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Abstract. The ongoing standardization of post-quantum cryptography
(PQC) by NIST has renewed attention to code-based cryptosystems,
notably Classic McEliece, due to their long-standing resistance to crypt-
analysis and strong security against quantum adversaries.
However, implementation-level vulnerabilities such as side-channel leak-
age remain a critical threat.
In this work, we present a novel algebraic side-channel attack targeting
the decapsulation phase of Classic McEliece, specifically when imple-
mented using the reference decoding algorithm based on Berlekamp–Massey
and matrix-vector multiplications. Our approach exploits Hamming weight
leakage observed during syndrome computations and combines linear al-
gebra techniques over finite fields with bit-level side-channel informa-
tion. The proposed method significantly improves over previous attacks
in terms of computational efficiency and robustness to noise, remaining
effective even under realistic leakage inaccuracies. We provide both a
theoretical analysis and a probabilistic model characterizing the success
rate in noisy conditions.
Our results also contribute to the theoretical understanding of algebraic
distinguishability of field elements from side-channel leakage, partially
validating previously stated conjectures. Experimental simulations con-
firm the practicality of the attack, including for large parameter sets
associated with high security levels.
Importantly, the attack specifically exploits leakage arising during the
matrix–vector multiplication used to compute the double syndrome in
the Classic McEliece reference implementation. The attack does not ap-
ply if the double syndrome is computed by other means (for example,
using transposed additive FFTs), or if a different decoding algorithm is
used that does not require computing the double syndrome at all. This
highlights that informed algorithmic choices can serve as effective coun-
termeasures and underscores the urgent need for rigorous side-channel

https://orcid.org/0009-0003-7451-7272
https://orcid.org/0000-0002-6708-868X
https://orcid.org/0000-0002-8673-9097
https://orcid.org/0000-0002-3874-7527


2 Authors Suppressed Due to Excessive Length

evaluations and secure-by-design implementations of code-based cryp-
tosystems.

Keywords: · Post-quantum cryptography · Code-based cryptography · Classic
McEliece · Side-channel attacks · Linear Algebra

1 Introduction

The NIST Post-Quantum Cryptography (PQC) standardization initiative, launched
in 2017, has stimulated intense research into quantum-resistant public-key cryp-
tosystems. In 2024, the lattice-based scheme CRYSTALS-Kyber [SAB+20], now
standardized under the name ML-KEM, was selected as the primary algorithm
for key encapsulation mechanisms (KEMs). For digital signatures, NIST retained
Falcon and CRYSTALS-Dilithium—also lattice-based—alongside SPHINCS+, a
hash-based scheme, to diversify cryptographic assumptions.

To further expand this diversity, NIST also evaluated code-based candidates.
Among these, HQC [AAB+22] was selected for standardization. Conversely,
Classic McEliece [ABC+22], despite its long-standing resistance to cryptanalysis,
was excluded from immediate standardization by NIST. According to NIST, its
ongoing parallel evaluation by the International Organization for Standardiza-
tion (ISO) raised concerns about potential standard fragmentation. Its inclusion
may be reconsidered following the conclusion of the ISO process. In the mean-
time, attention remains focused on practical concerns such as implementation
efficiency and resistance to physical attacks.

In this work, we focus on Classic McEliece, a code-based KEM whose secu-
rity relies on the hardness of decoding random linear codes—specifically, Goppa
codes. Despite its name, Classic McEliece is built upon the Niederreiter cryp-
tosystem [Nie86], and has withstood decades of cryptanalytic scrutiny.

However, as with many public-key schemes, Classic McEliece is vulnerable to
side-channel attacks, which exploit physical information leaked during execution,
such as timing, power consumption, or electromagnetic emissions. Code-based
cryptosystems have been known to exhibit such leakage since well before the PQC
standardization effort [HMP10,MSSS11,AHPT11,CEvMS16]. Over time, various
countermeasures—e.g., masking, constant-time execution—have been proposed
to mitigate these threats.

