
Multi-precision PMNS with CIOS reduction

Nicolas Méloni, François Palma, Pascal Véron

Université de Toulon, Institut de Mathématiques, Toulon, France.
nicolas.meloni@univ-tln.fr, francois.palma@univ-tln.fr,

pascal.veron@univ-tln.fr

Abstract. The Polynomial Modular Number System (PMNS) is a rep-
resentation system that has shown its effectiveness for finite-field arith-
metic with ECC-size integers [4, 7, 9]. Efforts have also been made to
adapt it to larger integers [8, 19, 24] with mixed results. In particular
in [19], a gap in the 2048-bit to 8192-bit integer sizes was highlighted,
for which PMNS seemed incapable of overcoming the competition. In
this work, we propose a new way of using PMNS for larger sizes, which
involves multi-precision polynomial coefficients and utilizes the Mont-
gomery CIOS reduction, thus closing said gap.

Keywords: Modular Arithmetic, PMNS, Montgomery CIOS, Toeplitz Matrices

1 Introduction

Finite-field arithmetic is key to many cryptographic protocols, with Elliptic
Curve Cryptography, for example, being used in the “vast majority” of TLS
handshakes [18, footnote 2 page 8] with TLS 1.3 reported by Cloudflare to be
“93% of the connections” [27] in 2024. Meanwhile, Post Quantum Cryptography
(PQC) also uses finite-field arithmetic, with the preeminent example being Ky-
ber [3], the new NIST standard for PQC [21] (although Modular Lattices do
not need multi-precision due to their characteristic fields generally being much
smaller). Another example in PQC is CSIDH whose prime sizes range from 1024
bits [6] up to 8192 bits [5].

PMNS are usable in any finite-field arithmetic context but mostly as a re-
placement for traditional multi-precision arithmetic. Instead of the usual 2w-ary

multi-precision where an integer a can be written as a =
m−1∑
i=0

ai2
wi, a correspond-

ing polynomial A(X) =
n−1∑
i=0

AiX
i is chosen to represent a with the main advan-

tages being the lack of carry propagation and the independence of each coefficient
during multiplication. In practice, the efficiency of PMNS has been shown in [7],
which described a specific library for ECC, named MPHELL, and compared it
with other dedicated cryptographic libraries. The results show that on a 64-bit
architecture, the PMNS representation gives the best results inside MPHELL for
ECDSA/EdDSA signatures (generation and verification). Moreover, it also offers

competitive timings on an ARM v8 architecture or an STM32F4 board. More
recently, PMNS have been implemented as a faster alternative to the standard
finite-field arithmetic provided in the Zcash library, which is a cryptocurrency
based on bitcoin [11]. Furthermore, PMNS are well-suited to both SIMD [13] and
multithreading approaches [19]. However, the number of coefficients required to
represent integers in memory seems to balloon out in size as we consider larger
prime fields, as noted in [19]. In that paper, the authors increased the size of the
coefficients by using a 128-bit type made available by GCC on x86_64 CPUs,
with mixed results.

In this work, we explain the observed degradation in size efficiency with
concrete formulas. We also propose an adaptation of the well-established Mont-
gomery CIOS method [16], originally designed for integer modular arithmetic,
to a polynomial context using the PMNS representation. Furthermore, we incor-
porate the use of Toeplitz matrices into our methodology, which are particularly
well-suited for polynomial modular reduction. Finally, we establish an alterna-
tive way to handle multi-precision sized coefficients in PMNS through the use
of “reduced coefficients” [2]. By multi-precision, we mean that each coefficient of
a polynomial is stored across multiple machine words. Together, these methods
achieve very convincing results and finally bridge the gap for PMNS on large in-
tegers highlighted in [19]. Furthermore, we also improve the results with regard
to the SIMD implementation presented in [8].
In Section 2 we provide background information related to PMNS. In Section 3
we provide a new bound for the minimal number of symbols required to represent
an integer in PMNS. In Section 4 we adapt the Montgomery CIOS algorithm to
PMNS in order to manage polynomial coefficients stored on multiple machine
words. Finally, in Sections 5 and 6 we present a complexity analysis of our new
algorithm followed by the implementation results.

2 Background

In this section, we give a brief overview of PMNS and the way operations are
performed.

2.1 PMNS

Definition 1. Let p ⩾ 3, n ⩾ 2, γ ∈ [1, p− 1] and ρ ∈ [1, p− 1]. Let E ∈ Z[X]
be a monic polynomial of degree n, such that E(γ) ≡ 0 (mod p). A PMNS is a
set B ⊂ Z[X] such that :

1. ∀A ∈ B, deg(A) < n,

2. ∀A(X) =

n−1∑
i=0

aiX
i ∈ B, −ρ < ai < ρ for all i,

3. ∀a ∈ Z/pZ, ∃A ∈ B such that A(γ) ≡ a (mod p).

2

Since we want ∥A∥∞ < ρ, bounds must be put on ρ to guarantee that each
element of Z/pZ will have at least one polynomial in B to represent it. This
bound is given in [1, Theorem 4.2].
The condition is as follows. Let L =

{
(x0, . . . , xn−1) ∈ Zn :

∑n−1
i=0 xiγ

i ≡ 0 (mod p)
}

,
which corresponds to the lattice of all vectors of size n for which the associated
polynomials vanish in γ modulo p. Let B be any basis of L. Then, as long as
ρ > 1

2∥B∥1, every element of Z/pZ can be represented in B. The way to con-
struct a basis of L is also explained by [1], which gives the following canonical
basis:

B =



p 0 0 . . . 0 0
−γ 1 0 . . . 0 0
−γ2 0 1 . . . 0 0

...
. . .

...
−γn−2 0 0 . . . 1 0
−γn−1 0 0 . . . 0 1


(1)

The first row of B corresponds to (p, 0, . . . , 0) and we have p ≡ 0 (mod p).
The next n− 1 rows are (−γi, 0, . . . , 0, 1, 0, . . . , 0) which correspond to the poly-
nomials Xi − γi and we indeed have that γi − γi ≡ 0 (mod p).

In practice, we can choose a short basis, since we generally want ρ to be as
small as possible, originally to fit inside a machine word. Such a short basis can
be obtained, for example, through the application of LLL [17]. For parameter
consistency, it has been shown in [12, Section 3.2] that taking ρ = ∥BLLL∥ − 1
(with BLLL being the LLL-reduced form of B) is optimal as long as negative
polynomial coefficients are allowed.

Remark 1. Note that the determinant of L is det(B) = p.

Remark 2. Note that any lattice reduction algorithm can be used, such as BKZ
[26]. For small sizes, LLL often finds the shortest basis. Meanwhile, for larger
sizes, the gain that can be obtained with regard to ρ using another algorithm is
often negligible at the cost of a much longer execution time.

