new model generates activity patterns that are likely to lead to valid im-
possible differential distinguishers. Furthermore, when included in full model
searching directly for attacks, only few probable ID distinguishers are tried for.
As a second contribution, we also propose to simplify the propagation of differ-
ences. Unlike the U/-method, which propagates four types of information (zero
difference, fixed nonzero difference, unspecified nonzero difference, and unknown
difference), our model simplifies this propagation to just two types: zero dif-
ference and unknown difference. This simplification reduces complexity while
maintaining effectiveness.

The source code of our experiments is available at:

https://gitlab.inria.fr/capsule/idtool.git

Organisation The rest of the paper is organized as follows. In Section [2| we
review in more details impossible differential attacks, and in particular their
complexity. In Section 3] we explain in detail how our modeling works. Section [4]


https://gitlab.inria.fr/capsule/idtool.git

is dedicated to applications of the modeling to different contexts. Two full inte-
grations in attack frameworks will be demonstrated with the cases of AES and
SKINNY-128 (and in appendix the low-latency design ARADI). More details on
the distinguisher modeling will be given taking into example the word-oriented
cipher Midori, the AndRX ciphers SIMON and the AddRX cipher SPECK. Distin-
guishers for the bit-oriented cipher PRESENT and the AndRX cipher Simeck are
also presented in appendix.

2 Principle of ID attacks

2.1 Impossible Differential attacks

We begin by recalling the framework for impossible differential attacks on block
ciphers, as outlined in |10]. Consider an n-bit block cipher with a k-bit master
key K. The attack leverages a zero-probability differential distinguisher spanning
rq rounds, which begins with an n-bit input difference (or set of differences) Ax
and concludes with an n-bit output difference (or set of differences) Ay, as
illustrated in Figure [I} To extend the attack, 7, rounds are prepended to the
distinguisher and rq; rounds are added afterward.

Tin D Tout

Ain AX AY Aout

Fig. 1: The impossible differential attack principle : a central distinguisher sur-
rounded by key recovery rounds

The set of potential differences at the plaintext side, denoted A;,, consists of
differences that may propagate to Ax after i, rounds. Similarly, A, represents
the set of differences at the ciphertext side that may result from Ay after rqu
rounds. The probability that a difference in A, propagates to Ax is denoted as
27 %0 while 27t represents the probability of a difference in A,y propagating
to Ay. Finally, the set of key bits involved in determining whether a difference
in Aj, leads to Ax is ki, while kot denotes the corresponding set of key bits
at the ciphertext side.

Given a pair of messages with a plaintext difference in A;, and a cipher-
text difference in Agyt, the probability that a specific key guess results in Ax
and Ay (and is thus discarded) is 27¢%»~¢ut, Consequently, the probability
of not discarding a given key is (1 — 27 ¢n~cut) When considering N such
pairs, the probability of not discarding a given key becomes approximately
(1 — 27cm—cout )N ~ exp(—N - 27 ¢n~C%ut), Furthermore, to construct N pairs,
the attacker organizes encryption queries into structures, either on the plaintext
side or the ciphertext side. Depending on the required number of pairs, multiple
structures may need to be encrypted, or in some cases, fewer than a full struc-
ture. Combining these scenarios, the data complexity D is given by the following



formula also known as the Limited Birthday formula [10]:

D= max{ min {\/ N . 2"*1*|A|} ,N - 2”+1|Ai“A°‘“|} ,

Ae{Ain,Aout }

where 214l and 2/4out| represent the number of differences in A;, and Aoy,
respectively. In the classical scenario the data complexity must satisfy D < 2"
(the full codebook size) but for tweakable block ciphers it might be extended by
the size of the tweak.

The complexity of an impossible differential attack is then given by two main
components: the generation of the pairs and the attack itself. As stated in [10]
and confirmed in [13], a lower bound for the time complexity T is:

2|kinUkout\ N
T = <D + (N + BT — > CjE) Cg,

where C'g represents the cost of a single encryption and C; the ratio of the cost
of a partial encryption to that of a full encryption. This time complexity must
satisfy T' < 2FCp, otherwise the attack would not be faster than a brute force.
Finally, the memory complexity corresponds to storing N pairs.

Note that the attacker’s goal is to reduce the set of possible keys by at least
a factor of 2 to ensure that the final exhaustive search step remains computa-
tionally feasible or to guess an extra bit and run another attack. We denote by
Npin the minimum number of pairs required to achieve this reduction. We have:
1
(1 _ 2_Cin_cout)Nmin < =,
2
Using a well-known approximation, this can be simplified into Ny, > In(2) -
2¢intcout which can be rewritten as Ny > 26ntcou=0.53

2.2 Searching for Impossible Differential distinguishers

As explained in the introduction, searching for impossible differential distinguish-
ers typically involves analyzing three trails: a forward trail, which propagates
the input difference Ax with probability 1 in the forward direction; a backward
trail, which propagates the output difference Ay in the backward direction; and
a summary trail, which consolidates the information deduced independently
from the forward and backward trails.

In this context, a bit or cell (depending on the granularity) can take one
of three possible states: 0 (no difference), 1 (non-zero difference), or x (unde-
termined state). A direct contradiction arises when a cell is assigned conflicting
values in the forward and backward trails (e.g., 0 in one trail and 1 in the other)
or when a contradiction emerges during the evaluation of a cipher operation.
For example, it may be impossible for an S-box to exhibit a transition such as
(1,0,%,%) — (0, %, x,1).



An indirect contradiction, on the other hand, occurs when certain x states
must be resolved (to 0 or 1) before reaching a direct contradiction. For instance,
in the MixColumns operation of AES, if there are four * states and four 0 states, it
is well known that the four * states must resolve to 0. These newly determined
values may then lead to a direct contradiction. The first paper pointing out
the existence of indirect contradictions used the example of the SIMECK block
cipher [30]. Initially found manually, these contradictions were later found with
a MILP modeling in [32]. Yet, this was a negative model which therefore did not
have to deal explicitly with the progressive deductions.