Following the PQC standardization efforts, software/hardware implementa-
tions of Classic McEliece have been developed [CC21,CCD+22,SKE+23,FLZG24].
These implementations aim to balance performance and security across diverse
platforms, ranging from constrained embedded systems to high-throughput en-
vironments. Ensuring their resilience to physical attacks remains essential for
secure deployment.

Scope and Limitations. This work targets a specific class of side-channel vulner-
abilities in Classic McEliece implementations that rely on Berlekamp–Massey
decoding, as found in the official reference software. In this setting, the attack
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exploits leakage arising during the matrix–vector multiplication used to com-
pute the double syndrome. Consequently, the attack does not apply if the double
syndrome is computed by other means (for example, using transposed additive
FFTs [CC21], which is also used in the official optimized Classic McEliece im-
plementations), or if a different decoding algorithm is used that does not require
computing the double syndrome at all. For example the public syndrome could
be decoded using Patterson algorithm, hence avoiding the re-computation of a
double-syndrome. This underlines the critical role of implementation choices in
achieving side-channel resistance.

1.1 Notations

We aim to remain as close as possible to the notations introduced in the Round-4
Classic McEliece design document [ABC+22].

Integers are denoted by lowercase letters. Sets are represented using calli-
graphic capital letters, e.g., A, and we denote the cardinality of a set A by #A.
A set of consecutive integers is denoted by Jn;mK = {i ∈ Z | n ≤ i ≤ m}.

We denote by Fq the finite field of order q. Elements of Fq are represented
by lowercase Greek letters, e.g., α ∈ Fq. Polynomials over Fq are denoted using
bold Greek letters.

Bold lowercase letters are used to denote vectors, e.g., v, while bold uppercase
letters denote matrices, e.g., H. For a matrix H, we denote by hij the entry
located in the ith row and jth column. We denote the ith row and jth column
of H by H[i, :] and H[:, j], respectively. A submatrix of H indexed by a set of
rows I and columns J is written H[I,J ].

The support of a vector v is defined as supp(v) = {i | vi ̸= 0}. The notion
of support can also be extended to lists of integers or other indexed, compatible
data structures.

Definition 1 (Finite field representation). Let m be an integer and ζ ∈
F2[X] be an irreducible polynomial of degree m. An element α ∈ F2m is rep-
resented as an element α = (α0, . . . , αm−1) of Fm

2 via a fixed isomorphism
F2m

∼= F2[X]/(ζ): α =
∑m−1

i=0 αix
i where x = X is the class of X in F2[X]/(ζ)

thus yielding an identification F2m
∼= (F2)

m.
In particular, F2m is an F2-vector space with a distinguished basis Bcan =

Bcan,ζ = (xi)i∈[[0,m−1]].

Definition 2 (Hamming weight). Let c ∈ Fn
q . Its Hamming weight is wt(c) =

#supp(c). For α ∈ F2m we define its Hamming weight by wt(α)
def
= wt(α), where

α ∈ (F2)
m is the binary extension of α.

Definition 3 (Binary Hamming weight). Let wt2 : F2m → F2 be defined by
wt2(α0, . . . , αm−1) =

∑m−1
i=0 αi where the sum is understood in F2. It is a linear

form of F2m , i.e. an element of the dual F∗
2m .

The binary Hamming weight appears to be a natural candidate as a linear
form that can be derived from side-channel information.
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Definition 4 (Code). A code C of length n is a subset of Fn
q . An element c =

(c0, . . . , cn−1) ∈ C is called a codeword. If C is a vector subspace of dimension
k of the vector space Fn

q , then C is a linear code of length n and dimension k.
Such a linear code is referred to as an [n, k]q code.

Definition 5 (Parity-check matrix). Let C be an [n, k]q linear code, and let
H be an (n− k)× n matrix such that

∀c ∈ C , HcT = 0.

