
Breaking the Twinkle Authenticated Encryption
Scheme and Analyzing Its Underlying

Permutation

Debasmita Chakraborty1 , Hosein Hadipour2 , Anup Kumar Kundu3,
Mostafizar Rahman4 , Prathamesh Ram5 , Yu Sasaki6 , Dilip Sau7, and

Aman Sinha8

1 Graz University of Technology, Graz, Austria
debasmitachakraborty1@gmail.com,

2 Ruhr University Bochum, Bochum, Germany
hsn.hadipour@gmail.com,

3 Indian Statistical Institute, Kolkata 700108, India
anupkundumath@gmail.com,

4 Kyoto University, Kyoto, Japan
mrahman454@gmail.com

5 Indian Institute of Technology Bhilai, India
rprathamesh@iitbhilai.ac.in,

6 NTT Social Informatics Laboratories and NIST Associate, Tokyo, Japan
yusk.sasaki@ntt.com

7 Indian Institute of Technology Kharagpur, India
dilip.sau@kgpian.iitkgp.ac.in,

8 Nanyang Technological University, Singapore
aman0804@gmail.com

Abstract. This paper studies the Twinkle family of low-latency sym-
metric key schemes designed by Wang et al. (CiC 2024). In particular,
it presents cryptanalysis of both the mode and the underlying primitive.
Twinkle is a PRF-based design, and an authenticated encryption scheme
Twinkle-AE is specified based on a dedicated PRF called Twinkle-PRF.
To achieve low latency, Twinkle-PRF uses a large key and state to produce
sufficient randomness in a single step. Twinkle-AE uses a 1024- or 512-
bit key for authentication and generates a t-bit tag, where t ∈ {64, 128}.
It claims to provide t bits of integrity. Several Twinkle-AE parameter
sets claim higher confidentiality than integrity. In this setup, for any ci-
phertext, an adversary can obtain the message after O(2t) decryption
attempts by guessing the tag, allowing attacks in the chosen-ciphertext
setting. We show that a 1024- or 512-bit authentication key can be re-
covered using only O(2t) queries. The recovered authentication key en-
ables the generation of valid ciphertexts for arbitrary plaintexts, thus
achieving universal forgery. In the second part of the paper, we perform
cryptanalysis on reduced-round variants of the 1280-bit public permu-
tation Twinkle-P, which serves as a core component of Twinkle-PRF.
We investigate impossible differential, zero-correlation linear, integral,
and differential-linear distinguishers by developing automated analytic
tools. We provide practical distinguishers for up to 5 rounds, and the

https://orcid.org/0000-0001-7240-5304
https://orcid.org/0000-0002-3820-3765
https://orcid.org/0000-0003-0934-4769
https://orcid.org/0009-0005-4891-1342
https://orcid.org/0000-0002-1273-2394
https://orcid.org/0009-0003-8280-5178

longest distinguisher reaches 6 rounds with a complexity of 274.32. This
surpasses the round bounds evaluated by the designers. We stress that
our attacks on mode exploits the gap between the claimed confidentiality
and integrity levels, thus have no impact on the parameter sets having
the same security level. Our attacks on the permutation do not have
any significant impact on the whole specifications. Moreover, we note
that Twinkle-AE-512b/Twinkle-AE-1024b and Twinkle-PA remain se-
cure, and the versions we attacked would also be secure if the claimed
confidentiality level matched the integrity level.

Keywords: Cryptanalysis · Lightweight cryptography · Low-latency prim-
itive · Twinkle · authentication · confidentiality · permutation

1 Introduction

Evolving from general-purpose schemes, symmetric-key cryptography is increas-
ingly adopting domain-specific designs tailored for particular use cases. This
shift, driven by efforts such as NIST’s lightweight cryptography standardiza-
tion [3] and the CAESAR competition [1], reflects diverse requirements across
domains, including lightweight applications, high throughput, and strong secu-
rity guarantees. A prominent domain in this context is low-latency cryptography,
which plays a vital role in securing memory and system components in modern
computing environments. Some key ciphers in this area include PRINCE [13],
MANTIS [9], QARMA [7], SPEEDY [25], Orthros [8], Gleeok [4], SCARF [14],
and BipBip [10]. With rising threats from physical and software-based memory
attacks, hardware vendors now integrate cryptographic protections through solu-
tions like Intel Software Guard Extensions (SGX) [19], AMD Secure Encrypted
Virtualization (SEV) [2], and ARM CCA [5]. These mechanisms reflect vary-
ing levels of protection offered by secure memory encryption engines (MEEs),
including features like ciphertext uniqueness and replay protection [17].

While encryption for memory protection has received considerable attention,
the design of authenticated encryption (AE) and message authentication codes
(MACs) tailored for system-level security, such as Pointer Authentication (PA),
remains less explored. Existing industrial implementations (e.g., ARM’s PAC [6],
Intel’s C3 [26]) often rely on domain-specific MACs or tweakable block ciphers
optimized for minimal latency.

Building on these developments, Wang et al. introduced the Twinkle frame-
work [33] to address the need for efficient cryptographic mechanisms at the sys-
tem level. This framework provides two key components: (i) a nonce-based AE
scheme designed for memory encryption, and (ii) a lightweight MAC optimized
for pointer authentication. Both constructions are based on a compact and novel
pseudorandom function (PRF), enabling efficient hardware implementation.

In this work, we present a comprehensive security analysis of the Twinkle

family, a set of low-latency schemes designed to provide stronger protection
against replay attacks in memory encryption scenarios. The design adopts a

2

stream cipher structure combined with a Wegman-Carter message authentica-
tion code (WC-MAC) [34], deriving both the keystream and authentication mask
from a single PRF, which helps reduce overall latency. This structure enables
time-aligned encryption, plaintext-independent computation, and pre-processing
when the nonce is known in advance. These features further minimize delay.
The 1280-bit tailored PRF state allows efficient processing of entire cache lines,
while the hardware-optimized round function, which includes diffusion-friendly
S-boxes and double-lane rotations, improves both performance and security.
Twinkle-PA, a matching MAC that uses the same PRF, supports compact and
efficient integration on shared hardware.

A key challenge in analyzing Twinkle-AE stems from its large 1280-bit in-
ternal state. This design allows a greater number of active S-boxes per round,
thereby improving security against differential and linear attacks. Additionally,
at least 128 bits of the state remain concealed, complicating attempts at impossi-
ble differential and guess-and-determine attacks. Furthermore, the design intro-
duces strong diffusion early in the computation: input data is spread across the
state using multiple permutation matrices. Such a strong underlying structure
leads the designers to claim the security of Twinkle-AE based on its underlying
Twinkle-PRF and WC-MAC. Another aspect of Twinkle-AE is the use of the
initialization vector (IV) as an only input to its underlying Twinkle-PRF, which
makes it considerably more difficult to mount attacks targeting the PRF.

The designers claim that the security of the Twinkle-AE family fundamen-
tally relies on the robustness of its underlying PRF, which is based on a large-
state Even-Mansour construction. Assuming a random permutation and distinct
key components, they argue that the construction achieves a security bound of
O(2640) for Twinkle’s 1280-bit state, which is well beyond its intended security
targets. The Twinkle-PRF has undergone extensive analysis against a wide range
of classical cryptanalytic techniques, including differential, linear, integral, im-
possible differential, and meet-in-the-middle attacks. Based on these properties,
the designers assert that the PRF is secure for use in both memory encryp-
tion and pointer authentication scenarios, under the assumption that the key is
securely stored within the processor and not subject to related-key attacks.

The designers of Twinkle claim security based on the strength of the Twinkle
-PRF and the WC-MAC components. Each part of Twinkle-AE, namely the en-
cryption and MAC mechanisms, individually satisfies standard security guaran-
tees. However, our analysis shows that the universal hash function introduces a
weakness that an attacker can exploit when the number of queries can exceed
the output size. Hence, as our first objective, we identify vulnerabilities that do
not require directly targeting the underlying PRF.

In addition, although the designers have explored the security of the un-
derlying permutation against cryptanalytic attacks, they have rarely presented
concrete distinguishers. In particular, they have not examined the security of
the permutation against differential-linear attacks, which often serve as some
of the most powerful distinguishers for cryptographic permutations. To address
this gap, we construct concrete differential-linear distinguishers and either sig-

3

nificantly strengthen the existing analysis or provide the first known results in
this direction.

1.1 Our Contributions

We provide a focused cryptanalytic evaluation of the Twinkle-AE scheme, ad-
dressing gaps in the analysis of the Twinkle-P permutation and key-recovery
resistance. Our contributions are twofold:

1. Authentication key-recovery attacks: For AE, even if a nonce and a
ciphertext are known, a corresponding M is not accessible without know-
ing a tag T . However as observed by Hosoyamada et al. [24] against Rocca
[28], higher confidentiality than integrity allows an adversary to exhaustively
guess T with 2t queries, allowing M to be leaked to the adversary. By com-
bining this idea with the structure of Twinkle-AE, we demonstrate authenti-
cation key-recovery attacks on Twinkle-AE for the versions claiming higher
confidentiality than integrity, which allows an adversary to recover a 1024-
or 512-bit authentication key K ′ with O(2t) queries in the nonce-respecting
setting, where t ∈ {64, 128}. The recovered K ′ enables the generation of
valid ciphertexts for arbitrary plaintexts, thus achieving universal forgery,
which breaks the notion of indistinguishability under chosen-ciphertext at-
tack (IND-CCA). Importantly, these attacks do not exploit weaknesses in the
underlying Twinkle-PRF, but rather in the use of the universal hash function
within the WC-MAC construction. Additionally, we present a variant of the
attack that succeeds with only O(1) queries in the nonce-misuse setting. Note
that because the IV size is 128 bits, repeat of the same nonce is inevitable
after 2128 queries for Twinkle-AE-512c and Twinkle-AE-1024c that claim
256-bit confidentiality even with the restriction that the attacker can only
make queries in the chosen-plaintext setting. We also show that Twinkle-AE
does not provide key-committing security, allowing an adversary to create
distinct keys that produce the same ciphertext with O(1) cost.