Indeed, the challenge with indirect contradictions lies in the iterative nature
of the deductions required to reach a contradiction. For example, given two
consecutive S-boxes, S; and S5, it may be necessary to iteratively refine the
x states by alternating deductions between S; and S; multiple times before a
contradiction is identified. Notably, the model proposed by Chakraborty et al.
in [11] does not account for such indirect contradictions, as their approach limits
deductions to a single pass from S; to Ss, even though it is unclear whether
any of the best distinguishers requires multiple passes. More precisely, once the
summary trail is computed, they start from one round (given by the user) and
then propagate this state with probability one to both the input and output of
the distinguisher and check whether a contradiction with either the forward or
the backward trail occurs. They did so because in constraints programming new
variables have to be used for each new pass, making the model very complex.

Moreover, some contradictions are not local: several deductions have to com-
bined to obtain the source of the contradiction. It is the case of some impossible
differentials on 9 rounds of the Feistel network Lilliput described in [33]: for
a €{2,3,9,¢, f}, the difference (0000000; 00000000) cannot lead to the differ-
ence (00000000; 0000000). The contradiction which uses the DDT of Lilliput’s
S-Box S comes from the fact that for such « there are no 3, z,y, z such that

S(x) @ S(zd a) =0;
S(y)® Sy ®adpf)=p;
S Sz®a)=adps.

This set of contradictory equations arise from the observations of several Feistel
XORs thus could not have been obtained with predefined local variables indi-
cating potential sources of contradictions.

3 New search principle

Previous research has shown that handling all indirect contradictions using a pos-
itive model—where a solution represents an impossible distinguisher—is highly
challenging. In this work, we focus on indirect contradictions, as they are the
most difficult to address. Our approach is conceptually simple yet highly effec-
tive. Specifically, at the onset of an indirect contradiction, there exist * states
that must be resolved into either 0 or 1. This resolution is the core of our method
for identifying impossible differential distinguishers and attacks.



Rather than directly searching for impossible differential distinguishers, our
model targets distinguishers where, in the summary trail, at least one * variable
resolves to either 0 or 1. This approach allows us to identify probable impossible
differential distinguishers, which can then be further analyzed externally to verify
their validity.

To achieve this, we introduce two MILP models. The first, called the gen-
erator model, identifies probable impossible differential distinguishers. The
second, referred to as the validator model, verifies the results of the generator
model. While other constraint programming languages could be used to imple-
ment these models, it is crucial for the generator model to support callback
functionality. This allows external programs to interact with the solver during
the solving process, significantly enhancing efficiency. Additionally, it is prefer-
able for the generator model to incorporate the full attack directly (not only the
distinguisher part) and to optimize on the time complexity, ensuring it focuses
only on probable distinguishers that lead to the best attacks. These two models
are nested: the main interface is the one of the generator model which is param-
eterized by the number of rounds of either the distinguisher rp or the respective
parts of the attack (rin, 7D, rous) depending on whether the user wants to find a
distinguisher or an attack. The validator model is called by the generator model
to validate the distinguisher candidates as soon as they are generated. It never
has to be called directly.

Finally, we emphasize that while the generator model is a positive model,
the validator model does not need to be. This dual-model approach is deliberate
and permits to simplify the modeling while handling all the contradictions that
a negative model can find. However, its efficiency highly depends on how many
candidates are generated by the generator model.

Simplifying the model. In practice, the propagation of 1’s in impossible differen-
tial distinguishers is highly ineffective within a cipher. At the cell level, the XOR
of two 1’s yields an indeterminate result, and at the bit level, it is uncommon
for 1’s to persist through more than few non-linear operations. Consequently, we
propose simplifying the model by removing 1’s and focusing solely on 0 and *
states. Under this approach, a differential is deemed impossible if and only if all
the * states in the summary trail must resolve to 0. In particular, a contradiction
is necessary an indirect contradiction. The intuition behind this simplification
is that, for the longest impossible differential, the contradiction arises not from
the propagation of 1’s from both the input and output of the distinguisher, but
rather from the propagation of 0’s from at least one of these two sides.

Hence, in the following we will describe a simplified model, with only two
possible states for each variable — 0 and * — and a distinguisher will be a probable
impossible differential if and only if at least one of the * variable of the summary
trail has to resolve to 0 to be valid. However, the same approach can obviously
be used in a model containing the 1’s.



3.1 Generator model: The distinguisher part

Classically, we use three trails in the distinguisher part of the generator model:
the forward trail propagates Ax with probability 1 in the forward direction,
the backward trail propagates Ay in the backward direction and summary trail
which merges the information of both these two trails. Each of the variables
representing the state values considered in these trails are binary: it is zero if
the cell is inactive (denoted 0) and 1 if the difference is unknown (denoted ).

We begin by describing the propagation of differences in the forward trail,
constraints for the backward trail being similar.

Modeling the XOR and the AND We know that the XOR (resp. the AND) of
two inactive cells remains inactive while the result of the XOR (resp. the AND)
of any unknown difference with another difference is unknown. Thus we model
the XOR ¢ =a @ b and the AND ¢ = a - b with the constraints ¢ < a + b < 2¢c.

Modeling Arbitrary S-Boxes We consider that except if all the inputs of a n-bit
S-Box are inactive, the output difference bits of this S-Box are all unknown. Let
us denote as (a;)o<i<n the input differences and (b;)o<i<n the output differences.
The constraints we set on a and b are quite natural:

bp=b1=...=b,_1
Yoai/n<by <) a;

Note that, for cell-oriented models, the constraint is even simpler since it sim-
plifies to a = b.

Moreover, these kind of modeling naturally captures truncated distinguishers.
Indeed, when the S-boxes are deemed arbitrary, the only important information
in any bit activity pattern in Ax, is the knowledge of which cells are activated.
Therefore, when only searching for distinguishers, we can fix an arbitrary bit
pattern at the cell-level to indicate that the cell is active, for both the first and
last layers of S-boxes. This will limit the number of equivalent solutions of the
model. For instance, the constraint ap = a; = --- = a,_1 can be applied on the
input of the first S-box layer.