Then, H is a parity-check matrix for C . Let v ∈ Fn
q . The syndrome of the vector

v with respect to H is defined as s = HvT .

Definition 6 (Goppa code). Let L = {α0, . . . , αn−1}, where αi ∈ Fq and
αi ̸= αj for i ̸= j. Let γ(x) ∈ Fq[x] with deg(γ) = t, such that ∀α ∈ L,γ(α) ̸= 0.
The set

G (γ,L) =

{
c = (c0, c1, . . . , cn−1) ∈ Fn

2 :

n−1∑
i=0

ci
x− αi

≡ 0 in Fq[x]/(γ(x))

}

defines a Goppa code with parameters L and γ(x). Additionally, let H be the
t× n matrix defined as

H =

 γ(α0)
−1 . . . γ(αn−1)

−1

...
. . .

...
αt−1
0 γ(α0)

−1 . . . αt−1
n−1γ(αn−1)

−1

 .

Its expansion over F2, an mt × n matrix, serves as a parity-check matrix for
G (γ,L).

1.2 The Classic McEliece KEM

Classic McEliece [ABC+22] is a Key Encapsulation Mechanism (KEM) based
on the Niederreiter cryptosystem using Goppa codes.

In Table 1, we present the parameter sets for Classic McEliece and toyeliece,
a smaller configuration intended for research and experimentation. In the ISO
proposal,5 the authors refined the parameter list and restricted it to the case
m = 13. In particular, the irreducible polynomial ζ used to define the extension
field F2m is given by

ζ(x) = x13 + x4 + x3 + x+ 1.

Classic McEliece [ABC+22] consists of three main algorithms:

5 https://classic.mceliece.org/iso-mceliece-20230419.pdf

https://classic.mceliece.org/iso-mceliece-20230419.pdf
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Table 1: Classic McEliece [ABC+22] and toyeliece [BCM+25] parameter sets.

Parameter Set toyeliece mceliece mceliece mceliece mceliece mceliece
51220 348864 460896 6688128 6960119 8192128

m 9 12 13 13 13 13
n 512 3488 4608 6688 6960 8192
t 20 64 96 128 119 128

KeyGen : The key generation process selects a random permuted support L,
consisting of n distinct elements from F2m , and an irreducible monic polyno-
mial γ of degree t. Together, (γ,L) form the secret key sk, which is used to
compute the private parity-check matrix Hpriv. This matrix is then reduced
to systematic form, yielding the public matrix Hpub = (Imt |T).

Encap : A random error vector e ∈ Fn
2 of Hamming weight t is sampled, and

the ciphertext is computed as z = Hpube
T . The session key K is derived by

hashing e and z.
Decap : The error vector e is recovered from the ciphertext z using knowledge

of γ and L. The session key K is then derived by hashing e and z.

In this article, we focus on the decapsulation algorithm, presented in Al-
gorithm 1. In this step, the owner of the private key computes a syndrome
polynomial using the Vandermonde structure of the Goppa code to decode the
ciphertext z and derive the session key K.

Algorithm 1 The decapsulation algorithm of the Classic McEliece KEM
Input: Ciphertext z and private key sk = (γ,L)
Output: Session key K
1: Compute the padded vector v = (z, 0, . . . , 0) of length n
2: Construct the matrix:

Hprivγ2 =

 γ(α0)
−2 · · · γ(αn−1)

−2

...
. . .