2. Analysis of the underlying permutation: We analyze the Twinkle-P

permutation, the core component of Twinkle-AE, against several cryptan-
alytic distinguishers. Table 1 summarizes our findings. Notably, we present
practical differential-linear (DL) distinguishers for up to 5 rounds of Twinkle
-P, as well as a strong theoretical DL distinguisher for 6 rounds. For exam-
ple, the data complexity of our 5-round differential-linear distinguisher is
25.70 randomly chosen input pairs, or equivalently, 2 · 25.70 chosen inputs.
While the designers claimed that no 7-round impossible differential trail
could be constructed even with full adversarial control over all 1280 bits,
we match this bound by explicitly constructing a 6-round impossible differ-
ential attack. Moreover, we provide zero-correlation (ZC) distinguishers for
up to 6 rounds. We also leverage the connection between ZC and integral
distinguishers, along with the constraint programming (CP) based search
methods proposed in [23,21], to identify ZC-based integral attacks. Addi-
tionally, we use the bit-based division property to derive practical integral

4

Distinguisher #Rounds #Distinguishers Attack complexity Ref.

Differential 4 − > 258 [33]

Linear 4 1 260 [33]

Truncated Differential 3.5 1 27.4 [33]

Differential-Linear

4 80 2 subsection 5.6

5 80 2 · 25.70 subsection 5.6

6 80 2 · 273.32 subsection 5.6

Impossible Differential

4 80 · 21820 − subsection 5.3

5 80 · 21148 − subsection 5.3

6 80 · 2356 − subsection 5.3

Zero-Correlation Linear

4 80 · 21278 − subsection 5.4

5 80 · 21140 − subsection 5.4

6 80 · 216 − subsection 5.4

Integral

3 80 2 subsection 5.4

4 80 24 subsection 5.4

5 80 212 subsection 5.5

Table 1: Summary of distinguishers for Twinkle-P

distinguishers for up to 5 rounds of Twinkle-P. We provide the source code
of our tools as well as the experimental verifications at the following link:
https://github.com/hadipourh/twinkle.

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 introduces the notation
used throughout the paper. Section 3 describes the specification of Twinkle.
Section 4 presents our attacks against Twinkle-AE. Section 5 provides the crypt-
analysis of reduced rounds of Twinkle-P. Finally, Section 6 concludes the paper.

2 Notation

Let Zm denote the set {0, 1, . . . ,m − 1} for a positive integer m. Assume that
S = S[m − 1] ∥ · · · ∥ S[1] ∥ S[0] is an m-bit string, where S[0] (resp. S[m − 1])
represents the least significant bit (LSB) (resp. most significant bit (MSB)).
We assume that m is a multiple of 16, that is, m = 16 × ℓ for some ℓ ∈ Zn.
According to the Twinkle-AE specification [33], the internal state of Twinkle-P
is arranged into a 4× 4× ℓ three-dimensional array, as illustrated in Figure 1a.
We use (x, y, z) or, alternatively, S[x][y][z] to indicate the position of each bit
within the 3D representation, where x, y ∈ {0, . . . , 3} and 0 ≤ z ≤ ℓ − 1. The
entry S[x][y][z] within the 3D representation corresponds to S[x+ 4 · y + 16 · z]
within the one-dimensional (1D) representation. Similar to the specification [33],
we use • to denote that one coordinate can take all possible values. For example,
for a given pair (y, z), S[•][y][z] represents S[x][y][z] for all x ∈ {0, . . . , 3}. We

5

https://github.com/hadipourh/twinkle

refer to S[•][y][z], S[x][•][z], S[x][y][•], and S[•][•][z] as row, column, lane, and
slice, respectively.

Besides the 3D representation, we can also represent the internal state as
a two-dimensional 16 × ℓ array, as shown in Figure 1b. In this case, we assign
S[x][y][z] from the 3D representation to S[i][j] in the 2D representation, where
j = z and i = x + 4 · y. Therefore, the jth slice in the 3D representation
corresponds to the jth column of the 2D representation, where each column
is filled from top to bottom. That is, the topmost bit of each column in 2D
representation is the first bit of each slice. Additionally, each row of the 2D
representation corresponds to a lane of the 3D representation. For example, the
cells marked by , , and in Figure 1b correspond to S[0][0][0], S[3][1][39],
and S[3][3][79] in the 3D representation, respectively. We recall that S[0][0][0]
is the LSB of the m-bit string S, and the leftmost bit in each row of the 2D
representation represents the LSB of the corresponding lane. We denote left
(i.e. from LSB to MSB) and right (i.e. from MSB to LSB) bit rotations within
an n-bit string by ≪n and ≫n, respectively.

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

1264

1268

1272

1276

1265

1269

1273

1277

1266

1270

1274

1278

1267

1271

1275

1279

x

y

z

(a) 3D representation of a the Twinkle internal state

(b) 2D representation of the Twinkle internal state

Fig. 1: Different views of the Twinkle state

6

𝐾

≫ 1279

IV
128

ℱ𝐼
1280

ℛ𝑟ℛ2ℛ1 ⋯

1280

𝑘0 𝑘1⋙ 1

ℱ𝑂
𝑜

𝑂

Fig. 2: Overview of Twinkle-PRF

3 Specification of Twinkle

Twinkle presents two modes of operations for a PRF; an AE mode Twinkle-AE
and a MAC mode specialized for pointer authentication Twinkle-PA. Twinkle
defines a specific instance by designing a dedicated PRF Twinkle-PRF, which is
computed with a dedicated public permutation Twinkle-P.

3.1 Twinkle-PRF

Twinkle-PRF : {0, 1}1280 × {0, 1}128 7→ {0, 1}o is a function that takes a 1280-
bit key K and 128-bit IV as input and returns an o-bit string where o ∈
{1, . . . , 1152}. When a key is fixed, which is a more relevant scenario for at-
tacking specific users, Twinkle-PRF is a 128-bit to o-bit function.

Overall, Twinkle-PRF performs the following three operations. First, an input
expansion function FI : {0, 1}128 7→ {0, 1}1280 is computed to create a 1280-bit
state S from the 128-bit IV. Then, the Even-Mansour construction is computed
with a 1280-bit key K and Twinkle-P. Finally, an output compression function
FO : {0, 1}1280 7→ {0, 1}o is computed to produce an o-bit function. The overall
structure of Twinkle-PRF is depicted in Figure 2
FI duplicates the 128-bit IV to make 10 copies of IV, each is applied a

different bit-permutation σi. Namely, a 1280-bit state S is computed by S ←
σ9(IV)∥σ8(IV)∥ · · · ∥σ0(IV), where each σi moves the bit position j of IV to the
bit position ai · j + bi mod 128 for j ∈ {0, . . . , 127}, and the values of ai and bi
are defined in Table 2.

i 0 1 2 3 4 5 6 7 8 9

ai 1 3 5 7 11 13 17 19 23 29
bi 0 1 2 3 4 5 6 7 8 9

Table 2: Parameters of Bit Permutation σi.

FO generates an o-bit string by computing Trunco(S ⊕ (S ≫ 128)), where
Truncn represents the least significant n bits of a bit string.

7

In the Even-Mansour construction in the middle, the 1280-bit state is up-
dated by S ← Twinkle-P(S⊕k0)⊕k1, where k0 is the master key K, Twinkle-P
is a 1280-bit public permutation specified later, and k1 is another 1280-bit key
computed by k1 ← (K ≫ 1)⊕ (K ≫ 1279).

Note that the number of rounds inside Twinkle-P depends on the secu-
rity level required by an upper-layer protocol, which is denoted by m, m ∈
{64, 128, 256}. This indicates that Twinkle-PRF also depends on m. Twinkle-
PRF is also parameterized by an output length o. To clarify those parameters,
the designers introduced a notion of Twinklemo to denote the Twinkle-PRF with
a security parameter of m and the output length of o.

3.2 Twinkle-AE

Twinkle-AE is an AE scheme specialized for encrypting the cache line, therefore,
the plaintext size, denoted by c, is limited to two choices, either 512 bits or 1024
bits, i.e. c ∈ {512, 1024}, and the corresponding scheme is called Twinkle-AE-

512 and Twinkle-AE-1024, respectively. IV serves as a unique nonce, which is
never used more than once under the same key. Unlike standard AEAD schemes,
Twinkle-AE does not take associated data as input. The ciphertext size is the
same as the plaintext size, and it generates a t-bit tag for the message au-
thentication, where t ∈ {64, 128}. Besides, Twinkle-AE supports two levels of
confidentiality; 128 bits and 256 bits, in which the choice of the confidentiality
level only affects the number of rounds inside Twinkle-P, and makes no differ-
ence as long as Twinkle-PRF is viewed as a block-box. Twinkle-AE specifies six
valid combinations of c, t, and the confidentiality level as listed in Table 3.

Versions Confidentiality Integrity (t)

Twinkle-AE-512a 128 64
Twinkle-AE-512b 128 128
Twinkle-AE-512c 256 128

Twinkle-AE-1024a 128 64
Twinkle-AE-1024b 128 128
Twinkle-AE-1024c 256 128

Table 3: Twinkle-AE Versions and Security in Bits

Encryption. The diagram of the encryption procedure is depicted in Figure 3.
Encryption of Twinkle-AE takes as input a 1024-bit encryption key K, a c-bit
authentication key K ′, a c-bit message M , and a 128-bit IV. It outputs a c-bit
ciphertext C and t-bit tag T .