Modeling Specific S-Bozxes This only applies for bit-oriented models. Given a
n-bit S-box, we need to determine for each (ao,...,a,—1) € {0,*}™ at its input,
what is the corresponding output. We first have to compute the list of all possi-
ble differential transitions through the S-box and then, for each input, we check
which output bits (if any) are set to 0 for all the possible corresponding output
differences. Next, we can construct the outputs (bo,...,b,—1) € {0, *}™ associ-
ated to each (ag,...,a,_1) step by step, ordering the inputs by their number of
. Finally, for each of the 2™ transitions (ao,...,an—1) = (bo,...,bn—1) we add
the constraints:

2 (A =b) < H{i b=} x>0 (1—a)

i,b;=x% 1,0, =%
i,b;=0 i,a;=0



Note that in practice, most of the constraints are redundant and do not
need to be included. The final number of constraints only depends on the num-
ber of possible (b, ...,b,—1). For instance, let assume we have the transitions
(0,%,0,%) — (0,0, *,*) and (x,%,0,%) — (0,0, *, x). In this case we can keep only
the constraints

(1 — bg) + (1 — bg) < 2((1 — al) + (1 — &3)) and (1 — bo) + (1 — bl) < 2as,

since both (1—bg)+(1—b3) < 2((1—ag)+(1—a1)+(1—a3z)) and (1—bg)+(1-b;) <
2(ag + ag) are weaker. Note that most of the strong S-boxes do not have such
patterns and thus the few constraints of the arbitrary S-box modeling are enough.
Yet we can observe such weak diffusion pattern for some of the S-boxes used in
lightweight ciphers. For example, there are two non-trivial transitions in the
4-bit S-box S of SKINNY-64: the third bit of S(z) & S(x & 1) is always zero,
which corresponds to the pattern (x,0,0,0) — (x,%,0,%), and the fourth bit
of S(z) ® S(x @ 2)) is always zero, which is equivalent to the probability one
transition (0,*,0,0) — (*,*,%,0). For all other non null input patterns, the
output pattern is merely (x,x*,*,%) that is none of the output bits is always
inactive. Similarly, the only non-trivial pattern in the 5-bit S-Box of ASCON is
(07 07 07 0, *) - (*7 *, 0, %, *)

Modeling Linear layers Since we are only looking for propagations of probability
1, the constraints are exactly the same as for XOR: an output bit/cell is 0 if and
only if all the bits/cells it depends on the input are 0 as well.

Deduction of the summary trail Let ¢ be the deduction from the knowledge of
the cell a in the forward trail and the cell b in the backward trail. The only case
where the difference ¢ is unknown is when the differences a and b are unknown.
This can be modeled with the constraints 2¢c < a+b<1+c.

Modeling the deduction of new zeros This is the novelty of the model regarding
the distinguisher. Given an operation f within the cipher, our goal is to identify
all subsets of input and output bits or cells such that if all variables in a subset
have a difference of 0, then at least one additional input or output bit/cell must
also have a difference of 0. For linear layers, this process is straightforward and
relies on basic linear algebra to determine which bits or cells can be expressed
solely in terms of the subset’s variables. For S-boxes, the process is similar to
generating the constraints described earlier, but it differs in scale. The number
of subsets that must be considered is larger, specifically 2™ for an n-to-m-bit
function f.

We also have to introduce an auxiliary binary variable z into the model,
which takes the value 1 for subsets that create a new zero and 0 otherwise. For
sake of simplicity and efficiency, we only considered patterns which impose a new
zero in a fixed place. While this results in 2”7 inequalities, these can often be
reduced using classical techniques such as the Quine-McCluskey algorithm [2§]
or similar methods.



Let us take as example the 4-bit S-Box of the PRESENT blockcipher whose
table is [c,5,6,b,9,0,a,d,3,e,£,8,4,7,1,2]. There are 42 patterns leading to
the creation of new zeros. They are presented in Table [I| and actually, all but
the last one imply that the S-Box is fully inactive. Note that the 2*t* = 256
associated constraints are reduced by the Espresso logic minimizer to only 43
constraints.

000%000% |000x00%0[000%00%*|000%0%00|000%0%0x%|000%0%*0
0000 |000x000{000x0x0{00«0000% | 000000 | 000000
00x0%000|00x0*x00 [00*+00x0|00*+x000 | 0x00000= | 0+x0000%0
0x000%00 [0x00x000{0%x00x00%|0x0x000 | 0x0xx000|0*x000+0
0x%x0000 [Qxx00%0| 0x*+x000| 000000 | *00000%0 | x00000*
*0000%00{*0000x0% |*0000**0 | 00003 | 000000 |x000x0*0
*00%xx000|*0%0000x | %0« 0000 | 00000 | xx000+00 | x*00**x0*0

Table 1: 42 input/output patterns leading to new zeros on the PRESENT S-box.
Each pattern is given as the concatenation of the input and the output patterns.

Another interesting example is the specific case of Maximum Distance Sep-
arable (MDS) matrices for which the constraints can be significantly simplified.
Consider, for instance, the MixColumns operation in AES, with inputs (ag, a1, as, a3)
and outputs (bg, b1, be, bs). Subsets leading to a new zero must satisfy the fol-
lowing constraints:

a0+a1+a2+agzz,
bo+ b1+ by +bg >z,
ag+ay+as+asz+byg+ by +by+b3 <8—4z.

In essence, this means that no more than three inputs and three outputs can
simultaneously be zero; otherwise, new zeros would appear either in the forward
or backward trail. However, at least four variables must be zero for new zeros to
be created.

Removing invalid candidates If the validator model confirms that a candidate
(Ax, Ay) is a valid differential, it becomes necessary to exclude this candidate
from the solution space of the generator model. Furthermore, we can also elim-
inate all candidates that include this differential. This is achieved by enforcing
a constraint in the model that ensures at least one of the x variables in either
Ax or Ay is set to 0. This requires adding only a single inequality as a lazy
constraint through the callback functionality.
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3.2 Generator model : inclusion in an attack framework

The reason we propose a positive model is to include it in a larger model, directly
searching for the best impossible differential attack. We describe here the main
steps of the key-recovery part.