2.2 Operations

Let B = (p, n, γ, ρ, E), a PMNS. Let a ∈ Z/pZ and b ∈ Z/pZ with A ∈ B such
that A(γ) ≡ a (mod p) and B ∈ B such that B(γ) ≡ b (mod p).
Performing c = a ⊙ b (mod p) through our PMNS B is done by computing
C(X) = A(X) ⊙ B(X) (mod E(X)) with ⊙ being either addition, subtraction
or multiplication. E(X) is called the external reduction polynomial and, since
it is a monic polynomial of degree n, it allows the polynomial degree to remain
bounded by n after each step. Indeed, since E(γ) ≡ 0 (mod p), modular reduc-
tion by E does not change the value of the result and hence we will properly
have C(γ) ≡ c (mod p).
However, there is no guarantee that we will have ∥C∥∞ < ρ, so another step is

3

performed called the internal reduction which computes from C another poly-
nomial C̃ ∈ B such that C̃(γ) ≡ c (mod p) and ∥C̃∥∞ < ρ.

External Reduction External reduction in PMNS is generally performed by
choosing E(X) = Xn − λ with small λ. The existence of such a polynomial in
Z/pZ only presupposes the existence of a sufficiently small nth residue. Since
a polynomial modular reduction is performed, the shape of E has an impact
on performance. Other shapes of E have been highlighted in [13] but, for our
purposes, we will always consider E to be of shape Xn − λ. This is because it
allows the use of sub-quadratic algorithms for the computation of A(X)×B(X)
(mod E(X)), as noted in [19].

Indeed, let A(X) = a0 + a1X + · · · + an−1X
n−1 and B(X) = b0 + b1X +

· · ·+ bn−1X
n−1, let C(X) = A(X)×B(X) (mod E(X)) with E(X) = Xn − λ.

We can write each ci as ci =
i∑

j=0

ajbi−j + λ
n−i−1∑
j=1

ai+jbn−j .

Hence, computing C(X) can be viewed as the following vector-matrix computa-
tion:

(c0, c1, . . . , cn−1) = (a0, a1, . . . , an−1)×




b0 b1 . . . bn−2 bn−1

λbn−1 b0 . . . bn−3 bn−2

...
.

...
λb2 λb3 . . . b0 b1
λb1 λb2 . . . λbn−1 b0

(2)

The matrix being a Toeplitz matrix, we can use the recursive Toeplitz vector-
matrix algorithm [15], which is a sub-quadratic algorithm, much like the Karat-
suba or Toom-Cook algorithms. However, this algorithm has been shown to be
slightly faster than a Karatsuba multiplication followed by a reduction in [19,
Proposition 5.2].

Internal Reduction The Internal Reduction in a PMNS is closely related to
the Closest Vector Problem (CVP). Indeed, considering the lattice L defined in
Section 2.1, if we find the element closest to a vector C we want to reduce, we
can subtract that element without changing the value of the evaluation in γ,
since the elements of L vanish in γ modulo p. In doing so, we can reduce the
norm of C. CVP is known to be NP-hard [14], but in our context, solving a
ρ-approximation suffices. As such, we can use polynomial-time approximation
algorithms instead. Several reduction methods have been proposed, the state-of-
the-art being the Montgomery Internal Reduction from [22] (see Algorithm 1),
which is an adaptation of the classical Montgomery modular reduction to poly-
nomial coefficients. Note that it does not solve the CVP or an approximation,
but it does allow us to obtain vectors with reduced norms. Let M ∈ Z[X] be
such that M(γ) ≡ 0 (mod p). To reduce ∥C∥∞, the main idea is to compute a

4

polynomial Q such that every coefficient of C(X)+Q(X)×M(X) (mod E(X))
is divisible by a parameter ϕ. Since Q must satisfy C(X) +Q(X)×M(X) ≡ 0
(mod E(X), ϕ), we conclude that Q(X) ≡ C(X)(−M−1(X)) (mod E(X), ϕ).
We note M ′(X) ≡ −M−1(X) (mod E(X), ϕ) in the sequel. Hence, M(X) nec-
essarily needs to be invertible modulo E(X) modulo ϕ. Note that the parameter
ϕ is often chosen as a power of 2 so that divisions can be performed with a simple
binary shift.

Algorithm 1 Coefficients reduction [22]
Require: B = (p, n, γ, ρ, E) a PMNS, V ∈ Zn−1[X], M ∈ Z[X] such that M(γ) ≡ 0

(mod p), ϕ ∈ N \ {0} and M ′ = −M−1 mod(E, ϕ).
Ensure: S(γ) = V (γ)ϕ−1 (mod p), with S ∈ Zn−1[X]
1: Q← V ×M ′ mod (E, ϕ)
2: T ← Q×M mod E
3: S ← (V + T)/ϕ
4: return S

Note that similarly to the External Reduction step, computing a polynomial
multiplication by M(X) and M ′(X) mod E(X) can be done through the Toeplitz
vector-matrix algorithm. We call M and M′ the Internal Reduction Matrices
associated with M and M ′ which correspond to the Toeplitz matrices needed
for the computation of the previous algorithm. They are as follows:

M =


m0 m1 . . . mn−1

λmn−1 m0 . . . mn−2

...
.

...
λm1 λm2 . . . m0


←M
← X.M mod E

← Xn−1.M mod E

(3)

and

M′ =


m′

0 m′
1 . . . m′

n−1

λm′
n−1 m′

0 . . . m′
n−2

...
.

...
λm′

1 λm′
2 . . . m′

0


←M ′

← X.M ′ mod E

← Xn−1.M ′ mod E

(4)

Consequently, internal reduction has a non-negligible cost, since it is at best
sub-quadratic in n. As such a parameter δ has been introduced in [9] that refers
to the number of “free” additions one can perform without needing to execute
an internal reduction step before a multiplication.

Remark 3. M is a basis of a sub-lattice L′ ⊂ L as shown in [1, Proposition 4.1].

5

Remark 4. The use of the Montgomery Internal Reduction algorithm implies
the need to use the Montgomery domain for operational consistency. This means
that we will have A(X) ≡ aϕ (mod p) to represent a and B(X) ≡ bϕ (mod p)
to represent b so that C(X) = A(X) × B(X) × ϕ−1 (mod E(X)) will be such
that C(γ) ≡ (a× b)ϕ (mod p).

Notice that since the multiplication in PMNS is a polynomial multiplication,
we can improve this operation when the two operands are the same. We do
not consider this case because we prioritize constant-time implementations for
modular arithmetic.

Due to the redundancy inherent to PMNS, equality tests cannot be per-
formed in a straightforward fashion like in a classical binary representation.
Equality tests, if needed, should be performed either through Horner polyno-
mial evaluation in γ or by testing the membership in a modular lattice. Indeed,
let B be a PMNS. Let A ∈ B and B ∈ B. Then A(γ) ≡ B(γ) (mod p) ⇐⇒
(A − B) ∈ L =

{
(x0, . . . , xn−1) ∈ Zn :

∑n−1
i=0 xiγ

i ≡ 0 (mod p)
}

. The authors
in [10] present PMNS with increased size parameters for faster equality tests, but
the performance for standard operations is reduced as a result. In this paper, we
only consider PMNS with optimal parameters with regard to the performance of
modular multiplication. Hence, we only consider PMNS without equality tests.