Encryption of Twinkle-AE first computes Twinkle-PRF to generate a t + c
bit string denoted by Ot∥Oc, from a 128-bit IV and a 1280-bit key K. Namely,

8

𝐾

IV
128

1280

𝑃𝑅𝐹

𝑀

𝑇

𝐾′

𝑈𝐻𝐹

𝑂𝑐

𝑂𝑡

𝑐

𝑡

𝐶

𝑐 𝑐

𝑡

𝑡 𝑈𝐻𝐹: ෍

𝑖=0

𝑐/𝑡−1

𝑀𝑖 ⨂𝐾𝑖
′

𝐻

Fig. 3: Encryption Diagram of Twinkle-AE

Ot∥Oc ← Twinklemt+c(IV,K), where m is either 128 or 256 depending on the
version of Twinkle-AE. Oc, c bits of the generated string, is used as a key stream.
Namely, Oc is XORed to M , and the result is output as a c-bit ciphertext C.

Ot, t bits of the generated string, is used to generate a t-bit tag T in the
WC-MAC paradigm. In details, M and K ′ are first divided into t-bits of strings
Mc/t−1∥ · · · ∥M1∥M0 ← M and K ′

c/t−1∥ · · · ∥K
′
1∥K ′

0 ← K ′, then a universal

hash function H =
∑c/t−1

i=0 Mi ⊗ K ′
i is computed, wherein ⊗ represents the

multiplication in the finite field F t
2 , and finally Ot ⊕H is output as a tag T .

3.3 Twinkle-PA

Twinkle-PA is a MAC scheme designed for a pointer authentication, namely
to authenticate a 64-bit pointer address PT and a 64-bit context CT . With a
1280-bit key K, it generates a t-bit tag T , where 1 ≤ t ≤ 32.

Twinkle-PA consists of a single call of Twinkle-PRF. CT∥PT forms a 128-bit
IV, and the output of Twinkle-PRF is directly used as T . Twinkle-PA provides
64-bit security against offline attacks. Namely, T ← Twinkle64t (CT∥PT,K).

3.4 Twinkle-P

Each round (R) in Twinkle-P consists of five operations, namely S-box (SB),
LaneRotation0 (LR0), MixSlice (MS), LaneRotation1 (LR1), and AddConstant
(AC):

R = AC ◦ LR1 ◦MS ◦ LR0 ◦ SB.

S-box (SB): This step applies a 4-bit S-box S to each row of the internal state:

S[0][y][z] ∥ · · · ∥ S[3][y][z]← S-box(S[0][y][z] ∥ · · · ∥ S[3][y][z]),

where y ∈ Z4 and z ∈ Z80. Table 4 shows the lookup table for Twinkle’s S-box.

LaneRotation0 (LR0): This step applies a right rotation using the offsets O0

(defined in Table 5) to each lane of the state:

S[x][y][·]← S[x][y][·] ≫80 (O0[x+ 4y] mod 80), for all x, y ∈ Z4.

9

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 0 3 5 d 6 f a 8 b 4 e 2 9 c 7 1

Table 4: Twinkle’s S-box

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O0 20 24 38 77 49 66 30 40 76 15 46 50 17 18 61 62

O1 63 45 34 39 32 43 60 66 54 26 55 36 61 12 15 35

Table 5: Offsets for LaneRotation

MixSlice (MS): This step applies a linear transformation to each slice. For all
z ∈ Z80, we compute:

S[·][·][z]← S[·][·][z]⊕ (S[·][·][z] ≪16 5)⊕ (S[·][·][z] ≪16 12) .

LaneRotation1 (LR1): This operation is similar to LR0 but uses the offset
values O1 from Table 5.

AddConstant (AC): At each round i, this step XORs a fixed 1280-bit round
constant RCi with the state.

As mentioned in Section 3.1, the number of rounds in Twinkle-P depends on
the security level m. Specifically, for m = 64, 128, and 256, the total number of
rounds is 5, 9.5, and 18.5, respectively. Here, “0.5 round” refers to an operation
consisting of the application of S-box followed by a LaneRotation0 on the 1280-
bit state.

4 Generic Authentication Key Recovery for Twinkle-AE

By observing that some Twinkle-AE versions claim higher confidentiality than
integrity, in subsection 4.1, we present authentication key-recovery attacks on
Twinkle-AEmode, which recovers a c-bit keyK ′ with O(2t) queries in the nonce-
respecting setting. This eventually allows us, for an arbitrary choice of a message,
to generate a ciphertext that passes the verification and is decrypted to the
chosen message. This means that the generated plaintext by the decryption of
Twinkle-AE is predictable, or more precisely, controllable in the chosen-ciphetext
setting. Hence, our attacks break the IND-CCA security when confidentiality is
higher than integrity, namely for Twinkle-AE-512a, Twinkle-AE-512c, Twinkle
-AE-1024a, and Twinkle-AE-1024c. We then present variants of this attack that
require only O(1) queries in the nonce-misuse setting in subsection 4.2. Note
that the attack does not exploit any property of Twinkle-PRF, but exploits the
property of the universal hash function.

10

𝐾

IV

𝑃𝑅𝐹
𝑇

𝑈𝐻𝐹
𝑂𝑐

𝑂𝑡

𝐶

𝑀 = 00⋯0Enc

𝐾

IV

𝑃𝑅𝐹

𝐾0
′

𝑈𝐻𝐹
𝑂𝑐

𝑂𝑡 = 𝑇

𝑀′

Dec

= 10⋯0
?
= 𝑇′

1⨂𝐾0
′

0⨂𝐾1
′

0⨂𝐾𝑐/𝑡−1
′

⋮
0

0⨂𝐾′

guess

𝐶′ = 𝐶 ⊕ 10⋯0

Fig. 4: Diagram of Nonce-Respecting Authentication Key Recovery

4.1 Nonce-Respecting Attacks with O(2t) Queries

Observations on Higher Confidentiality than Integrity. First, we observe
that each of the encryption part and the MAC part of Twinkle-AE is rather solid.
The ciphertext is generated by XORing the message with a PRF output, where
a nonce IV is involved as a PRF input. This is a secure construction, identical to
one-time pad, as long as the PRF output cannot be distinguished from a random
string. The tag generation part is the simplest instantiation of the WC-MAC,
where the message processed by a universal hash function is XORed with the
PRF output. Hence, as long as the security of the encryption part and the MAC
part are identical, the construction looks solid.

However, several Twinkle-AE versions are designed to provide higher confi-
dentiality than integrity. This drastically changes the situation because attackers
can make queries beyond the limit imposed by integrity, i.e. more than 2t queries.
As observed by Hosoyamada et al. [24], chosen-ciphertext attacks could be criti-
cal for confidentiality in this case. This contrasts with typical AE security, where
such attacks usually have negligible impact because forgery attempts do not suc-
ceed below the integrity limit, and no plaintext is revealed from decryption.

Recovering K′. With the above observation, we show that the authentication
key K ′ can be efficiently recovered. The attack is depicted in Figure 4.

The universal hash function (UHF) is a sum of field multiplications of M
and K ′. When M is set to 0, the output of UHF is 0 ⊗ K ′ = 0. Hence, when
an encryption query (IV, 0) results in (C, T), T equals to the t-bit of the PRF
output Ot. Similarly, since M = 0, C equals to the c-bit of the PRF output Oc.

We then play with the decryption oracle under the same IV. Let C0, . . . , Cc/t−1

denote the ciphertext C in every t bits. We then modify C to C ′ so that
C ′

0 = C0 ⊕ 1 and C ′
i = Ci for i = 1, . . . , c/t − 1. This makes the value of

M ′ = 1∥0∥ · · · ∥0, and the output of UHF is (1 ⊗K ′
0) ⊕

∑c/t−1
i=1 (0 ⊗K ′

i) = K ′
0.

The challenge here is that an attacker does not know the new tag. However, as
observed in above, the attacker can make 2t decryption queries to exhaustively
try all the tags, and obtain the corresponding tag T ′ after 2t queries. Then, K ′

0

is immediately recovered by K ′
0 = Ot ⊕ T ′.

Other K ′
i can be recovered in the same procedure by swapping t-bit block in

C ′ to i-th block. Hence, the entire K ′ is recovered with c/t·2t queries. Recall that

11

the possible parameter choices of c and t are c ∈ {512, 1024} and t ∈ {64, 128},
so c/t is a small constant 4, 8, or 16.

A pseudo-code of the authentication key-recovery attack is given in Alg. 1.

Algorithm 1 Nonce-Respecting Authentication Key Recovery

Require: Accesses to decryption and encryption oracles with K,K′

Ensure: K′

1: Set IV to an arbitrary chosen value, and set M to 0.
2: Send (IV,M) to an encryption oracle to get corresponding (C, T).
3: Record Oc = C and Ot = T .
4: for i = 0, . . . , c/t− 1 do
5: Set C′ = C, then C′

i ← Ci ⊕ 1.
6: for T ′ = 0, . . . , 2t − 1 do
7: Send (IV, C′, T ′) to decryption oracle.
8: if The decryption oracle returns a message M ′ then
9: K′

i ← Ot ⊕ T ′.
10: end if
11: end for
12: end for
13: return K′.