Active cells The ry, rounds of key recovery preceding the distinguisher and
the rous rounds following it are modeled in the standard way: Ax and Ay are
propagated with probability one toward the plaintext and the ciphertext. This
process identifies the active cells at the inputs and outputs, as well as the needed
cells whose values need to be determined to compute the active ones. These
active and needed cells, in turn, dictate which key bits must be guessed during
the key recovery step.

Entropy of the key bits This is arguably the most challenging aspect and re-
mains an open problem. When the key schedule is a permutation of bits or can
be described with simple rules, as in the case of SKINNY, the modeling is rel-
atively straightforward. However, even for linear key schedules, it can become
complex to enumerate all possible relations, including key-bridging relations, and
no systematic approach currently exists.

To address this limitation, users have two main options. They can either
assume no relations exist between the key bits involved in the attack or artifi-
cially reduce the entropy estimated by the model and validate this assumption
a posteriori.

Computing the complexity Given an n-bit cipher with m-bit cells and a key size
of k bits, we propose the following constraints to describe the complexity of
the attack. Let us assume the model already set the variable p as the (—log,
of the) probability for a pair to satisfy the input and output of the impossible
differential, the variable k as the (—log, of the) entropy of k;;, U koye and both
the variables D;, and D,,; representing the dimension of the active cells in the
plaintext and the ciphertext respectively.

The first step is to model the data complexity D as well as the number of
pairs N. This can be achieved with the following constraints:

e binary variable, D,,,, continuous variable in [0, n]

g continuous variable in [1,m], D continuous variable in [0, n]
Dmaw SDzn'i'n X e

Daz < Dout + 1 X (1 - 6)

N=p—053+g

D>(N+n+1—Dpaz)/2

D2N+n+1_Din_Dout

If one tries to minimize D, he will reach the formula of the data complexity
given in Section The variable g represents the — log, of the factor by which

11



the key bits involved in the attack will be reduced and 27%°3 ~ In(2). Then the
time complexity of the attack can be constrained with the following inequalities:

T continuous variable in [0, k], f binary variable
T>D

T >N+ cy

T>k—p+ N +cj

T>k—g—nxf

g=zmx(1-f)

The last two constraints are a bit different than the complexity formula given
by Boura et al. in [10]. Here we propose to limit the reduction factor g to m-bit,
since it is often more efficient to perform a second attack requiring one more
guess than brute-forcing the remaining keys. But obviously, the constraints can
be modified, depending on the target.

3.3 Validator model

The validator model is a rather classical model searching for differential charac-
teristics but for which both the input and output activity patterns are given. It
only deals with the r4 rounds of the distinguishers. If the model is unsatisfiable, it
implies that the activity patterns are incompatible, leading to the discovery of an
impossible differential distinguisher. While, in theory, the validator model does
not require the same granularity as the generator model, it would be unusual to
adopt a different level of precision. In all applications described in Section [4] we
used the same granularity for both models.

That said, the validator model differs from the generator model in its treat-
ment of 1’s. Although we decided to disregard them within the generator model,
the validator model must account for them. Specifically, for each * in Ax and
Ay we must decide whether it remains a * or is set to 1 for the differential to be
impossible. This consideration is particularly important in bit-oriented models,
since the number of 1’s directly affects the dimensions of Ax and Ay which
may, in turn, affect the time complexity of the associated attack.

A secondary goal of the validator model can therefore be to maximize |Ax|+
| Ay |. To achieve this, whenever the model finds a valid differential, we impose a
new constraint that forces at least one of the x bits previously set to 0 in either
the input or output to be set to 1 and rerun the model. Asking the model to
maximize the number of 1’s will make the strategy highly effective. Finally, if the
model eventually becomes unsatisfiable, we execute a simple model containing
only the extra constraints previously added with the objective to minimize the
number of 1’s.

4 Applications

Our code was written using either the Python API or the C API for Gurobi.
The computations run on a standard laptop, taking only seconds for the simplest
cases and a few minutes for more complex ones.
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We provide visualizations of some of the best impossible differential (ID) dis-
tinguishers across all applications, using a straightforward color-coding scheme.
A red triangle in the upper-left corner of a cell (!]) indicates an unknown bit
or cell in the forward trail, while a blue triangle in the lower-right corner (L)
represents an unknown bit or cell in the backward trail. Cells outlined in green
correspond to the bits or cells used to deduce new zeros in the summary trail.

4.1 Application to AES

The AES (Advanced Encryption Standard) is a block cipher with a block size
of 128 bits. It comes in three variants, differing in key sizes—128, 192, or 256
bits—and the corresponding number of encryption rounds. The block state is
represented as a 4 X 4 array of bytes. Encryption begins with an initial round-
key addition, followed by multiple iterations of the same round function, which
is identical across all AES versions. The round function consists of four byte-
oriented transformations:

— SubBytes (SB): Applies the same S-box substitution to each byte of the
state.

— ShiftRows (SR): Rotates the second, third, and fourth rows of the state
to the left by one, two, and three bytes, respectively.

— MixColumns (MC): Multiplies each column of the state by a Maximum
Distance Separable (MDS) matrix.

— AddRoundKey (ARK): XORs the state with the current round key.

In the final round, the MixColumns operation is omitted.

Modeling the distinguisher We use the arbitrary S-box model, and the propa-
gation through the linear layers is encoded using the simplified constraints for
modeling MDS matrices, as described in Section @ Let Xy, X3, and X, denote
arrays of rq X 16 binary variables representing the states immediately before the
SB operation for the forward, backward, and summary trails, respectively. For
all » and ¢, the following inequalities hold:

2 x X[r]li] < Xplr]li] + Xp[r][i] < X[r][i] + 1,

relating these three trails and ensuring that a state byte in the summary trail is
zero if and only if it is zero in either the forward or backward trails.