3 A new definition of optimal n for PMNS

The parameter nopt has been introduced in previous papers as the optimal value
of n for a given prime size for generation purposes. More explicitly, no PMNS
can exist with n < nopt without coefficients potentially overflowing from machine
words in the middle of operations.

The complexity of the external and internal reductions depends mainly on
the parameter n, which is the number of coefficients used to represent an element
of Z/pZ by a polynomial. Therefore, it is critical to minimize the parameter as
much as possible.

Let σ be the number of values in a machine word (for example, 264 for a
64-bit processor). In previous works, authors often set the optimal value of n as
nopt =

⌊
log2(p)
log2(σ)

⌋
+ 1.

Prime size 256 512 1024 2048 4096 6144 8192
nopt 5 9 17 33 65 97 129

nactual 5 9 18 36 72 108 144
Table 1. size in number of 64-bit machine words.

Table 1 shows empirical results for the actual values of n for various integer
sizes compared to the naive evaluation of nopt, assuming 64-bit machine words.

6

As can be seen, while for smaller integer sizes, this bound can be reached, the gap
widens as we increase in integer size. This has been highlighted in [19, Proposition
4.1]. In this section, we give an explanation for this gap and give a more accurate
expression for the theoretical minimum value of n.

3.1 Minkowski’s bound on the 1-norm of lattices

Let us first recall Minkowski’s theorem from [20].
Minkowski’s Theorem. Let L ⊆ Rn, a full-rank lattice. Let S ⊆ Rn be a
convex centrally symmetric set. If vol(S) > 2n det(L), then S contains at least
one non-zero lattice vector.

Proposition 1. Let L ⊆ Rn, a full-rank lattice.
Let v ∈ L such that ∀x ∈ L \ {0}, ∥x∥1 ⩾ ∥v∥1. Then ∥v∥1 ⩽ (n! det(L))

1
n .

Proof. Let v ∈ L such that ∀x ∈ L \ {0}, ∥x∥1 ⩾ ∥v∥1. In other words, v is the
shortest non-zero vector of L in terms of 1-norm. Let S = {x ∈ Rn : ∥x∥1 <
∥v∥1}. S is both convex and centrally symmetric, verifying the requirements for
Minkowski’s Theorem. S is a n-ball in L1 norm of radius ∥v∥1 by construction,
thus its volume is vol(S) = 2n

n! (∥v∥1)
n. If we assume ∥v∥1 > (n! det(L))

1
n , then

we have vol(S) > 2n det(L). In that case, S contains at least one non-zero lattice
vector according to Minkowski’s theorem. This contradicts the assumption that
v is the shortest non-zero vector of L in terms of 1-norm since all elements
of S have a smaller 1-norm than v by construction. Therefore, it follows that
∥v∥1 ⩽ (n! det(L))

1
n .

This is a classical result on lattices that helps us in establishing a realistic
bound on the 1-norm ofM. This is important because ρ, which provides a bound
for our polynomial coefficients, directly depends on it. Since M is a sub-lattice
of L (see Remark 3), then, from [13, Proposition 3], a PMNS exists as soon as
ρ > 1

2∥M∥1. The matrixM is constructed from a short vector of L which means
the result from Proposition 1 helps us bound its 1-norm. Indeed, assuming that
we choose the shortest vector, v1, it follows that ∥M∥1 ⩽ |λ|∥v1∥1. This gives us

∥M∥1 ⩽ |λ|(n!p) 1
n (5)

by remarking that det(L) = p (see Remark 1).
Being able to construct M with v1 is not guaranteed and, in the first place,
finding the shortest vector in a lattice is an NP-hard problem, but this gives
us a bound in the optimal case, which is the premise behind the choice of nopt.
Similarly, the optimal value of |λ| is 1 in the case of E(X) = Xn + 1 with n a
power of 2. This gives us ∥M∥1 ⩽ (n!p)

1
n in the optimal case.

3.2 New expression for nopt

We want σ ⩾ 2ρ so as to be able to fit our polynomial coefficients in a single
machine word. Indeed, having σ ⩾ ρ does not suffice, seeing as coefficients can

7

be both positive and negative, so an extra bit is needed. As explained in the
previous section, we cannot construct a PMNS such that ρ < 1

2∥M∥1. Which
means, since we want σ ⩾ 2ρ, we will at least need to have σ ⩾ ∥M∥1. Hence,
we can set a requirement on n to be σ ⩾ (n!p)

1
n . Which means:

p ⩽ 2n log2(σ)−log2(n!) ,

thus log2(p) ⩽ n log2(σ)− log2(n!) . We can then set nopt as the smallest n which
verifies the above inequality. This gives us the following table:

Prime size 256 512 1024 2048 4096 6144 8192
old nopt 5 9 17 33 65 97 129
new nopt 5 9 17 34 70 105 141
nactual 5 9 18 36 72 108 144

Table 2. size in number of 64-bit machine words.

The new approximation fits better with reality. The remaining difference
can be attributed to the approximation error from LLL [23] (since we generally
obtain our short bases with LLL in practice).

Note that we can write nopt =
⌈
log2(p)+log2(nopt!)

log2(σ)

⌉
or, alternatively,

nopt =

⌊
log2(p) + log2(nopt!)

log2(σ)

⌋
+ 1

Proposition 2. Let p be such that log2
((⌊

log2(p)
log2(σ)

⌋
+ 1

)
!
)
⩾ log2(σ), then

nopt >

⌊
log2(p)

log2(σ)

⌋
+ 1

Proof. First, notice that
⌊
log2(p)+log2(nopt!)

log2(σ)

⌋
+ 1 ⩾

⌊
log2(p)
log2(σ)

⌋
+ 1. Hence, since

nopt =
⌊
log2(p)+log2(nopt!)

log2(σ)

⌋
+ 1, then

nopt ⩾

⌊
log2(p)

log2(σ)

⌋
+ 1

Then, as soon as log2

((⌊
log2(p)
log2(σ)

⌋
+ 1

)
!
)
⩾ log2(σ), then log2(nopt!)

log2(σ)
⩾ 1.

Therefore

nopt =

⌊
log2(p) + log2(nopt!)

log2(σ)

⌋
+ 1 ⩾

⌊
log2(p)

log2(σ)
+ 1

⌋
+ 1 >

⌊
log2(p)

log2(σ)

⌋
+ 1

8

For example, for σ = 264, this bound is achieved for p ⩾ 21280. This is simply
because 1280 is 64 times 20 and 21! > 264 while 20! < 264. Hence, past this
bound, our new expression of nopt will be strictly superior to the old expression,
making the old bound impossible to reach.

4 Adaptations to make multi-precision PMNS more
efficient

This section details the adaptations necessary to switch to multi-precision poly-
nomial coefficients for our PMNS.