Universal Forgery with the knowledge of K′. After the authentication key
K ′ is recovered, along with a tuple of related values IV, Ot, and Oc, universal
forgery can be performed with a negligible cost, i.e. for an arbitrary chosen
value of the message M∗, the attacker can generate a ciphertext (IV, C∗, T ∗)
that passes the verification and is decrypted to M∗. The attack procedure is
straightforward. With Oc, C

∗ can be computed by C∗ ← Oc ⊕M∗. With Ot

and K ′, T ∗ can be computed by T ∗ ← Ot ⊕ UHFK′(M∗). Note that those can
be computed offline, hence no additional query is required. A pseudo-code of
universal forgery is given in Alg. 2.

In addition, with the knowledge of K ′, universal forgery for any other IV
is possible only with 1 additional known plaintext query. Given an encryption
result C̃, T̃ for any ˜IV, M̃ , the attacker can compute the corresponding Õc and
Õt with K ′, and the rest of the attack is trivial.

Algorithm 2 Nonce-Respecting Universal Forgery

Require: K′, IV, Oc, Ot, and a target message M∗ that can be chosen arbitrary
Ensure: (IV, C∗, T ∗) that is decrypted to M∗

1: Compute C∗ ← Oc ⊕M∗ offline.
2: Compute T ∗ ← Ot ⊕UHFK′(M∗) offline.
3: return (IV, C∗, T ∗).

12

4.2 Nonce-Misuse Attack with O(1) Queries

Due to the nature of the key-stream XOR in encryption and WC-MAC in au-
thentication, it is natural that both confidentiality and integrity can be broken
efficiently if the same IV is iterated more than once. However, it does not nec-
essarily mean that authentication-key recovery or universal forgery is performed
efficiently. Here we show that those strong attacks are possible with O(1) queries
in the nonce-misuse setting.

Note that because the size of IV is 128 bits, repeat of the same nonce is
inevitable after 2128 queries for Twinkle-AE-512c and Twinkle-AE-1024c that
claim 256-bit confidentiality with a 128-bit tag even with the restriction that the
attacker can only make queries in the chosen-plaintext setting.

In the nonce-misuse setting, the procedure to recover K ′
0 is as follows.

1. Make an encryption query of (IV, 0∥0∥ · · · ∥0) to get (C0, T0).
2. Make an encryption query of (IV, 1∥0∥ · · · ∥0) to get (C ′

0, T
′
0).

3. K ′
0 = T0 ⊕ T ′

0.

Other K ′
i can be recovered similarly. We omit the details to avoid redundancy.

4.3 Remarks on Key-Committing Security

The key-committing security of symmetric-key cryptography was initiated by
Farshim et al. [18], which was later generalized as CMT-1 security by Bellare
and Hoang [11]. Its goal is to find a ciphetext (C, T) that can be decrypted with
two distinct keys, i.e. to find (K,K ′, IV,M) and (K̃, K̃ ′, ˜IV, M̃) withK ̸= K̃ and
K ′ ̸= K̃ ′ such that the corresponding output of encryption queries will collide.
It has been known that the lack of key-committing security may cause attacks
in several real-world use-cases e.g. braking message franking [16] or accelerating
password brute-force attacks [27].

The key-committing security of Twinkle-AE can be broken in the same way
as the key-committing attack against GCM [16]. The attacker first randomly
chooses K, K̃,K ′, K̃ ′, and IV = ˜IV. Then, Oc, Ot, and Õc, Õt can be computed
by Twinkle-PRF.

Let ℓ be c/t, andOc is separated into t-bit chunks denoted byOc,0, . . . , Oc,ℓ−1,

and the same is applied to Õc. Then the equations to compute T and T̃ can be
written as follows.

T = (Oc,0 ⊕ C0) ·K ′
0 ⊕ · · · ⊕ (Oc,ℓ−1 ⊕ Cℓ−1) ·K ′

ℓ−1 ⊕Ot,

T̃ = (Õc,0 ⊕ C0) · K̃ ′
0 ⊕ · · · ⊕ (Õc,ℓ−1 ⊕ Cℓ−1) · K̃ ′

ℓ−1 ⊕ Õt.

The goal is to choose the value of C so that T = T̃ is satisfied. The attacker
now fixes the values of C1, . . . , Cℓ−1 to arbitrary chosen values. Then, all the
variables but C0 become fixed constants. Denoting the sum of all the variables
not including C0 as X and X̃, the equation becomes

X ⊕ C0 ·K ′
0 = X̃ ⊕ C0 · K̃ ′

0.

This is a linear equation with 1 free variable C0 and the value of C0 can be
obtained immediately.

13

5 Analysis of the Underlying Primitive

The underlying permutation used in constructing AE schemes should resist most
well-known cryptanalytic distinguishers, such as impossible differential, zero-
correlation, integral, and differential-linear distinguishers. Here, we analyze the
security of Twinkle-P as a standalone permutation, regardless of how it is used
in the mode of operation.

5.1 Modeling the MixSlice Operation

To simplify the modeling of differential, linear, and integral property propagation
through MixSlice, we derive its matrix representation. Let us represent each 16-
bit slice S[•][•][z] as a 16-bit vector V ∈ F16

2 , such that S[x][y][z] = V [x+ 4 · y]
for all x, y ∈ Z4. Then, the MixSlice operation acts as a matrix multiplication
A×V , where A is a 16× 16 circulant matrix. The ith rows of A and A−1 are as
follows:

A[i] =
[
1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

]
≫ i,

A−1[i] =
[
1 0 0 0 1 1 0 1 1 0 1 0 1 0 1 1

]
≫ i,

for i ∈ Z16. We use A and A−1 to model the propagation of differences in the
forward and backward directions, respectively.

To model the propagation of linear masks in the forward and backward di-

rections, we use
(
A−1

)t
and At, respectively. These are also circulant 16 × 16

matrices, and their ith rows are as follows:(
A−1

)t
[i] =

[
1 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0

]
≫ i,

At[i] =
[
1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

]
≫ i.

As can be seen, the diffusion of differences in the forward direction (resp. linear
masks in the backward direction) is lower than that in the backward direction
(resp. forward direction).

5.2 Modeling the S-box

To model the propagation of differential, linear, and integral properties through
S-box, we use the S-box Analyzer [22,21]9. We model the S-box in three different
ways: probabilistic with probabilities encoded, probabilistic without probabilities
encoded, and deterministic. We use the probabilistic model with probabilities
encoded to find regular differential and linear trails. We use the probabilistic
model without probabilities encoded to model only the possibility of a differential
or linear transition, regardless of the weight or probability of the transition.
We use the deterministic model to represent differential and linear transitions
with probability one. Such models are used to find impossible differential, zero-
correlation, and differential-linear distinguishers. For more details on modeling
the S-box using the S-box Analyzer, refer to Section 7.

9 https://github.com/hadipourh/sboxanalyzer

14

https://github.com/hadipourh/sboxanalyzer

5.3 Impossible Differential Distinguishers

The designers of Twinkle-AE provided some bounds for impossible differential
(ID) distinguishers by analyzing the full diffusion of Twinkle-P in both forward
and backward directions [33]. However, they did not present any concrete ID
distinguisher for Twinkle-P. Here, we fill this gap by providing concrete ID
distinguishers.

We use two different techniques to find ID distinguishers: the negative CP
(MILP/SAT)10 model proposed in [29,15], and the positive CP (MILP/SAT)
model proposed in [23,21]. In the negative model, we model the probabilistic
propagation of differences (without encoding probabilities) and fix both the in-
put and output differences. We then use a CP/MILP/SAT solver to check the
satisfiability of the model. If the model is unsatisfiable, the chosen input and
output differences yield an impossible differential.

In the positive model, we model the deterministic propagation of differences
in both forward and backward directions. In this model, we encode the difference
value of each bit using three symbols: 0, 1, and ?, where ? denotes an arbitrary
difference or, equivalently, a free bit with respect to the difference value. We also
add extra constraints to ensure that the forward and backward propagations
contradict in at least one bit along the distinguisher. As a result, any feasible
solution of the positive model corresponds to an ID distinguisher. For more
details on how to construct the negative and positive models, we refer to [29,15]
and [23,21], respectively.

Both negative and positive CP/MILP/SAT models can find ID distinguishers
for up to 6 rounds of Twinkle-P. An advantage of the positive model is that we
do not need to fix the input and output differences. Instead, we can define an
objective function that maximizes the number of bits with arbitrary difference
values at the input and output when solving a single instance of the model.
In this way, we can find a truncated ID with more free bits at the input and
output differences (i.e., a larger cluster of ID distinguishers), by solving only one
instance of the positive model.

We present the distinguishers found using the positive model in Figure 5a,
Figure 5b, and Figure 5c. In these figures, the values “1” and “?” in the forward
(resp. backward) difference propagation are represented using and (resp.
and). For example, indicates that the corresponding bit takes an arbitrary
difference in the forward propagation, while its difference is fixed and equal to
“1” in the backward propagation. We represent zero differences using white (or
no color). As a result, the presence of either or within a shape indicates a
contradiction between the forward and backward propagations.

Note that the number of free bits at the input and output of the distinguisher
in Figure 11a (marked by and , respectively) are 824 and 996, respectively.
As a result, this figure represents 824 + 996 = 1820 impossible differential (ID)
distinguishers. Based on a similar argument, Figure 5b and Figure 5c illustrate

10 CP stands for Constraint Programming, MILP stands for Mixed Integer Linear Pro-
gramming, and SAT stands for the Satisfiability Problem. Here, we consider MILP
and SAT as special cases of CP.

15

21148 and 2356 ID distinguishers for 5 and 6 rounds of Twinkle-P, respectively.
Moreover, since Twinkle-P remains invariant under rotation along the z-axis
with respect to differential and linear trails, each ID distinguisher can be dupli-
cated into 80 distinct ones. We recall that the distinguishers discovered using the
positive CP model were obtained from a single execution of the model. If we run
the tool multiple times, it may yield additional solutions (i.e., distinguishers).