The propagation in the forward trail between rounds r and r + 1 is encoded
with only a few simple constraints. First, after MixColumns, a column is either
fully active or fully inactive which can be translated into the constraints:

Xylr+1][4i) = Xy[r +1][4i + j] for all 0 < j < 4.

And then it is fully active if and only if at least one of the 4 cells involved in the
MixColumns is active:

Xylr+1][44] < ZXf[r][4(i+j mod 4) + j] < 4 x Xy[r + 1][44].

13



Note that we combined here in one step the MixColumns and ShiftRows opera-
tions and that at the cell level, the SubBytes and AddRoundKey can be skipped
as they do not alter the activity pattern.

Modeling the key-recovery Let X;, be an array of ri, x 16 binary variables
representing the states immediately before the SB operation in the extension
of the distinguisher to the plaintext. The end of Xj, must match the input of
the distinguisher, resulting in the constraint Xi,[ri,] = X;[0]. The transition
between X;,[rin] and X, [rin — 1] does not need to be deterministic since we can
add any linear relation between the active bytes at the input of the distinguisher.
Using the MDS property, the constraints between these two states are given as:

€r,.,i 1S & binary variable,
Z]‘ Xin[rin - 1][4(Z +] mod 4) + ]] + Xin[rin][4i + .]] > 567“m,i7
Zj Xin[rin - 1][4(1 +] mod 4) + ]] + Xin['rin][4i + ]] < 867-”“1'.

For the remaining rounds, propagation must occur with probability 1 up to
the plaintext, so the constraints are identical to those for the backward trail.
To compute the probability of a pair of plaintexts reaching the distinguisher’s
input, we define a variable e, ; for each column. The —log, of the transition
probability p,; is then computed as:

Pri = 8(4er; — ZXin[r] [4i + j]), forr > 1.
J

The dimension of the difference in the plaintext, Dj,, is computed as D;, =
>~; Xin[0][z]. Finally, the entropy k of the key material required for key recovery
is obtained by counting the number of active variables in Xj,, excluding X, [rin].
For each equation in the key schedule, if all variables in the equation are active,
we subtract 1 from k. Note that our model includes only the original equations
of the key schedule and does not account for advanced relations such as key
bridging. A similar set of constraints can be derived for the extension of the
distinguisher to the ciphertext.

Result Our model efficiently identified the best impossible attack on AES-128,
producing results instantly. The output matched the attack described by Mala
et al. |27], which corresponds to the basic version of the best-known impossible
differential attack against 7-round AES-128, as later refined by Leurent and
Pernot [24]. Specifically, Leurent and Pernot enhanced the attack by leveraging
multiple distinguishers and replacing the exhaustive search step with a clever
procedure relying on their innovative representation of the AES key schedule.

4.2 Application to SKINNY

SKINNY is a family of tweakable block ciphers introduced in [3]. It is based on a
Substitution-Permutation Network (SPN) structure. Each instance is denoted as
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SKINNY-n-zn, where n represents the block size (either 64 or 128 bits), and zn
refers to the tweakey size, with z € {1,2,3}. The state is composed of 16 cells,
each of size ¢ € {4, 8} bits. The round function consists of four main operations,
similar to the ones of AES: the SubCell (SC) layer which applies the same S-
box on each cell of the state, the addition of round constants and 8c-bit round
tweakeys, a ShiftRows (SR) operation which is actually the inverse of the AES
one, and a MixColumns (MC) operation which involves a non-MDS binary
matrix.

Impossible differential cryptanalysis was included in the security analysis
conducted by the designers. Using the miss-in-the-middle technique, they dis-
covered distinguishers spanning 11 rounds and developed a 16-round attack on
SKINNY-n-n based on this distinguisher. Subsequent research proposed attacks
on SKINNY-n-n, SKINNY-n-2n, and SKINNY-n-3n in both single-tweakey and
related-tweakey settings [17}/18,25//39./41]. In this work, we focused on the single-
tweakey setting and aimed to recover the best known attacks, as described in [18].

Modeling the Distinguisher SKINNY is cell-oriented so we employed a cell-based
model combined with the arbitrary S-box model. The generator model is tasked
with identifying new zero cells in the only remaining complex layer, the Mix-
Columns operation:

Yo 1011\ [0

n| [1000] |2

Y2 - 0110 )

Ys 1010 I3
M

We exhaustively enumerated all possible patterns to identify those that result
in new inactive cells. For instance, if xo = y5 = 0, then 0 = yo = x1 + x2, which
implies ©1 = 0. Thus, the pattern (x,x,0,*,x,%,0,%) leads to a new inactive
cell (z1). Using the Espresso logic minimizer, we derived compact constraints,
yielding 31 inequalities.

Modeling the Key-Recovery The key-recovery part of our model is similar to the
one used for AES, but specific adaptations are required due to the particularities
of SKINNY’s tweakey schedule and the non-MDS matrix of the MC operation.
Notably, inactive cells may occasionally need to be used to compute the value
of an active cell, which is required to verify whether the partially encrypted
pair of plaintexts belongs to AX. To account for this, we introduce a new bi-
nary variable, needed, for each cell. This variable encodes whether the value of
the corresponding cell is necessary during the key-recovery step. The rules for
identifying needed cells are as follows:

— Active cells: If a cell is active, it is also needed.

— Propagation through MixColumns: If any of the output cells y; is
needed, all the input cells x; contributing to y; are also needed. This propa-
gation corresponds to the transpose of the MixColumns matrix M.
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— Round-tweakey cells: If a round-tweakey cell is required to compute a
needed state cell, the round-tweakey cell is included in ki, .

To identify kout, we apply similar rules but swap the AddTweakey and Mix-
Columns operations. The entropy of ki, Ukoyt can then be accurately computed
by, for instance, using the constraints provided by Qin et al. in [29]. More pre-
cisely, SKINNY-n-zn’s tweakey schedule is merely a permutation, and guessing
a cell in z round-tweakeys is sufficient to uniquely determine its value across all
other round-tweakeys.