4.1 Reduced Coefficients

To address the expansion of n as the size of p increases, it is suggested in [19]
to switch to ϕ = σ2 (using the 128-bit type made available by GCC on x86_64
CPUs). In so doing, an integer from Z/pZ is now represented by a polynomial
with coefficients stored over two machine words (128 bits) rather than a single
one. However, the multi-precision used was a naive implementation with carry
propagation.
A better method is to instead split the coefficients in equal parts among several
machine words. This is reminiscent of non-saturated integer arithmetic with a
radix chosen to minimize carry chains used in some cryptographic schemes. For
example, for ρ = 2108 with σ = 264, instead of storing the first 64 bits of a
coefficient on the first machine word and the next 44 bits on another, we split
the coefficients into two 54-bit values on the two machine words. All coefficients
are thus bounded, which means we can anticipate any overflows and remove the
need for carry propagation until the end step of operations to ensure that the
result is back to the initial bounds on our coefficients. This technique is similar
to the one used in [2] where it is called “reduced coefficients” polynomials, which
is how we shall refer to it in the sequel of this paper.

For the sequel of this section, we assume that PMNS coefficients are larger
than one machine word, and thus multi-precision is required. Let s be the number
of machine words needed to fit a single coefficient. Since we want to perform the
division by ϕ in s steps, we split each coefficient such that only values from
−⌈ s
√
ϕ⌉ to ⌈ s

√
ϕ⌉ − 1 are contained in each machine word at the start. That

is to say, let a ∈ Z/pZ, a polynomial A representing a in a PMNS will thus
be written as A(X) =

∑n−1
k=0 akX

k with ak =
∑s−1

i=0 aki
⌈ s
√
ϕ⌉i. Thus, A(X) =∑s−1

i=0 (
∑n−1

k=0 aki
Xk)⌈ s

√
ϕ⌉i =

∑s−1
i=0 Ai⌈ s

√
ϕ⌉i where

Ai =

n−1∑
k=0

aki
Xk (6)

.

9

Traditionally, authors set ϕ as the size of a machine word and a given PMNS
is valid if 2wρ(δ + 1)2 < ϕ with δ a parameter introduced in [9] that refers to
the number of “free” additions one can perform without needing to execute an
internal reduction step before a multiplication and w = |λ|(n−1)+1 for E(X) =

Xn − λ [13]. As such, we can, for now, set the value of ϕ to 2⌈log2(2wρ(δ+1)2)⌉.

Carry-less operations The main purpose of reduced coefficients is to delay
all carry propagation to the last step. As such, for efficiency reasons, we must
ensure that |λ|⌈ s

√
ϕ⌉ < σ otherwise we will not be able to construct the Toeplitz

matrix from Equation (2) in such a way that all coefficients fit in a machine
word. Furthermore, since we are using the Toeplitz vector-matrix algorithm,
some additions are performed before the multiplication step. The maximum
number of addition performed for one coefficient is n, with coefficients of size
bounded by |λ|⌈ s

√
ϕ⌉, hence we need to enlarge the bound to be:

n|λ|⌈ s
√
ϕ⌉ < σ (7)

Note that some fine-tuning can be done depending on the number of recursion
steps and the way the splitting is performed, but this bound is sufficient for a
general approach.

Division by ϕ As noted in Section 4.1, we can set ϕ = 2⌈log2(2wρ(δ+1)2)⌉.
However, by necessity from Equation (7), we cannot set s

√
ϕ = σ. Traditionally

in PMNS, ϕ is set to σ. This is done for efficiency reasons, since a division by
the size of a machine word in practice translates to a simple MOV instruction.
Similarly, a modular reduction can be performed “for free” since anything above
σ will overflow. In our case, since this isn’t possible, we will need to perform
actual divisions and modular reductions.

One of the most efficient ways to perform a modular reduction consists of
simply applying a binary mask in memory. However, this is only possible for pow-
ers of 2. Similarly, powers of 2 allow the use of bit-shifting to perform divisions.
Hence, it seems logical to choose ϕ to be a power of 2.

In our case, the divisions and reductions performed will be done with
⌈

s
√
ϕ
⌉
.

Thus, we also want
⌈

s
√
ϕ
⌉

to be a power of 2. This gives us, for efficiency reasons:

ϕ = 2
s

⌈
log2(2wρ(δ+1)2)

s

⌉
(8)

4.2 Generation

In this section, we detail the generation process for multi-precision PMNS. A
sample generation code is available at https://github.com/francoispalma/
PMNS/tree/master/multiprecision_pmns.

10

Adaptation to multi-precision In previous works, authors generate a PMNS
for a given p in the following manner:

1. ϕ is chosen (often the size of a machine word)
2. nopt is computed with regards to ϕ and we set n← nopt at the start
3. we find λ, a small nth root in Z/pZ such that E(X) = Xn−λ is irreducible

in Z
4. we choose γ among the roots of E(X) in Z/pZ
5. we construct B as detailed in Equation (1) and apply LLL. We note BLLL

the LLL reduced form of B
6. we set ρ = ∥BLLL∥1 − 1 (as explained in Section 2.1). If ρ is small enough

with respect to ϕ (we need ϕ > 2wρ(δ+1)2 as explained in Section 4.1), the
generation process ends. Else, we set n← n+ 1 and go to step 3.

Note that this is a generalization of the process and does not necessarily fit all
previous works. This process works and is good enough for us to expand on.

Remark 5. Note that in step 3 we choose the smallest possible λ. Notice that
since the value of w is proportional to λ, and ϕ must satisfy ϕ > 2w(δ + 1)2, it
is natural to choose λ as small as possible.

When switching to multi-precision, the value of ϕ is necessarily set differently.
One can choose s, the number of machine words necessary for a single polynomial
coefficient, at the start of the generation process and compute nopt as detailed
in Section 3.2. The process thus ends up being very similar to the one we have
just described. However, another approach is possible:

1. we choose n
2. we find λ, a small nth root in Z/pZ such that E(X) = Xn−λ is irreducible

in Z
3. we choose γ among the roots of E(X) in Z/pZ
4. we construct B as detailed in Equation (1) and apply LLL. We note BLLL

the LLL reduced form of B. From it, we set ρ = ∥BLLL∥1 − 1 as explained
in Section 2.1

5. We set s so that σs ⩾ ρ (with σ the number of values in a machine word, for
example, 264 for a 64-bit processor) from which we compute ϕ as detailed in
Equation (8).

Choosing n however we want is beneficial because it allows us to choose it to
be optimal in terms of complexity (see Section 5 for more details) but also with
many small factors for the Toeplitz recursive splitting. Note also that this process
always yields a PMNS.

Choice of M Since Algorithm 1 requires −M−1 (mod E(X), ϕ), then neces-
sarily M needs to have an inverse mod E(X), ϕ. Previous works [9, 13] provide
more details as to the exact conditions for M to be invertible. In this section,

11

we explain a process for choosing M among the valid possibilities such that the
1-norm is minimal.

After constructing B as detailed in Equation (1) and applying LLL, M is of-
ten chosen as the row such that the associated Internal Reduction MatrixM has
the smallest 1-norm and is invertible mod ϕ. However, some small optimizations
can be performed.