5.4 Zero-Correlation and ZC-based Integral Distinguishers

We note that the designers of Twinkle neither provided any concrete zero-
correlation (ZC) distinguisher nor leveraged the connection between ZC and
integral distinguishers to construct integral distinguishers. Here, we fill this gap.
Analogous to the approach used for impossible differential distinguishers, we
search for ZC distinguishers using both positive and negative models. Both
models are capable of identifying distinguishers up to 6 rounds. However, to
obtain ZC distinguishers with a higher number of free input bits, we prefer the
positive model. To this end, we configure the objective function of the positive
model to maximize the number of free bits in the input linear mask. Finally,
we apply Theorem 1 to transform our ZC distinguishers into ZC-based integral
distinguishers.

Theorem 1 (Sun et al. [30]). Let F : Fn
2 → Fn

2 be a vectorial Boolean func-
tion. Assume A is a subspace of Fn

2 and β ∈ Fn
2 \ {0} such that (α, β) is a ZC

approximation for any α ∈ A. Then, for any λ ∈ Fn
2 , ⟨β, F (x+ λ)⟩ is balanced

over the set
A⊥ = {x ∈ Fn

2 | ∀ α ∈ A : ⟨α, x⟩ = 0}.

According to Theorem 1, having more free bits at the input linear mask of a
ZC distinguisher (hull) results in fewer active bits in its corresponding integral
distinguisher. Therefore, by maximizing the number of free bits at the input
linear mask in the ZC distinguisher, we can obtain integral distinguishers with
lower data complexity.

Similar to the representation used for ID distinguishers, we represent the
values “1” and “?” in the forward (resp. backward) propagation of linear masks
using and (resp. and). Figure 7a, Figure 7b, and Figure 7c illustrate
21278, 21140, and 216 ZC distinguishers that we obtained using the positive model
for 4, 5, and 6 rounds of Twinkle-P, respectively.

We first applied our tool to 3 rounds of Twinkle-P. As shown in Figure 6
we discovered a zero-correlation (ZC) linear hull whose input linear mask has
only one inactive bit, while the remaining 1279 input bits take a free linear mask
(marked by). As a result, its corresponding integral distinguisher has a data
complexity of 2, where the input set assigns a fixed but random value to bits
with free input linear mask (marked by) and takes all possible values over the
single bit with inactive linear mask.

As another interesting result, the input linear mask of our 4-round ZC dis-
tinguisher contains 1276 free bits (marked by), while the remaining 4 bits

16

are fixed to zero. Consequently, the corresponding 4-round integral distinguisher
requires a data complexity of 24. In this distinguisher, the input set assigns fixed
but random values to all free bits in terms of linear mask (marked by), while
the remaining 4 bits take all possible combinations (see the input linear mask in
Figure 7a). At the output, the XOR of the active cells (marked by) satisfies a
zero-sum property. We experimentally verified the validity of this 4-round inte-
gral distinguisher using at least 100 randomly chosen input sets that satisfy the
required input structure, and in all cases, the distinguisher held as expected.

Our 5-round ZC distinguisher, shown in Figure 7b, has an input linear mask
with 1140 free bits (marked by), while the remaining 140 bits in the mask are
fixed to zero. As a result, the data complexity of the corresponding integral dis-
tinguisher is 2140. Additionally, since Twinkle-P preserves zero-correlation linear
hulls under rotation along the z-axis, we can derive 80 distinct ZC distinguishers
from each initial one.

5.5 Division Property Based Integral Distinguishers

Here, we use the division property [31] and construct a MILP-based model [32,35]
to identify integral distinguishers for Twinkle-P. We found a 4-round integral
distinguisher for Twinkle-P, which originates from an input state featuring four
active bits. As a result, the data complexity of the 4-round integral distinguisher
is 24. Let Si denote the i-th round state variable of Twinkle-P. Specifically, we
set the four input bits S0[0][0][0], S0[1][0][0], S0[2][0][0], and S0[3][0][0] as active.
Thus, by activating four input bits, we derive a 4-round integral distinguisher
that exhibits 1152 balanced output bits (the detailed result can be found in
Table 6). Additionally, we identify a 5-round integral distinguisher by setting 12
input bits as active bits. This distinguisher results in 38 balanced bits at the
output, leading to a data complexity of 212. A summary of the 5-round integral
distinguisher is provided in Table 7.

We also applied the division property to 6 rounds. The tool did not yield
any integral distinguishers when fewer active bits (e.g., 4/12/36 bits) were set in
the input; in this scenario, all output bits are unknown after 6 rounds. However,
increasing the number of active bits in the input to search for 6-round integral
distinguishers based on the division property significantly increased the running
time. As a result, we could not find any 6-round integral distinguisher based on
the division property.

We also employed the division property-based method proposed in [12] to
compute an upper bound on the algebraic degree. Using this approach, we de-
termine that the algebraic degree of Twinkle-P is upper bounded by 27, 81, and
243 for 3, 4, and 5 rounds, respectively, which aligns with the trivial bounds.

5.6 Differential-Linear Distinguishers

We observed that the designers of Twinkle did not analyze Twinkle-P against
differential-linear (DL) distinguishers, even though DL distinguishers are often
among the most effective techniques against cryptographic permutations. Here,

17

we fill this gap by providing strong DL distinguishers for up to 6 rounds of
Twinkle-P.

For X = (x0, x1, . . . , xn−1) and Y = (y0, y1, . . . , yn−1) in Fn
2 , we define the

dot product as X · Y =
∑n−1

i=0 xi · yi. Let F : Fn
2 → Fn

2 be a vectorial Boolean
function. For a given input difference∆ and output linear mask Γ , the correlation
is defined as

corr(∆→ Γ) = 2−n ·
∑

X∈Fn
2

(−1)Γ ·(F (X)+F (X+∆)), (1)

where “+” denotes addition in Fn
2 (i.e., bitwise XOR). Given a sample space

S ⊆ Fn
2 , the empirical correlation over S is defined by

corrS(∆→ Γ) = 2−|S| ·
∑
X∈S

(−1)Γ ·(F (X)+F (X+∆)). (2)

The data complexity of a DL distinguisher with correlation c is in O(c−2).
To search for differential-linear (DL) distinguishers for Twinkle-P, we use a

state-of-the-art technique proposed by Hadipour et al. in CRYPTO 2024 [20].
According to this method, we split the permutation E into three parts: E =
Eℓ◦Em◦Ed. We model the forward probabilistic differential propagation through
Ed and the backward probabilistic linear propagation through Eℓ. These sub-
models allow us to find regular differential and linear trails for Ed and Eℓ,
respectively. We also model the deterministic difference propagation (forward)
and deterministic linear mask propagation (backward) through Em to encode
the amount of overlap, measured by the number of shared active bits, between
the differential and linear propagations in the middle part. Finally, we combine
all these sub-models into a unified CP model, connect the junctions, and set the
objective function to minimize the sum of the scaled weight of the differential
trail through Ed, the scaled overlap weight through Em, and the scaled weight
of the linear trail through Eℓ. For more details on this method, we refer to [20].

Figure 11a, Figure 11b, and Figure 11c illustrate the DL distinguishers for
4, 5, and 6 rounds of Twinkle-P, respectively. The colors and symbols in these
figures follow the same convention as those used for the ID and ZC distinguishers.
Let Xi denote the internal state before the S-box in round i, and let ∆Xi and
ΓXi represent the corresponding difference and linear mask, respectively. The
input differences and output masks of the DL distinguishers are summarized in
Table 8, Figure 8, and Figure 9.

For 4 rounds of Twinkle-P, we discovered a deterministic DL distinguisher,
as shown in Figure 11a. Table 8 represents the input difference and output mask
of this distinguisher. As shown in Figure 11a, the overlap between the deter-
ministic forward differential and deterministic backward linear propagations for
the output of S-box layer is zero. As a result, due to the (bit-wise) switching
effect [20], the correlation of this 4-round DL distinguisher should be one and it
is a deterministic distinguisher. We verified the correctness of this distinguisher
in practice to ensure the soundness of both our model and the result.

18

For 5 rounds, we decomposed the permutation into a 1 + 3 + 1 round struc-
ture. Figure 11b illustrates this distinguisher, and Figure 8 briefly describes its
specification. The first round is covered by a pure differential distinguisher (Ed),
the middle 3 rounds are handled by a combined DL distinguisher (Em), and
the last round is covered by a pure linear distinguisher (Eℓ). The probability
of the differential distinguisher over Ed is p = Pr(∆X0 → ∆X1) = 2−1.415.
As shown in Figure 11b, the overlap between the deterministic differential and
linear propagations through Em is zero, which implies that the correlation over
the middle part is r = corr(∆X1 → ΓX4) = 1. Moreover, the squared corre-
lation of the linear distinguisher over Eℓ is q2 = corr2(ΓX4 → ΓX5) = 2−2.
As a result, we estimate the total correlation of the 5-round DL distinguisher
as c = prq2 = 2−3.415. We conducted experiments and observed that the actual
correlation is even higher in practice, with c = 2−2.85 on average. Consequently,
the data complexity of this distinguisher is approximately 25.70.

For 6 rounds, we decomposed the permutation into a 1+4+1 round structure,
as shown in Figure 11c. We also specified the input difference and output mask
of this distinguisher in Figure 9. We have p = Pr(∆X0 → ∆X1) = 2−18.660

and q2 = corr2(ΓX5 → ΓX6) = 2−18. In addition, as seen in Figure 11c, the
overlap between the deterministic differential and linear propagations through
the middle 4 rounds (Em) is zero, which implies that the correlation of the small
DL distinguisher in the middle is r = corr(∆X1 → ΓX5) = 1. As a result, we
estimate the total correlation as c = prq2 = 2−36.66. Hence, the data complexity
of our 6-round DL distinguisher is 273.32. Moreover, since Twinkle-P preserves
differential, and linear trails under rotation along the z-axis, we can generate 80
distinct DL distinguishers with almost the same correlation from each original
one.