Results For all variants of SKINNY, our model identifies optimal attacks in under
10 seconds, processing up to only five candidates suggested by the generator
model. Using this approach, we successfully recover the three attacks described
in [18] in the single-key setting. For SKINNY-n-n, our model identified three dis-
tinguishers leading to attacks with the same complexity, which is dominated by
the data complexity (see Figure @ Similarly, for SKINNY-n-3n, two distinct at-
tacks with optimal complexity were found. One attack involves 42 round-tweakey
bits, while the other involves 43 round-tweakey bits.

4.3 Recovering the distinguishers of [33] on Midori-128

Midori [1] is a lightweight block cipher designed to minimize energy consumption
during execution. It has two versions: Midori-64 (with a 64-bit block size) and
Midori-128 (with a 128-bit block size). Since Midori-64 has been fully broken
(see [61/161/38]), we focus on Midori-128.

The cipher uses four different 8-bit S-boxes, each defined as follows: a bit
permutation p;, followed by the parallel application of two 4-bit S-boxes, and
finally the inverse bit permutation p;I. A group of 8 bits entering an 8-bit S-box
is referred to as a cell, while the cell’s bits are divided into two subcells, processed
by 4-bit S-boxes:

— The upper subcell consists of the 4 bits mapped by p; to positions {0, ..., 3}.
— The lower subcell consists of the 4 bits mapped to positions {4,...,7}.

The first impossible differential attack on Midori was introduced in 2016 by Chen
and Wang [43], using a 6-round distinguisher with two equal differences in the
input pattern. Sasaki and Todo [33] later proposed 12 weight-1 distinguishers for
7 rounds of Midori-128. They also demonstrated that no weight-1 distinguishers
exist for 8 rounds when the 4-bit S-boxes are treated as arbitrary.

Models Due to the structured design of the 8-bit S-boxes, we implemented the
generator model at the bit level, utilizing an arbitrary S-box model for the un-
derlying 4-bit S-boxes. New zeros were only searched around the MixColumns
operation, as described in Section [3}

The validator model used the same granularity as the generator model. Inter-
estingly, we observed that adding redundant constraints for the inverse M C op-
eration (7.e. since the matrix is involutive, it means swapping the input and out-
put variables in the inequalities) significantly accelerated the solver—reducing
runtime by approximately tenfold.
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Results We used Gurobi’s PoolSearchMode option to exhaustively search for
all ID distinguishers over 7 rounds of Midori-128. Without optimization, the
model required 8 minutes to find all the 1,513 candidates, 36 of which were valid
ID distinguishers. Recognizing that a complete 4-bit S-box must be inactive to
produce an ID distinguisher, we added a constraint requiring at least four new
zeros to be deduced from the summary trail. With this optimization, the same
36 distinguishers were identified in under 5 minutes, involving exactly 1,200 calls
to the validator model.

The results are as follows: Among the 36 distinguishers, 12 correspond to the
weight-1 distinguishers described in [33]. The remaining 24 are slight variations
of these distinguishers.

Let us give more insight about the 12 original distinguishers. For any i €
{1,4,5,8,9,12}, an input pattern where all cells are inactive except the upper
(resp. lower) subcell of cell ¢ is incompatible with an output pattern where
all cells are inactive except the lower (resp. upper) subcell of cell i. Now the
additional 24 distinguishers arise from the following observation: for each of the
12 distinguishers, replacing the active subcell in the input (resp. output) pattern
with a fully active cell (i.e. both subcells active) still results in an impossible
differential, provided the change is not applied to both input and output. In
summary:

— At the cell level, there are 6 distinct ID patterns. Each pattern activates the
same cell in both the input and output patterns.

— For each of these patterns, there are 6 valid subcell activation combinations,
all leading to ID distinguishers.

An example of an ID distinguisher with both subcells active in an input cell
is shown in Figure [2]

Finally, the solver required only 2 minutes to confirm the absence of ID dis-
tinguishers over 8 rounds. Specifically, it demonstrated that no activity pattern
exists that could lead to the deduction of new inactive cells.

Other kinds of SPNs such that the bit-oriented PRESENT and the LS-design
low-latency ARADI can also be modeled in our framework. We give more details
about this modeling in the appendix [A]and [Bland will focus here on bit-oriented
Feistel networks: AndRX designs such as SIMON and ARX designs such as SPECK.

4.4 Application to AndRX and ARX designs

SIMON The SIMON family of blockciphers is a NSA design introduced in [2]. It
is a AndRX design based on Feistel structure. Let us call L; (resp R;) bit ¢ of
the left (resp. right) branch entering the round j. Let T% be the result of the
application of the non-linear function on L?. All the registers have the same size
n. Then, the round function works as follows

me =1y
sz = sz+8) mod anj-i—l) mod n ® sz+2) mod n

i+l _ g g i
L' =KIoR &T.
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Fig. 2: Example of a new ID distinguisher on 7 rounds of MIDORI-128

SIMON has been the object of much scrutiny since its publication. Regarding
impossible differential cryptanalysis, the first attacks were exposed by Boura et
al. in . Other distinguishers and attacks were manually obtained
and then automatically . Note that Sasaki and Todo also proved the
absence of impossible differential distinguisher of weight 1 on 12 rounds
of SIMON-32. More recently, Zhang et al. proved that the length of the known
impossible differential distinguishers are optimal, even when considering indirect
contradictions , but in 2024, Chakraborty et al. used their CP tool to improve
the previously known attacks by at least one round on all versions .