Proposition 3. Let v = (v0, v1, . . . , vn−1) ∈ L and V be the internal reduction
matrix associated with v (see Equation (3)). Let w = (v1, . . . , vn−1,

v0
λ) andW be

the internal reduction matrix associated with w. If v0 ≡ 0 (mod λ), then w ∈ L
and ∥W∥1 ⩽ ∥V∥1.

Proof. Let v = (v0, v1, . . . , vn−1) ∈ L. We note V (X) the polynomial associated
with v. Let w = (v1, . . . , vn−1,

v0
λ). We note W (X) the polynomial associated

with w. Then, if v0 ≡ 0 (mod λ), W (X) ∈ Z[X]. Furthermore, notice that
W (X) × X ≡ V (X) (mod E(X)) since v0

λ Xn ≡ v0 (mod E(X)). Since v ∈ L,
we have V (γ) ≡ 0 (mod p) and therefore W (γ) ≡ V (γ)

γ ≡ 0 (mod p) and thus
w ∈ L.

For M(X) = m0+m1X+· · ·+mn−1X
n−1 then ∥M∥1 = |m0|+|λ|

∑n−1
i=1 |mi|

since the first column ofM is always the one with the largest coefficients. Hence
∥W∥1 ⩽ ∥V∥1.

Remark 6. It is easy to see that the process can be repeated as long as the
coefficient in the first position is divisible by λ. Note in particular that for λ = 2,
this process will give a vector whose first coefficient is odd. This is notable
because it has been shown in [9, Proposition 8] that it is a sufficient condition to
guarantee that M is invertible by ϕ when ϕ is a power of 2, as is our case here.

Thus, selecting M can be done with the following heuristic:

1. We compute BLLL, the LLL-reduced form of B.
2. For the first row of BLLL which we can note as r1, compute R1 the corre-

sponding polynomial.
3. Compute the successive R1/X

i mod E(X) as long as R1/X
i mod E(X) has

integer coefficients.
4. Choose M1 = R1/X

j (mod E(X)) with j the largest value such that M1 is
invertible mod E(X) mod ϕ.

5. Repeat for each row of BLLL.
6. Choose M as the smallest 1-norm vector among the Mk.

Note that a given row is not guaranteed to yield a polynomial that is invert-
ible mod E(X) mod ϕ through this heuristic unless λ = 2. It has been shown
in [9, Propositions 8 and 11] that for E(X) = Xn − λ with even λ, at least one
row of BLLL is invertible, but for odd λ the question remains open for nonspe-
cific n. In [9, Proposition 12] and [13, Proposition 7], the authors show that a
valid M can be found by performing binary linear combinations of the rows of

12

BLLL for odd λ although this may need a 2n step exhaustive search.

Another consideration is sign. PMNS are well-suited for the use of vectorized
instructions, and in particular they make great use of the AVX512IFMA set of
instructions, as shown in [8]. However, those instructions only exist in unsigned
form. It is possible to perform all operations in the PMNS using only unsigned
coefficients; however, this requires finding a M with only positive coefficients.
This also means that the value of ρ must be doubled to account for the necessity
of every element of Z/pZ having a polynomial representation with only positive
coefficients, which halves the number of potential candidates.

The authors of [8] use a generation process that involves iterating over var-
ious random vectors whose norms are close to the upper bound on the shortest
vector until one is found that is all positive and invertible. The considerations for
our new multi-precision PMNS variant are opposite in that we do not necessarily
require a very short vector since we can increase the size of our coefficients as
needed. Instead, having a process that is guaranteed to find a positive invertible
vector in L is more useful.

We propose the following heuristic that systematically finds a positive lin-
ear combination of the rows of the reduced basis that is also guaranteed to be
invertible for even λ.

1. We initialize C(X) as the polynomial corresponding to the vector
(∥BLLL∥1 + 1, ∥BLLL∥1 + 1, . . . , ∥BLLL∥1 + 1) and set ρ′ = ∥BLLL∥1, a
temporary ρ for generation purposes.

2. We compute ϕ′ = 2
s

⌈
log2(2wρ′(δ+1)2)

s

⌉
, a temporary ϕ for generation purposes.

We have a temporary valid PMNS for use in conversion operations.
3. We compute c ∈ Z/pZ with C(γ) ≡ c (mod p).
4. Using algorithm 5 from [12], we compute C(X), a polynomial representing c

in our temporary PMNS. This guarantees ∥C∥∞ ⩽ 1
2∥BLLL∥1+1 (as shown

in [12, Proposition 1]).
5. Since C(γ) ≡ C(γ) ≡ c (mod p), we set M(X) = C(X) − C(X) and we

properly have M(γ) ≡ 0 (mod p). Furthermore, we know by construction
that ∀i, 1

2ρ
′ ⩽ mi ⩽ 3

2ρ
′ + 2. Hence, all coefficients of M are positive.

This M is not necessarily invertible. Assuming even λ, a sufficient condition
can be found to construct an invertible M , using [9, Proposition 11] which shows
that at least one row of BLLL is such that its first coefficient is odd. As men-
tioned above, [9, Proposition 8] states that it is sufficient for even λ that the
first coefficient of M is odd for M to be invertible mod E, ϕ with ϕ a power of
2, which is our case here.

Thus, the construction is as follows. Let us note Rk(X) the polynomial equiv-
alent of one of the rows of BLLL whose first coefficient is odd. Since no coeffi-
cient of BLLL is bigger than ∥BLLL∥1 (which is ρ′) by definition of the 1-norm

13

of a matrix, then 2 ×M(X) − Rk(X) will have all coefficients positive and the
first coefficient odd. Indeed, as noted earlier, ∀i, 1

2ρ
′ ⩽ mi ⩽ 3

2ρ
′ + 2. Hence

∀i, ρ′ ⩽ 2×mi ⩽ 3ρ′+4. Hence subtracting Rk(X) from 2×M(X) will not have
any coefficient go negative. Also since the first coefficient of Rk(X) is odd, then
the first coefficient of the result of 2×M(X)−Rk(X) will always be odd. Hence
this new polynomial will be invertible and all positive. Since we are subtracting
an element of L from another element of L, the result will be in L.

We can then continue as normal in the generation and set the real value of
ρ as ρ > 2× (12∥M∥1 +1) withM the internal reduction matrix from Equation

(3) and ϕ = 2
s

⌈
log2(2wρ(δ+1)2)

s

⌉
. As noted above, the value of ρ needs to be dou-

bled, compared to a system where negative coefficients are allowed in order to
represent all elements of Z/pZ.

One demerit of this heuristic is that we have ∥2×M(X)−Rk(X)∥∞ ⩽ 4ρ′+4,
which is much larger in terms of∞-norm than a row of BLLL. Thus, this process
is useful from a theoretical standpoint, but in practice we can improve on it.
Indeed, one can continuously add and subtract rows of the short basis matrix,
as long as the result is positive. The end result is not guaranteed to be invertible,
however for λ = 2, we can always obtain an invertible polynomial from Remark
6.