6 Conclusion

In this paper, we presented cryptanalysis against Twinkle. Our attacks on
Twinkle-AE targeted variants that aim for a higher confidentiality than integrity.
The attacker could make O(2t) queries to pass the verification, which made our
attacks work in the nonce-respecting manner. We showed that c-bit authentica-
tion key is recovered only with O(2t) queries, which further allowed universal
forgery attacks, i.e. for any plaintext, the attacker could generate the ciphertext
that could be successfully decrypted to the target plaintext. We also pointed out
that O(1) attack is possible in the nonce-misuse setting, and key-commitment
security can be attacked with a negligible cost. We also presented cryptanalyses
on the underlying permutation Twinkle-P as a standalone permutation, and ap-
plied most well-known cryptanalytic approaches such as impossible differential,
zero-correlation, integral, and differential-linear distinguishers by developing au-
tomated analytic tools. Our differential-linear distinguishers reach 6 rounds with
273.32 complexity, which surpasses the round bounds evaluated by the designers.
We stress that none of the results really change the current state of Twinkle
because the attacks on the mode are only applicable in a degenerate case that

19

the designers might want to disallow and the distinguishers on the permutation
are unlikely to have any significant impact on the ciphers. Moreover, we note
that Twinkle-AE-b and Twinkle-PA remain secure, and the versions we attacked
would also be secure if the claimed confidentiality level matched the integrity
level.

Acknowledgments. This work was initiated during ASK 2024. We want to
appreciate the organizers of ASK 2024 for their efforts in creating a helpful and
inspiring environment.

References

1. Caesar: Competition for authenticated encryption: Security, applicability, and ro-
bustness. https://competitions.cr.yp.to/caesar.html (2014)

2. Amd secure encrypted virtualization (sev) — amd (2019), https://www.amd.com/
en/developer/sev.html

3. Nist lightweight cryptography competition. https://csrc.nist.gov/projects/

lightweight-cryptography/finalists (2021)
4. Anand, R., Banik, S., Caforio, A., Ishikawa, T., Isobe, T., Liu, F., Minematsu, K.,

Rahman, M., Sakamoto, K.: Gleeok: A family of low-latency prfs and its applica-
tions to authenticated encryption. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2024(2), 545–587 (2024), 10.46586/tches.v2024.i2.545-587

5. Architecture & Technology Group: Arm CCA Security Model 1.0. https://

developer.arm.com/documentation/DEN0096/latest/ (August 2021), document
number: DEN0096

6. ARM Holdings: Introduction to pac (2021), https://developer.

arm.com/documentation/109576/0100/Pointer-Authentication-Code/

Introduction-to-PAC

7. Avanzi, R.: The QARMA block cipher family. almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Trans. Sym-
metric Cryptol. 2017(1), 4–44 (2017). https://doi.org/10.13154/tosc.v2017.
i1.4-44

8. Banik, S., Isobe, T., Liu, F., Minematsu, K., Sakamoto, K.: Orthros: A low-latency
PRF. IACR Trans. Symmetric Cryptol. 2021(1), 37–77 (2021), 10.46586/tosc.
v2021.i1.37-77

9. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sas-
drich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 123–153. Springer (2016). https://doi.org/10.1007/978-3-662-53008-5_5

10. Belkheyar, Y., Daemen, J., Dobraunig, C., Ghosh, S., Rasoolzadeh, S.: Bipbip:
A low-latency tweakable block cipher with small dimensions. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2023(1), 326–368 (2023), 10.46586/tches.v2023.i1.
326-368

11. Bellare, M., Hoang, V.T.: Efficient schemes for committing authenticated encryp-
tion. In: EUROCRYPT 2022. LNCS, vol. 13276, pp. 845–875 (2022)

12. Bernstein, D.J., Kölbl, S., Lucks, S., Massolino, P.M.C., Mendel, F., Nawaz,
K., Schneider, T., Schwabe, P., Standaert, F., Todo, Y., Viguier, B.: Gimli :

20

https://competitions.cr.yp.to/caesar.html
https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
10.46586/tches.v2024.i2.545-587
https://developer.arm.com/documentation/DEN0096/latest/
https://developer.arm.com/documentation/DEN0096/latest/
https://developer.arm.com/documentation/109576/0100/Pointer-Authentication-Code/Introduction-to-PAC
https://developer.arm.com/documentation/109576/0100/Pointer-Authentication-Code/Introduction-to-PAC
https://developer.arm.com/documentation/109576/0100/Pointer-Authentication-Code/Introduction-to-PAC
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
10.46586/tosc.v2021.i1.37-77
10.46586/tosc.v2021.i1.37-77
https://doi.org/10.1007/978-3-662-53008-5_5
10.46586/tches.v2023.i1.326-368
10.46586/tches.v2023.i1.326-368

A cross-platform permutation. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 299–320. Springer (2017). https://doi.org/10.1007/

978-3-319-66787-4_15
13. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,

L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing
applications (full version). IACR Cryptol. ePrint Arch. p. 529 (2012), http://
eprint.iacr.org/2012/529

14. Canale, F., Güneysu, T., Leander, G., Thoma, J.P., Todo, Y., Ueno, R.: SCARF
- A low-latency block cipher for secure cache-randomization. In: Calandrino,
J.A., Troncoso, C. (eds.) USENIX Security 2023. pp. 1937–1954. USENIX
Association (2023), https://www.usenix.org/conference/usenixsecurity23/

presentation/canale
15. Cui, T., Chen, S., Jia, K., Fu, K., Wang, M.: New automatic search tool for im-

possible differentials and zero-correlation linear approximations. IACR Cryptology
ePrint Archive, Report 2016/689 (2016), https://eprint.iacr.org/2016/689

16. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: From
invisible salamanders to encryptment. In: CRYPTO 2018. LNCS, vol. 10991, pp.
155–186 (2018)

17. Elbaz, R., Champagne, D., Gebotys, C.H., Lee, R.B., Potlapally, N.R., Torres,
L.: Hardware mechanisms for memory authentication: A survey of existing tech-
niques and engines. Trans. Comput. Sci. 4, 1–22 (2009). https://doi.org/10.
1007/978-3-642-01004-0_1

18. Farshim, P., Orlandi, C., Rosie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Trans. Symmetric Cryptol. 2017(1), 449–473 (2017)

19. Gueron, S.: Memory encryption for general-purpose processors. IEEE Secur. Priv.
14(6), 54–62 (2016), https://doi.org/10.1109/MSP.2016.124

20. Hadipour, H., Derbez, P., and, M.E.: Revisiting differential-linear attacks via
a boomerang perspective with application to AES, Ascon, CLEFIA, SKINNY,
PRESENT, KNOT, TWINE, WARP, LBlock, Simeck, and SERPENT pp. 38–72
(2024). https://doi.org/10.1007/978-3-031-68385-5_2

21. Hadipour, H., Gerhalter, S., Sadeghi, S., Eichlseder, M.: Improved search for inte-
gral, impossible differential and zero-correlation attacks application to ascon, fork-
skinny, skinny, mantis, PRESENT and qarmav2. IACR Trans. Symmetric Cryptol.
2024(1), 234–325 (2024). https://doi.org/10.46586/TOSC.V2024.I1.234-325

22. Hadipour, H., Nageler, M., Eichlseder, M.: Throwing boomerangs into feistel
structures application to clefia, warp, lblock, lblock-s and TWINE. IACR Trans.
Symmetric Cryptol. 2022(3), 271–302 (2022). https://doi.org/10.46586/tosc.
v2022.i3.271-302

23. Hadipour, H., Sadeghi, S., Eichlseder, M.: Finding the impossible: Automated
search for full impossible differential, zero-correlation, and integral attacks. In:
EUROCRYPT 2023. LNCS, vol. 14007, pp. 128–157. Springer (2023). https:

//doi.org/10.1007/978-3-031-30634-1_5
24. Hosoyamada, A., Inoue, A., Ito, R., Iwata, T., Minematsu, K., Sibleyras, F.,

Todo, Y.: Cryptanalysis of rocca and feasibility of its security claim. IACR Trans.
Symmetric Cryptol. 2022(3), 123–151 (2022). https://doi.org/10.46586/TOSC.
V2022.I3.123-151

25. Leander, G., Moos, T., Moradi, A., Rasoolzadeh, S.: The SPEEDY family of block
ciphers engineering an ultra low-latency cipher from gate level for secure proces-
sor architectures. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 510–545
(2021). https://doi.org/10.46586/TCHES.V2021.I4.510-545

21

https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-319-66787-4_15
http://eprint.iacr.org/2012/529
http://eprint.iacr.org/2012/529
https://www.usenix.org/conference/usenixsecurity23/presentation/canale
https://www.usenix.org/conference/usenixsecurity23/presentation/canale
https://eprint.iacr.org/2016/689
https://doi.org/10.1007/978-3-642-01004-0_1
https://doi.org/10.1007/978-3-642-01004-0_1
https://doi.org/10.1109/MSP.2016.124
https://doi.org/10.1007/978-3-031-68385-5_2
https://doi.org/10.46586/TOSC.V2024.I1.234-325
https://doi.org/10.46586/tosc.v2022.i3.271-302
https://doi.org/10.46586/tosc.v2022.i3.271-302
https://doi.org/10.1007/978-3-031-30634-1_5
https://doi.org/10.1007/978-3-031-30634-1_5
https://doi.org/10.46586/TOSC.V2022.I3.123-151
https://doi.org/10.46586/TOSC.V2022.I3.123-151
https://doi.org/10.46586/TCHES.V2021.I4.510-545

26. LeMay, M., Rakshit, J., Deutsch, S., Durham, D.M., Ghosh, S., Nori, A., Gaur,
J., Weiler, A., Sultana, S., Grewal, K., Subramoney, S.: Cryptographic capability
computing. In: MICRO ’21: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, Virtual Event, Greece, October 18-22, 2021. pp. 253–267. ACM
(2021). https://doi.org/10.1145/3466752.3480076

27. Len, J., Grubbs, P., Ristenpart, T.: Partitioning oracle attacks. In: USENIX Secu-
rity 2021. pp. 195–212 (2021)

28. Sakamoto, K., Liu, F., Nakano, Y., Kiyomoto, S., Isobe, T.: Rocca: An efficient
aes-based encryption scheme for beyond 5g. IACR Trans. Symmetric Cryptol.
2021(2), 1–30 (2021). https://doi.org/10.46586/TOSC.V2021.I2.1-30, full ver-
sion is available on IACR Cryptol. ePrint Arch. 2022/116.

29. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects. In: EUROCRYPT 2017. LNCS, vol. 10212, pp. 185–215. Springer
(2017). https://doi.org/10.1007/978-3-319-56617-7_7

30. Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., AlKhzaimi, H.,
Li, C.: Links among impossible differential, integral and zero correlation linear
cryptanalysis. In: CRYPTO 2015. LNCS, vol. 9215, pp. 95–115. Springer (2015).
https://doi.org/10.1007/978-3-662-47989-6_5

31. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314.
Springer (2015). https://doi.org/10.1007/978-3-662-46800-5_12, https://

doi.org/10.1007/978-3-662-46800-5_12

32. Todo, Y., Morii, M.: Bit-based division property and application to simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer (2016).
https://doi.org/10.1007/978-3-662-52993-5_18

33. Wang, J., Huang, T., Wu, S., Liu, Z.: Twinkle: A family of low-latency schemes
for authenticated encryption and pointer authentication. IACR Communications
in Cryptology 1(2) (2024). https://doi.org/10.62056/a3n59qgxq

34. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981). https://doi.org/
10.1016/0022-0000(81)90033-7

35. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678
(2016). https://doi.org/10.1007/978-3-662-53887-6_24

22

https://doi.org/10.1145/3466752.3480076
https://doi.org/10.46586/TOSC.V2021.I2.1-30
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-662-47989-6_5
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.62056/a3n59qgxq
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1007/978-3-662-53887-6_24

7 Modeling the S-box Using the S-box Analyzer

1 # Import the S-box Analyzer and define the S-box

2 from sboxanalyzer import *

3 sb = SboxAnalyzer ([0x0 ,0x3 ,0x5 ,0xd ,0x6 ,0xf ,0xa ,0x8 ,0xb ,0x4 ,0xe ,0x2 ,0x9 ,0xc ,0x7 ,0x1])

4 # Model differential propagation with probabilities

5 cnf , milp , cp = sb.minimized_diff_constraints ()

6 Number of constraints: 58

7 Input: a0||a1||a2||a3; msb: a0

8 Output: b0||b1||b2||b3; msb: b0

9 Weight: 3.0000 p0 + 2.0000 p1 + 1.4150 p2

10

11 # Model forward differential propagation without probabilities

12 cnf , milp ,cp = sb.minimized_diff_constraints(subtable=’star’)

13 Number of constraints: 39

14 Input: a0||a1||a2||a3; msb: a0

15 Output: b0||b1||b2||b3; msb: b0

16

17 # Model backward differential propagation without probabilities

18 cnf , milp , cp = sbi.minimized_diff_constraints(subtable=’star’)

19 Number of constraints: 40

20 Input: a0||a1||a2||a3; msb: a0

21 Output: b0||b1||b2||b3; msb: b0

22

23 # Model deterministic differential propagation (forward)

24 temp = sb.encode_deterministic_differential_behavior ()

25 cp = sb.generate_cp_constraints(temp); print(cp)

26 Input: a0||a1||a2||a3; msb: a0

27 Output: b0||b1||b2||b3; msb: b0

28 if(a0 ==0/\a1==0/\ a2 ==0/\a3==0) then(b0=0/\b1=0/\b2=0/\b3=0)

29 elseif(a0==0/\ a1==0/\a2==1/\ a3==0) then(b0=-1/\b1=1/\b2=-1/\b3=-1)

30 elseif(a0==0/\ a1==1/\a2==0/\ a3==1) then(b0=-1/\b1=1/\b2=-1/\b3=1)

31 elseif(a0==0/\ a1==1/\a2==1/\ a3==1) then(b0=-1/\b1=0/\b2=-1/\b3=-1)

32 elseif(a0==1/\ a1==0/\a2==0/\ a3==0) then(b0=-1/\b1=-1/\b2=-1/\b3=1)

33 elseif(a0==1/\ a1==1/\a2==0/\ a3==1) then(b0=-1/\b1=-1/\b2=-1/\b3=0)

34 else(b0=-1/\b1=-1/\b2=-1/\b3=-1)

35 endif

36

37 # Model deterministic differential propagation (backward)

38 temp = sbi.encode_deterministic_differential_behavior ()

39 cp = sbi.generate_cp_constraints(temp); print(cp)

40 Input:a0||a1||a2||a3;msb:a0

41 Output:b0||b1||b2||b3;msb:b0

42 if(a0 ==0/\a1==0/\ a2 ==0/\a3==0) then(b0=0/\b1=0/\b2=0/\b3=0)

43 elseif(a0==0/\ a1==0/\a2==0/\ a3==1) then(b0=1/\b1=-1/\b2=1/\b3=-1)

44 elseif(a0==0/\ a1==1/\a2==0/\ a3==0) then(b0=1/\b1=-1/\b2=-1/\b3=-1)

45 elseif(a0==0/\ a1==1/\a2==0/\ a3==1) then(b0=0/\b1=-1/\b2=-1/\b3=-1)

46 elseif(a0==1/\ a1==1/\a2==1/\ a3==0) then(b0=-1/\b1=-1/\b2=1/\b3=-1)

47 elseif(a0==1/\ a1==1/\a2==1/\ a3==1) then(b0=-1/\b1=-1/\b2=0/\b3=-1)

48 else(b0=-1/\b1=-1/\b2=-1/\b3=-1)

49 endif

Listing 1.1: Encoding differential behavior of S-box

23

1 # Import the S-box Analyzer and define the S-box

2 from sboxanalyzer import *

3 sb = SboxAnalyzer ([0x0 ,0x3 ,0x5 ,0xd ,0x6 ,0xf ,0xa ,0x8 ,0xb ,0x4 ,0xe ,0x2 ,0x9 ,0xc ,0x7 ,0x1])

4 sbi = SboxAnalyzer(sb.inverse ())

5 # Model forward linear mask propagation with correlations

6 cnf , milp , cp = sb.minimized_linear_constraints ()

7 Number of constraints: 39

8 Input: a0||a1||a2||a3; msb: a0

9 Output: b0||b1||b2||b3; msb: b0

10 Weight: 4.0000 p0 + 2.0000 p1

11

12 # Model forward linear mask propagation without correlations

13 cnf , milp , cp = sb.minimized_linear_constraints(subtable=’star’)

14 Number of constraints: 32

15 Input: a0||a1||a2||a3; msb: a0

16 Output: b0||b1||b2||b3; msb: b0

17

18 # Model backward linear mask propagation withoout correlations

19 cnf , milp ,cp = sbi.minimized_linear_constraints(subtable=’star’)

20 Number of constraints: 33

21 Input: a0||a1||a2||a3; msb: a0

22 Output: b0||b1||b2||b3; msb: b0

23

24 # Model deterministic linear mask propagation (forward)

25 temp = sb.encode_deterministic_linear_behavior ()

26 cp = sb.generate_cp_constraints(temp); print(cp)

27 Input:a0||a1||a2||a3;msb:a0

28 Output:b0||b1||b2||b3;msb:b0

29 if(a0 ==0/\a1==0/\ a2 ==0/\a3==0) then(b0=0/\b1=0/\b2=0/\b3=0)

30 elseif(a0==0/\ a1==0/\a2==1/\ a3==0) then(b0=-1/\b1=-1/\b2=-1/\b3=1)

31 elseif(a0==1/\ a1==0/\a2==0/\ a3==0) then(b0=-1/\b1=1/\b2=-1/\b3=1)

32 elseif(a0==1/\ a1==0/\a2==1/\ a3==0) then(b0=-1/\b1=-1/\b2=-1/\b3=0)

33 else(b0=-1/\b1=-1/\b2=-1/\b3=-1)

34 endif

35

36 # Model deterministic linear mask propagation (backward)

37 temp = sbi.encode_deterministic_linear_behavior ()

38 cp = sbi.generate_cp_constraints(temp); print(cp)

39 Input:a0||a1||a2||a3;msb:a0

40 Output:b0||b1||b2||b3;msb:b0

41 if(a0 ==0/\a1==0/\ a2 ==0/\a3==0) then(b0=0/\b1=0/\b2=0/\b3=0)

42 elseif(a0==0/\ a1==0/\a2==0/\ a3==1) then(b0=1/\b1=-1/\b2=-1/\b3=-1)

43 elseif(a0==0/\ a1==1/\a2==0/\ a3==0) then(b0=-1/\b1=-1/\b2=1/\b3=-1)

44 else(b0=-1/\b1=-1/\b2=-1/\b3=-1)

45 endif

46

47 # Model monomial propagation in forward direction (MPT)