Modeling SIMON is bit-oriented cipher so is our model. New zeros can be obtained
at two places through the round function. First if exactly two differences are null
among the 3 bits L;H, R; and T]’ then the difference in the third one has to be
null as well. The corresponding constraints are thus:

LT+ R4+ Ti > 2
L+ R+ TP <3-22

Figure [3| zooms on the fourth round of a impossible differential distinguisher
for SIMON-32 to give an example of the deduction of a new zero. The model
detects a new zero around the XOR of bit number 8 of 7% and R*. Second, if
the difference in L’('j +8) mod n and ij +1) mod n A€ null as well as the difference

in either T} or L’('j+2) mod n, then the difference in both T; and Léj+2) od n 18
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Fig. 3: New zeros in a Feistel Structure like SIMON.

null. This can be modeled by:

Lz(_j+8) r_nod n + LEj-{-l) mod n < 2(1 - Z)
TJZ + Ll(j+2) mod n >z
Ti + ij+2) modn S 2%
Finally, we add a constraint to deal with the rotation invariance of the state
by forcing the first bit of either the left or the right branch to be active: L3+ RJ >
1.

Results We recovered distinguishers of the same length as the previously known
in less than 5 seconds for each version of SIMON. The number of candidates sent
to the validator model until finding a valid ID was at most 20. We were also able
to prove the absence of impossible differential for larger numbers of rounds in
less than an hour on our laptop.

We can also include in our model the key recovery steps. Our modeling is
looser than the one of so the complexity bounds are less tight: contrary
to , we cannot precisely define the filtering bits and therefore preferred to
use the naive estimate of ¢;,, as Dy, — Dx (respectively cout = Dout — Dy ). Yet,
we still obtain satisfactory results of attacks in a few minutes. For instance, we
can reproduce the attack on 19 rounds of SIMON-32-64 and also find one using
fewer key bits (see Figure6)) for a total complexity of 24347, Similarly, we obtain
attacks for all variants of SIMON in minutes but we needed to set up a time limit
of 15 minutes in order to cut off long optimality proofs.

Simeck We defer the analysis of Simeck, really close to the one of SIMON to the
appendix

SPECK The SPECK family of blockciphers has been introduced with SIMON in .
It is an ARX design based on Feistel structure. Let us call L* (resp R') the left
(resp. right) branch entering the round 7. All the registers have the same size n.
Then, the round function works as follows

L't = (' < a) BR) ® K*
Ri+1 — (Rz S>> ﬂ) P Li+1
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Modeling Obviously we used a bit-based modeling, mostly relying on the full
adder, the function f(z,y,¢) = (z®y ® ¢,zy O cx & cy), which can be used to
iteratively compute the modular addition (see [11] for more details). We mainly
considered it as an S-box and apply the same modeling techniques than for
the other ciphers. The new zeros can be created around the XORs and the full
adders. To simplify the problem, we removed the XOR of both branches in the
last round since it is a linear operation.

Results We were able to prove that there are no ID distinguisher on 7 rounds
instantaneously and for all versions of SPECK. It also took only few seconds to
find ID distinguishers on 6 rounds for all versions as well.

5 Conclusion and future works

This work mainly brings simplification in the field of automatic search for im-
possible differential distinguishers and attacks. This simplification comes with
two main side advantages. The first is that it is really simple to get familiar with
our model and thus we hope that many designers and cryptanalysts will apply
it to various cryptographic algorithms. The second improvement is the solving
time: a generic solver finds a solution nearly instantaneously for most of the
applications we demonstrated.

Throughout our work, we noticed several areas for improvement in our model.
The first limit is that we only considered the deduction of new zeros in a fixed
position in the generator model. However, other behaviours could indicate a
probable impossible differential transition. For example, if the dimension of the
set of solutions to a 0/ pattern is smaller than the dimension of the pattern,
it indicates that some zeros will appear in any instantiation of the pattern.
Yet, taking into account this wider class of deduction may lead to too many
false candidates flooding the validator model. Moreover, we are also convinced
that the key recovery steps of our generator model could be adapted to the
probabilistic propagation framework [34]. On a wider perspective, most of the
previous works proposed both a model for zero-correlation cryptanalysis and
for impossible differential cryptanalysis because of their duality. We did not
demonstrate the ability of our model to detect the former but at least for the
distinguisher part, it should be a straightforward application using the dual
structures of the ciphers.
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A Application to the bit-oriented cipher PRESENT

PRESENT is a 64-bit lightweight blockcipher introduced by Bogdanov et al. in [§].
Its round function is composed of a S-box layer followed by a permutation of the
state bits and a key addition.

Modeling the Distinguisher Tezcan [37] provided ID distinguishers on 5 rounds
in an arbitrary S-box model and on 6 rounds in the specific S-box model. The
linear layer being a permutation, new zeros can only be obtained around an
S-box. We applied the algorithm presented in Section [3| and found 42 possible
patterns leading to new zeros. There is only one case where the deduction of
a new zero occurs without completely inactivating the S-box: if we have the
pattern (x00x%, *0%0) then we can deduce that the first bit of the output difference
is actually zero. Regarding the validator model, we decided to do the more
complete model possible by encoding the exact DDT in it.

We faced our first challenge in reproducing these results without considering
the propagation of 1’s in the generator model. The main problem is that the
6-round distinguishers requires the transition (1001) — (x#x0) through the S-
box to be valid within the model. Unfortunately, the transition (x00%) — (xxx0)
cannot be added to the model since it does not happen with probability one.
Hence, there are two choices. The first one is to consider 1’s as well is the
generator model, making it more complicated. The second option is to artificially
allow the transition even though it is wrong and to let the validator model handle
it. This is the option we selected. However, we only allowed it in the first S-box
layer (note that a similar transition is also valid for S=! and we allowed it in
the last S-box layer) to avoid too many false positive for the generator model.

Results Finding ID distinguishers on 6 rounds is instantaneous. The model de-
cides also in less than one second that there is no ID in 7 rounds. Indeed, it does
not find any candidate able to generate a new zero.