4.3 Montgomery CIOS

As explained in Section 2.2, internal reduction in PMNS is done through the
use of an adaptation of the Montgomery algorithm to polynomials. However,
the classic Montgomery algorithm has several variants. In [16], Koç et al. pro-
posed various ways to schedule the operations of the Montgomery algorithm,
notably the Montgomery CIOS (Coarsely Integrated Operand Scanning) and
FIOS (Finely Integrated Operand Scanning) methods. In [24], Noyez et al. show
how to adapt the FIOS variant to PMNS in a hardware context, since this variant
is well adapted. Meanwhile, in a software context, the CIOS variant is the state-
of-the-art for many cryptographic protocols that rely on modular multiplication.
The widely used OpenSSL and GMP libraries both propose software implemen-
tations, for example. Another example would be the reference implementation
of [6] (https://csidh.isogeny.org/software.html). From our testing (see
Section 6), Montgomery CIOS seems to have the edge over regular Montgomery
until the 2048-bit range. For our purposes, this means that as long as σs < 22048,
using the CIOS version seems logical. Algorithm 2 paraphrases the Montgomery
CIOS algorithm from [16].

The parameter w from Algorithm 2 refers to the wordsize and the parameter
W is set to W = 2w. The principle is to first compute a times (b (mod W))
before zeroing out the last w bits using the Montgomery reduction mod W and
divide by W (which is seamless here due to the division being the size of a

14

Algorithm 2 Montgomery CIOS modular multiplication [16]
Require: n ∈ N the modulus, a ∈ N and b ∈ N the operands, w the wordsize of the

computer with W = 2w, r the smallest power of 2 such that r > n, z = ⌈ r
W
⌉ and

n′ ≡ −n−1 (mod r)
Ensure: t ≡ a× b× r−1 (mod n)
1: for i = 0 . . . z − 1 do
2: C ← 0
3: for j = 0 . . . z − 1 do
4: C, S ← aj × bi + c
5: tj ← S
6: end for
7: (C, S)← tz + C
8: tz ← S
9: tz+1 ← C

10: C ← 0
11: m← t0 × n′

0 (mod W)
12: for j = 0 . . . z − 1 do
13: (C, S)← tj +m× nj + C
14: tj ← S
15: end for
16: (C, S)← tz + C
17: tz ← S
18: tz+1 ← tz+1 + C
19: for j = 0 . . . z − 1 do
20: tj ← tj+1

21: end for
22: end for
23: return t

machine word). We then compute a times (⌈ b
W ⌉ (mod W)) and add it to the

running total before repeating the process. The end result is the same as the
classical Montgomery algorithm, although we only need to compute the least
significant word of the modular inverse of n (the modulus) by r (a power of 2
such that r

2 < n < r) and the operations are scheduled differently.

We adapt it to PMNS in Algorithm 3. In it, Zn−1[X] refers to the poly-
nomials of degree of at most n − 1 with coefficients in Z. Each polynomial
P (X) is such that P (X) =

∑s−1
i=0 Pi(

s
√
ϕ)i with ∀i, ∥Pi∥∞ < s

√
ϕ (see Equation

(6)). In a similar fashion to the integer version, instead of computing A(X) ×
B(X) (mod E(X)) in one step, this CIOS variant first computes A(X) × B0

(mod E(X)). Then, we compute a polynomial Q to zero out the lower bits of the
result as normal and divide by s

√
ϕ. We then compute A(X)×B1 (mod E(X))

and add it to the running total before repeating the process of finding Q and so
on. This is equivalent to the normal Montgomery Internal Reduction algorithm,
just scheduled differently.

15

Algorithm 3 Multi-precision PMNS Montgomery CIOS modular multiplication
Require: (p, n, γ, ρ, E) a PMNS with E(X) = Xn−λ, A,B ∈ Zn−1[X] with ∥A∥∞ < ρ

and ∥B∥∞ < ρ, s the number of chunks coefficients are split into, ϕ = 2h with
h ∈ N∗ a multiple of s, M(X) ∈ Zn−1[X] such that M(γ) ≡ 0 (mod p) and
M ′ ≡ −M−1 (mod E(X), ϕ).

Ensure: C(γ) ≡ A(γ)B(γ)ϕ−1 (mod p), with C ∈ Zn−1[X] such that ∀i, ∥Ci∥∞ <
s
√
ϕ and ∥C∥∞ < ρ

1: R← (0, . . . , 0)
2: for i = 0 . . . s− 1 do
3: for j = 0 . . . s− 1 do
4: Ri+j ← Ri+j +Aj ×Bi (mod E(X))
5: end for
6: T ← Ri ×M ′

0 (mod E(X), s
√
ϕ)

7: for j = 0 . . . s− 1 do
8: Qj ← T ×Mj (mod E(X))
9: end for

10: for j = 0 . . . s− 1 do
11: Ri+j ← Ri+j +Qj

12: end for
13: Ri+1 ← Ri/ s

√
ϕ # Exact Division

14: end for
15: for i = 0 . . . s− 1 do
16: Ci ← Rs+i (mod s

√
ϕ)

17: Rs+i+1 ← Rs+i/ s
√
ϕ # Euclidean Division

18: end for
19: return C

Each multiplication step in the algorithm makes use of the Toeplitz vector-
matrix multiplication algorithm to ensure sub-quadratic complexity.

5 Complexity analysis

In this section we analyze the Multi-precision CIOS algorithm for PMNS and
compare it to the single-precision classical Montgomery version from [22].

Step \ Method Single-precision Montgomery Multi-precision Montgomery CIOS

A times B n
2−lognsp

(2)

sp s2 × n
2−lognm

(2)
m

Multiplication by M′ n
2−lognsp

(2)

sp s× n
2−lognm

(2)
m

Multiplication by M n
2−lognsp

(2)

sp s2 × n
2−lognm

(2)
m

Total 3n
2−lognsp

(2)

sp s× (2s+ 1)× n
2−lognm

(2)
m

Table 3. Complexity of the various step of each algorithm in the number of multipli-
cations.

16

Table 3 summarizes the differences in terms of the number of multiplica-
tions, with nsp being the single-precision version of the parameter n, s being
the number of machine words needed to represent a single coefficient in our new
multi-precision version of the PMNS and nm being the multi-precision version
of the parameter n. To clarify, in all cases we will have s×nm ⩽ nsp. Obviously,
for s = 1, the complexity of our new algorithm is identical to the single-precision
version.

Not shown in the table is the fact that the division steps are performed
through binary shifts in the multi-precision version, whereas they are performed
by using MOV instructions in the single-precision version. In the same vein,
modular reductions are considered to be “free” in the single-precision version
because they are the result of natural overflow behavior of machine word sized
multiplications, whereas they are performed with binary masks in the multi-
precision version.