48 cnf , milp , cp = sb.minimized_integral_constraints ()

49 Number of constraints: 38

50 Input: a0||a1||a2||a3; msb: a0

51 Output: b0||b1||b2||b3; msb: b0

Listing 1.2: Encoding linear and integral behaviors of S-box

24

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

(a) ID distinguisher for 4
rounds of Twinkle-P

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

(b) ID distinguisher for 5
rounds of Twinkle-P

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

(c) ID distinguisher for 6
rounds of Twinkle-P

Fig. 5: ID distinguishers

25

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

Fig. 6: ZC-based Integral distinguisher for 3 rounds of Twinkle-P

26

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

(a) ZC distinguisher for 4
rounds of Twinkle-P

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

(b) ZC distinguisher for 5
rounds of Twinkle-P

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

(c) ZC distinguisher for 6
rounds of Twinkle-P

Fig. 7: ZC distinguishers and ZC-based integral distinguishers

27

Input Division Property

1000

1000

1000

1000

00

00

00

00

00

00

00

00

00

00

00

00

Output Division Property

bbbbbbbbbbbbbbbbbb?bb?bbbbbbbbbb?bb?bbbbbbb?bbbb?bbbbbbbbbbbbb?bb?bbb?bbbbbb?bb?

bbbbbb?bbbbbbbbbbb?bbbb?bbbb?bbbbbb?b?bbbbb?bbbbbbbbbbbbbbbbbbbbbbbbbb?bbbbbbbbb

?bbbbbbbbbbbbb?bbbbbbbbbb?bbbbbb?bbbbbbbbb?bbbbbbbbbbbbbbb?bb?bbbbbbbbbbbbbbb?bb

bbbbbbbbbbbbbbbbbbb?bbbbbb?bbbbbbbbbbbbbbb?bbbbbbbbbbb?bbbbbbbbbbbbbbb??bbbbbbb?

bbbbb?bbbbbbbbbbbbbbbbbbbbbbbbbbbbb?bb?bbb?bbbbb?bbbb?bbbbbbbb?bbbbbb?b?bbbbbbbb

bbbbbb?bbbbbbbbbbb?bb?bbbbbbbbbb?bbbbbbbbbb?bbbbbbbbbbbbbbbbbb?bb?bbb?bbbbbb?bb?

bbbbbbbbbbbbbbbbbbb?b?bbbbbb?bbb?bbbbbbbbb?bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb?bbbbb

?bbbbbbbbbbbbb?bbbbbbbbbb?bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb?bb?bbbbbbbbbbbbbbb?bb

bbbbb?bbbbbbbbbbbb??bbb?bbbbbbbbbbb?b??bbb??bbbbbbbbbbbbbbbbbbbbbbbbb???bbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb?bbbbbbbbbbbb?bbbbbbbbbbbbb?bbbbbbbbbbbbbbbbb

bbbbbb?bbbbbbbbbbbb?b?bbbb?bbbbbbbbbbbbbbb?bbbbbbbbbbb?bbbbbbbbbbbbbbb??bb?bbbb?

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb?bbbbbbbbb?bbbbbbbbbb?bbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbb?bb?b?bbbbbbbb?bb?b?bbbbb?bbbbbbbbbbbbbbbbbb?bb?bbb??bbbbb?bb?

bbbbb?bbbbbbbbbbbbbbbbbbbbbb?bbbbbbbbb?bbb?bbbbbbbbbbbbbbbbbbbbbbbbbb?b?bbbbbbbb

?bbbbbbbbbbbbb?bbbbbbbbbb??bbbbbbbbbbbbbbb?bbbbbbbbbbb?bbb?bb?bbbbbbbb??bbbbb?b?

bbbbbbbbbbbbbbbbbbb?b?bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb?bbbbbbbbbbbbbbbbbbbb?bbbbb

Table 6: Division-property-based integral distinguisher for 4 rounds.
The symbols “1” and “0” at the input indicate the positions of active
and constant bits, respectively. At the output, “b” and “?” denote
balanced and unknown bits, respectively.

Input Division Property

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

00

00

00

00

Output Division Property

??

??b???b?????????????????????

??

??????????b?????????????????????????b????????????????????b?????b????????????????

??

????????????????????????b??b??????????????????b????????????????????b????????????

??

??????b??????????????????????????????????????b???b????b?????????????????????????

??b?????????????????????????

?????????????????????????b???b???????b

??????????b?????????????????????????b???

??????????????????b?????????????????????b??????????????????????????b??????b????b

??

????b?b??b??b???????????????b?????????

??

????b?????b?????????b???????????????b??b??????????????????????b?b????b??????????

Table 7: Division-property-based integral distinguisher for 5 rounds.
The symbols “1” and “0” at the input indicate the positions of active
and constant bits, respectively. At the output, “b” and “?” denote
balanced and unknown bits, respectively.

28

∆X0

00

00

00

00

00

00

00

00

00

00

00

00

00

0010000000000000000000000000000000

0010000000000000000000000000000000

0010000000000000000000000000000000

ΓX4

00000100000001001000000000000000000000000000010000001100000001000000000000000000

00000000000000000100000100000000001000000000000000100000000000000000001000000000

00100000001000000000000000001000000000000000000000000000000001000000000000100000

00000100000000000000000100000000000000001000000000000010100000000000000000000100

00100000000000000001000000000000001000

01000000000000000000000001000000010010000000000000000000000000000000000011000000

00000000100000000000000000000000010000000000000010000001000000000000000000000000

00000000001001000000000000010100000000000010000000100000001000000000000000001000

00000000100000100000001001000000000000000100000000000010000001000000000000000000

00000000011000000010000000000000000000000010000000000100000000000001000000000000

00000001000000000000010000000000000000001000000000000000000001000000010000000000

10000000100000000000000000100000100000000000000000000000010100000000000000000001

00000000000000010000000000000000000000000000000100000000000000000000000000000000

01010000000000001000000100000000000000000000000000100000100000000001000000000000

0001001000000000000010

11000000010000000000000000010000010000000100000000000000001010000000000001000000

Table 8: Deterministic DL distin-
guisher for 4 rounds

∆X0

00

00

00

00

001000000000000000000000000000000000000000

001000000000000000000000000000000000000000

001000000000000000000000000000000000000000

001000000000000000000000000000000000000000

00

00

00

00

00

00

00

00

∆X1

00

000000000100

00

00

00

00000000000100

00

00

00

00

0001

00

00

00

00

00

ΓX4

00

00

00

00

000100000000000000000000000000

00

00

00

00

00

00

00

00

00

00

00

ΓX5

00

00000000000000000000001000000000000000000000000010000000000000000000000000000000

00

00000000000000000000000000001000000000000000000000000010000000000000000000000000

00000000000000000000000000000000000100

00000000000000000000000010000000000000000000000000100000000000000000000000000000

000000000000000000000000000000000100

000000000000000000000000000100

00

000100000000000000000000000000000000000000

0000000000001000

00010000000000000000000000

000000100000000000000000000000001000

0001000000000000000000000000

0010

00000000000000000000000000000000100000000000000000000000001000000000000000000000

Fig. 8: DL distinguisher for 5 rounds

∆X0

0000100000000000000000000000000100

0000000000000000000000000000000100

0000100000000000000000000000000100

00000000000000000000000000000001000000000000010000000000000000000000000000000000

000100000000000000000000000001000000

0001000000

000100000000000000000000000001000000

0001000000

00000000000000000000001000

00000000000000000000001000000000000000000000000000000100000000000000000000000000

00000000000000000000001000

00000000000000000000001000

0000000000000000000000000100

0000000000000000000000001100

0000000000000000000000000100

0000000000000000000000000100

∆X1

00

0010000000000000000000000000000000000000

00

00

00

00

00

00

00

00

00

00

00

00

00

00

ΓX5

00010000000000000000000000000000

00

00

00

001000

000100000000

00

0010000000000000000000000000000000

0010000000000000000000

00

000100000000000000000000

00

000100000000000000000000000000

00

0000000000000000000100

0001

ΓX6

00000000000000001000000000110000000000000000100000000000001001100000000000000001

10000000010000001000000000000000000010001000000000010000000000100000001000000101

01000001000000000000100000010000000000000000010100000001100000000000000000000000

00010110000000010000000000000000100000001000001000110000010000000000000000000010

00010100010000000000000000000100000000010000000101000100000000001000000000000000

01100000000000000011000000000000000000100010001100000100000000001000000010000011

00100000000100000000000000000000000000000000000100000000010001100000000000000000

00000100000000010000000110000000000000000000000001010000101100000000100000010000

10000000100000000000000001000000000000000000000000000100000000000000001100000000

01000000010100000011000000000000000110000000010000000101000100011000001000000000

00000000000000000000000000000010001100000100000000000000000000000010000000000001

01000110000000000010000001100000000100000001010000000110000000000000000100000001

10000000000000000010100010000000000100000000000000000010000001000000000000000000

00001000000000010000000101000100110000000010000001100000000100000000010001000000

00000000000000000000001000110110000000000000000000000000100000001000000000000000

00100001000000000001000000010000000010000000000000100011000001000000000010000000

Fig. 9: DL distinguisher for 6 rounds

Fig. 10: Specification of DL distinguishers for Twinkle-P

29

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

(a) DL distinguisher for 4
rounds of Twinkle-P

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

(b) DL distinguisher for 5
rounds of Twinkle-P

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

S

LaneRotation0

MixSlice

LaneRotation1

(c) DL distinguisher for 6
rounds of Twinkle-P

Fig. 11: DL distinguishers

30

	Breaking the Twinkle Authenticated Encryption Scheme and Analyzing Its Underlying Permutation