Interestingly, we were able to find a 6-round ID distinguisher such that all
the S-boxes at the output are active. This heavy ID distinguisher is depicted
in Figure [4] It contradicts one of the heuristic commonly used in the search of
Impossible Differential distinguisher that the longest IDs are caused by pairs
with very few active bits because otherwise inactive values would not be able
to propagate with probability one to the central rounds of the distinguisher. In
particular, we emphasize that the result of Sun et al. [35] about the reduction
of any ID distinguisher to a low weight distinguisher only applies to arbitrary
S-box models.
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Fig.4: A heavy ID distinguisher on 6 rounds of PRESENT (least significant bit on
the left)
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B Application to a new design ARADI

ARADI [15] is a low-latency blockcipher published by the NSA in 2024. It processes
128-bit blocks using 256-bit keys. An optimal 4-bit S-Box is used in combination
with four different involutive linear layers A; alternating every 4 rounds for a
total of 16 rounds. In particular this means that partial-round security properties
have to be evaluated regarding the number of rounds of this toy cipher and the
index of the first linear layer used.

The first cryptanalysis of of ARADI, remarkably published only a few weeks
after the design, has been provided by the automatic tool CLAASP [4] . It gives
first results against various types of attacks. Regarding impossible differentials, it
uses a validation approach (as in [33]) to demonstrate that any 7-round pattern
leading from 1 active nibble to 1 active nibble is an impossible differential. It
seems that it only considers partial-round security beginning at round 0. A recent
preprint presents a full round related-key Impossible Boomerang attack .
However it seems unverified as it needs 23 data.

We applied our framework at the nibble based on of ARADI. We were able to
obtain the first impossible differential attack against 13 rounds represented in
Figure [f] New zeros are obtained on the equations of the linear layer: sums of
4 nibbles having to be zeroed. Equations leading to new zeros are represented
by nibbles being framed by the same color. We obtain Dy, = 4 x 9 = 36,
Dout = 4%x21 =84, Dx = Dy =4 and |kin Ukout| = 4 x (16 +39) = 220. Finally,
we get iy + Couy = 112 and thus a data complexity of ¢, + cout —0.53+n+1—
|Din| — | Dout| + g = 121.47 (in log2) and a time complexity of 222047, Note that
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the last round does not completely appear in the figure as the missing step (S
and A) will not change the dimension of the outer space.

The time complexity of the best 13-round attacks we obtain for other offsets
are 222447 (for offset 1), 225247 (for offset 2) and 224047 (for offset 3). We did

not found any attack on 14 rounds.
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Fig.5: The first ID attack on 13 rounds of ARADI beginning at round 0. Cells
framed in the same colours are involved in the same deduction. The striped cells
are the needed cells of the key recovery steps.

C DMore results on the AndRX SIMON and Simeck

C.1 SIMON

We also ran the solver with the objective to find impossible differential of heavy
weights. We used the technique from Section [3.3] to deduce clusters from these
distinguishers. For exemple, the distinguisher on 11 rounds of SIMON-32

0000000000000000 1000000100000010 - 1000000000000010 0000000000000000
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is in fact the convex hull of the following impossible differential distinguisher
cluster containing 16 characteristics

00000000000000000000001000000%0 — *x0000000000000x00000000000000000.

Similarly, we obtained high dimensional clusters for all versions of SIMON in few
seconds. The bigger one deals with 19 rounds of SIMON-128 and has dimension
48:

00500000k xx 0k 5% 0000000000000000000000000000000000000
sk 0sxskoctok Oskokotsksiokok sk sk 100000000000000000000000000000x0x 000
¢
0000000000000000000000000x0%000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

C.2 SIMECK

The Simeck family of blockciphers is an optimized version of SIMON introduced
in [42]. Tt is structurally similar to SIMON except it uses a different non linear
function :

T]l = L;LEJJrS) mod n @ L7(lj+1) mod n*

As for SIMON, we focused on the search of new zeros around the XOR of the
Feistel structure and reduced the search space by forcing the first bit of either
the left or the right branch to be active in the input pattern.

The designers of Simeck provided in their security analysis first estimations
on the number of rounds that could be attacked by impossible differential dis-
tinguishers. However, it was only focused on direct contradiction between the
forward and the backward trail. These attacks were later improved using indirect
contradictions found manually ( [31]) or automatically ( [11}/44]).

We did the same modeling as for SIMON, with only the slight modification
of the rotation coefficients. We tried two approaches to generate distinguishers.
The first one consists in searching for candidates with a maximum number of
newly deduced inactived cells in the generator model. Indeed, intuitively, these
candidates will lead to impossible transitions with high probability and thus the
validator model will have to verify less candidates. Remarkably, we recovered
distinguishers of the same length than the previously known in seconds without
the burden of the modelisation of the propagation of deductions usually needed
to find indirect contradiction. We are also able to prove the absence of impos-
sible differential for larger number of rounds in less than a minute. The other
approach is to consider heavy weight candidates. Indeed, as seen in the section
about SIMON, they are associated to big clusters of candidates. This approach
takes longer but most of the solving time is used to prove the optimality of the
solutions. The best solution is indeed found in a few seconds so the search could
have been stopped before the end of the process. The performances of the search
are given in Table
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Version |rp Gene(r\a/;?icil c()a;le(ii)dates Time inal?ci?\zci:lls Active bits
Simeck-32 g 8(7)5(2(2)) %?:j " i
Simeck-48 12 282 ((10)) 2%;5 : i
Simeck-64 1; 12854 ((10)) 3555 ‘ ?

(a) Objective function : maximize the number of deduced inactive cells

Version |rp Generated candidates | Time (Best Deduced Active bits
(Valid ones) solution) | inactive cells
Simeck-32 |11 39 (2) 2.6 s (2s) 3 11
Simeck-48 |15 23 (2) 2.6 s (0s) 4 3
Simeck-64 17 5292 (1) 630s (0s) 4 6

(b) Objective function : Maximize the number of active bits

Table 2: Performances of the search for distinguishers on Simeck
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Fig.6: A more efficient attack on 19 rounds of SIMON-32-64 than . The
striped cells are the needed cells of thedigy recovery steps.



D Attacks on 17 rounds SKINNY-n-n

|
(b) [kin U kout| = 11c

(©) |kin U kout| = 12¢

Fig. 7: Three equivalent attacks on 17-round SKINNY-n-n. Green and yellow cells
are the cells involved in the key recovery steps. In the three cases, they determine
Cin = Cout = 7C¢ — c = 6cC.
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