The exponent on the respective n of each variant comes from the usage of the
Toeplitz vector-matrix algorithm, whose complexity was detailed in [15, Equa-
tion 22]. In this case, we assume the worst case which is prime n. The more
n can be decomposed into small factors, the lower the exponent, which means
that in the general case it is more favorable to choose s ⩽ nm since the overall
complexity is quadratic in s but sub-quadratic in nm.

The choice of s and nm in the multi-precision case should be made according
to the value of nopt detailed in Section 3.2. That is to say:

nm × s ⩾ nopt with nm ⩾ s

However, while choosing s = 1 may look the best on paper, reducing s
too much means increasing nm to the point where the value of w, with w =
|λ|(nm− 1)+1, becomes much too large and we no longer have 2wρ(δ+1)2 ⩽ σ
with σ the number of values in a single machine word (for example, 264 for a
64-bit processor). Table 4 shows some empirical results of the value of s × nm

for various PMNS found with corresponding parameters.

Prime size 1024 2048 4096 6144 8192
nopt from 3.2 17 34 69 105 141

s = 1 19 39 83 130 183
s = 2 18 36 80 120 160
s = 3 18 36 72 108 144
s = 4 20 36 72 108 144

Table 4. Evaluation of s×nm for various values of s with σ = 264 compared with nopt

for various prime sizes.

17

Hence, the method should be to select the smallest value of s × nm, among
which the smallest value of s should give a better time complexity.

6 Implementation results

Clock cycle measurements are performed according to the following recommen-
dation from the relevant Intel white paper [25] with slight adaptation (taking
the median instead of the minimum measurement) :

– We deactivate the Turbo-Boost®
– We try to minimize potential cache misses by “heating” the cache memory

with 501 runs that are not measured
– Then we generate 1001 appropriate data sets for which 501 runs are executed

and the clock cycles are measured by interrogating the Time Stamp Counter
with calls to the RDTSC instruction.

– The performance is the median value

The source code is available at https://github.com/francoispalma/PMNS/
tree/master/multiprecision_pmns .

6.1 Sequential

Method \ Prime size 1024 2048 4096 6144 8192
GMP Montgomery 1539 4653 14524 28028 44587

GMP Montgomery CIOS 1187 4607 16793 35283 61478
PMNS from [19] 1709 7491 33471 87671 169070

PMNS128 from [19] 2363 10304 39446 80726 146895
This work s = 2 1173 3874 16254 30795 54146
This work s = 3 1195 3901 13444 26497 43835
This work s = 4 1511 4218 14766 30973 45392

OpenSSL Montgomery CIOS 968 3684 14889 33506 58723
Table 5. Cycle count for modular multiplication on large integers using GCC 12.3.0
on intel processor i9-11900KF.

Note that our code is compiled with the flag -fno-tree-vectorize to ensure
that no vectorized instructions are used. This is so that we can compare our-
selves fairly to GMP which does not use vectorized instructions.

We can see in Table 5 that this new multi-precision method is better than
the naive one from [19]. This new method makes PMNS competitive with GMP
in the 2048 to 8192-bit range, which was highlighted as not being very favorable
in [19]. The comparison with OpenSSL shows that the 1024 to 2048-bit range
is, while still competitive, not better than the alternative. However, our choices
allow for much better performances on larger integer sizes.

18

6.2 AVX512IFMA

The instruction set AVX512IFMA available on many modern CPUs has been
noted in [8] to be particularly well-suited to PMNS. Although AVX2 allows for
full vectorized 32-bit multiplication, in our tests this does not lead to better
performance than regular sequential instructions due to the large increase in n
from taking σ = 232. The trade-off of using AVX512IFMA compared to normal
sequential instructions is that we will have σ = 252 because this instruction set
only allows for full vectorized 52-bit multiplication and only positive coefficients
can be used. This naturally leads to an increase in the value of the parameter n
for a given prime size, but the speedup still seems to be worth the cost.

Method \ Prime size 1024 2048 4096 6144 8192
This work s = 2 747 1574 5227 12725 25220
This work s = 3 457 1577 5132 10891 15896
This work s = 4 - - 5563 12844 19012

Table 6. Cycle count for modular multiplication on large integers with AVX512IFMA
instructions using GCC 12.3.0 on intel processor i9-11900KF.

Method \ Prime size 1024 2048 4096 6144 8192
This work s = 2 1.570 2.461 2.572 2.082 1.738
This work s = 3 2.566 2.457 2.619 2.433 2.758
This work s = 4 - - 2.417 2.063 2.306

Table 7. Ratio of above table values with the best sequential version of the same
integer size.

In Table 6 we show the results we get for the same integer sizes as the one
used in Table 5. In Table 7 we perform a ratio of the results in Table 6 by the
best result of any PMNS variant in each column of Table 5. It is clear from those
results that the vectorized instructions are faster at all sizes, which shows that
they are indeed worth both the increase in parameter size and the slower genera-
tion process. In theory, we would expect to see a factor 4 improvement. However,
memory management of 512-bit registers and the reduced σ mean that the ratio
is lower. Furthermore, the sub-quadratic algorithms we use require subtraction,
which may lead to negative coefficients. This needs to be handled manually
through the use of sign masks, which adds an additional cost.

In Table 8 we compare ourselves with the AVX512IFMA OpenSSL implemen-
tation of Montgomery CIOS. Note that comparatively to Tables 4-7 OpenSSL
only provides AVX512IFMA versions for integers of size 1024, 1536 and 2048

19

Method \ Prime size 1024 1536 2048
OpenSSL Montgomery CIOS 505 846 1177

This work 453 1065 1492
Table 8. Comparison of cycle count for modular multiplication on large integers with
available sizes in OpenSSL using AVX512IFMA instructions with GCC 12.3.0 on intel
processor i9-11900KF.

bits. As can be seen, our version seems to be worse for prime sizes above 1024-
bit. This can be attributed in part to our code being written in C and comparing
ourselves with the optimized assembly code used by OpenSSL. The performance
of this work remains relatively competitive and further optimizations may lead
to better results in the future.

Method \ Prime size 807 1214 1621 2029 2436 2844 3251
Results in [8] 779 1004 1965 3764 6233 9093 19157

This work 457 747 1573 2443 3244 5124 5125
Table 9. Comparison of cycle count for modular multiplication on PMNS, δ = 5, with
[8] using AVX512IFMA instructions with GCC 12.3.0 on intel processor i9-11900KF.

In Table 9 we compare ourselves with the results in [8] at the same exact
integer sizes. In that paper, they set the parameter δ to 5 so the parameters
we generated for this table similarly set δ to 5 for a fair comparison. As can
be seen, this new multi-precision method seems to lead to better performance
overall. The comparison is made with the code made available by the authors
“as is” in [8], only switching the compiler to the same version of GCC for a fair
comparison.

7 Conclusion

In this work, we give a more accurate bound on the number of symbols needed
to represent an integer in a PMNS. We also present an adaptation of the Mont-
gomery CIOS algorithm to PMNS, utilizing multi-precision oriented optimiza-
tions. We show that these changes allow for better performance on large integer
sizes and help alleviate a deficiency in the 2048-bit to 8192-bit range for PMNS.
Furthermore, we provide an efficient heuristic that solves the problem of find-
ing a suitable polynomial M in an AVX512IFMA context. Combined with the
new multi-precision CIOS algorithm, we obtain better performances than the
previous results.

20

References

1. Bajard, J.C., Marrez, J., Plantard, T., Véron, P.: On Polynomial Modular Number
Systems over Z/pZ. Advances in Mathematics of Communications 18(3), 674–695
(Jun 2024). https://doi.org/10.3934/amc.2022018

2. Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: Public Key
Cryptography - PKC 2006, 9th International Conference on Theory and Practice
of Public-Key Cryptography. Lecture Notes in Computer Science, vol. 3958, pp.
207–228. Springer (2006). https://doi.org/10.1007/11745853_14

3. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehle, D.: Crystals - kyber: A cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 353–367 (2018). https://doi.org/10.1109/EuroSP.2018.00032

4. Bouvier, C., Imbert, L.: An alternative approach for sidh arithmetic. In: Garay,
J.A. (ed.) Public-Key Cryptography – PKC 2021. pp. 27–44. Springer International
Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_2

5. Campos, F., Chavez, J., Chi-Domínguez, J.J., Meyer, M., Reijnders, K.,
Rodríguez-Henríquez, F., Schwabe, P., Wiggers, T.: Optimizations and practi-
cality of high-security csidh. IACR Communications in Cryptology (04 2024).
https://doi.org/10.62056/anjbksdja

6. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: Csidh: An efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) Ad-
vances in Cryptology – ASIACRYPT 2018. pp. 395–427. Springer International
Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15

7. Coladon, T., Elbaz-Vincent, P., Hugounenq, C.: MPHELL: A fast and robust li-
brary with unified and versatile arithmetics for elliptic curves cryptography. In:
ARITH 2021. Transactions on Emerging Topics in Computing, Torino, Italy (Jun
2021). https://doi.org/10.1109/ARITH51176.2021.00026

8. Didier, L.S., Robert, J.M., Dosso, F.Y., El Mrabet, N.: A software comparison
of RNS and PMNS . In: 2022 IEEE 29th Symposium on Computer Arithmetic
(ARITH). pp. 86–93. IEEE Computer Society, Los Alamitos, CA, USA (Sep 2022).
https://doi.org/10.1109/ARITH54963.2022.00025

9. Didier, L.S., Dosso, F.Y., Véron, P.: Efficient modular operations using the
Adapted Modular Number System. Journal of Cryptographic Engineering pp. 1–23
(2020). https://doi.org/10.1007/s13389-019-00221-7

10. Dosso, F.Y., Berzati, A., Mrabet, N.E., Proy, J.: Pmns revisited for consistent
redundancy and equality test. Cryptology ePrint Archive, Paper 2023/1231 (2023),
https://eprint.iacr.org/2023/1231

11. Dosso, F.Y., Duquesne, S., Mrabet, N.E., Gautier, E.: PMNS arithmetic for elliptic
curve cryptography. Cryptology ePrint Archive, Paper 2025/467 (2025), https:
//eprint.iacr.org/2025/467

12. Dosso, F.Y., Mrabet, N.E., Méloni, N., Palma, F., Véron, P.: Friendly primes for ef-
ficient modular arithmetic using the polynomial modular number system. Cryptol-
ogy ePrint Archive, Paper 2025/090 (2025), https://eprint.iacr.org/2025/090

13. Dosso, F.Y., Robert, J.M., Véron, P.: PMNS for efficient arithmetic and small
memory cost. IEEE Transactions on Emerging Topics in Computing 10(3), 1263–
1277 (2022). https://doi.org/10.1109/tetc.2022.3187786

14. van Emde Boas, P.: Another np-complete problem and the complexity of computing
short vectors in a lattice. Tech. Rep. 81-04, University of Amsterdam, Department
of Mathematics,Netherlands (1981)

21

15. Hasan, M.A., Nègre, C.: Multiway splitting method for toeplitz matrix
vector product. IEEE Transactions on Computers 62, 1467–1471 (2013).
https://doi.org/10.1109/TC.2012.95

16. Kaya Koc, C., Acar, T., Kaliski, B.: Analyzing and comparing mont-
gomery multiplication algorithms. IEEE Micro 16(3), 26–33 (1996).
https://doi.org/10.1109/40.502403

17. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with
rational coefficients. Mathematische annalen 261, 515–534 (1982).
https://doi.org/10.1007/BF01457454

18. Mankowski, D., Wiggers, T., Moonsamy, V.: TLS → Post-Quantum
TLS: Inspecting the TLS Landscape for PQC Adoption on Android . In:
2023 IEEE European Symposium on Security and Privacy Workshops (Eu-
roS&PW). pp. 526–538. IEEE Computer Society, Los Alamitos, CA, USA
(Jul 2023). https://doi.org/10.1109/EuroSPW59978.2023.00065, https://doi.
ieeecomputersociety.org/10.1109/EuroSPW59978.2023.00065

19. Méloni, N., Palma, F., Véron, P.: PMNS for Cryptography : A Guided
Tour. Advances in Mathematics of Communications pp. 342–359 (2023).
https://doi.org/10.3934/amc.2023033

20. Minkowski, H.: Zur Geometrie der Zahlen. Teubner, Leipzig (1905)
21. National Institute of Standards and Technology: Module-lattice-based key-

encapsulation mechanism standard. Tech. Rep. Federal Information Processing
Standards Publications (FIPS) 203, U.S. Department of Commerce, Washington,
D.C. (2024). https://doi.org/10.6028/NIST.FIPS.203

22. Negre, C., Plantard, T.: Efficient modular arithmetic in adapted modular number
system using lagrange representation. In: Information Security and Privacy, 13th
Australasian Conference, ACISP 2008, Wollongong, Australia. pp. 463–477 (2008).
https://doi.org/10.1007/978-3-540-70500-0_34

23. Nguyen, P.Q., Stehlé, D.: Lll on the average. In: Hess, F., Pauli, S., Pohst, M. (eds.)
Algorithmic Number Theory. pp. 238–256. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2006). https://doi.org/10.1007/11792086_18

24. Noyez, L., El Mrabet, N., Potin, O., Véron, P.: Modular multiplication in
the AMNS representation : Hardware Implementation. In: Selected Areas in
Cryptography. Montréal (Québec), France (Aug 2024), https://hal.science/
hal-04691484, to appear in LNCS vol 15516

25. Paoloni, G.: White paper: How to Benchmark Code Execution Times on Intel®

IA-32 and IA-64 Instruction Set Architectures. Tech. rep., Intel Corporation (2010)
26. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms

and solving subset sum problems. In: International Symposium on Fundamentals
of Computation Theory. pp. 68–85. Springer (1991)

27. Westerbaan, B.: The state of the post-quantum internet (2024),
https://blog.cloudflare.com/pq-2024/ last accessed 23 Oct 2024

22