...
α2t−1
0 γ(α0)

−2 · · · α2t−1
n−1 γ(αn−1)

−2


3: Compute the syndrome: s = Hprivγ2v

T

4: Use the Berlekamp–Massey algorithm to compute the error locator polynomial σ(x)
5: Evaluate σ(α0), . . . , σ(αn−1) for αi ∈ L and recover the error vector e
6: Compute K = hash(1∥e∥z)
7: return K

In the remainder of this work, we focus on Step 3 of the above algorithm,
namely the syndrome computation. To simplify notation, we define γ(αi)

−2 = βi

for 0 ≤ i < n.
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1.3 Related Work

Side-Channel Scenario. Key-recovery side-channel attacks targeting both the
reference and optimized implementations of Classic McEliece have been re-
cently demonstrated [GJJ22,SCD+23,BCM+25,DCV+25]. Among these, several
attacks focus on leakage during the syndrome computation step of the decapsu-
lation process, each employing different strategies to address classifier accuracy
and leakage modeling.

As shown in [DCV+25], the syndrome computation (see Step 3 of Algo-
rithm 1) leaks side-channel information—specifically, power consumption traces—that
enable an adversary to observe the following matrix:

Hwt =


wt(β0) · · · wt(βn−1)

wt(α0β0) · · · wt(αn−1βn−1)
...

. . .
...

wt(α2t−1
0 β0) · · · wt(α2t−1

n−1 βn−1)


Experimental results demonstrate that this leakage can be used to recover

a sufficient number of pairs (αi, βi). The authors then formulate the following
conjecture:

Conjecture 1 ([DCV+25]). For almost all degree-m monic irreducible polynomi-
als ζ ∈ F2[x], the extension field F2m

∼= F2[X]/(ζ) is such that almost all pairs
(α, β) ∈ F∗

2m × F∗
2m can be uniquely determined from Hwt, provided that t is

sufficiently large.

In the same work [DCV+25], the conjecture was originally formulated based
on a smaller subset of the information. Specifically, the authors claimed that
fewer than 2t rows (denoted dm,t < 2t) are sufficient to distinguish the pairs
(αi, βi).

We also consider a noisy setting, in which several entries of Hwt are incor-
rect—typically deviating from the correct value by either +1 or −1. The proba-
bility that a given value is correct is referred to as the accuracy, commonly de-
noted by a. In the experiments conducted in [DCV+25] using the ChipWhisperer
platform [OC14], the observed accuracy for Hamming weight measurements ex-
ceeds 0.96.

Exploitation of the Leakage. In [DCV+25], a side-channel attack targets the
syndrome computation step to recover both γ and L. While the authors demon-
strate that their method can tolerate some classifier inaccuracies, the attack still
requires relatively high accuracy (≥ 0.945), i.e., low-noise measurement envi-
ronments. In practice, such accuracy may not always be achievable in noisier
setups.

In [VCC+25], the authors investigate the robustness of side-channel attacks
on Classic McEliece in the presence of side-channel estimation errors. They pro-
pose a simple yet effective algorithm capable of recovering a list of Hamming
weights from noisy measurements, where each Hamming weight is affected by
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an error of at most ±1. Their algorithm achieves a high success rate in recon-
structing the corresponding field elements, and notably, it requires only t out
of n values (or equivalently mt values). However, the method is restricted to
scenarios where the errors are bounded by ±1.

In both studies, exhaustive search techniques are employed, resulting in high
computational complexity. Table 2 summarizes the different attacks and the
corresponding attack scenarios.

Table 2: Complexity comparison for the side-channel key-recovery attacks tar-
geting the syndrome computation in the Classic McEliece KEM.
Article Scenario Type of attack Accuracy

[DCV+25] Erroneous Hamming weights Exhaustive search
a > 0.945⇒ (α,γ(α)) not recovered precomputation

[VCC+25] Error ±1 on Hamming weights Exhaustive search and
a > 0.81⇒ (α,γ(α)) recovered decoding

This Error ±1 (or even higher6) O(m3t) complexity and
a > 0.74article on Hamming weights decoding

⇒ (α,γ(α)) recovered

1.4 The Berlekamp-Massey Algorithm

The Berlekamp-Massey algorithm [Mas69] is an efficient method for determining
the shortest linear feedback shift register (LFSR) that generates a given binary
sequence. Originally developed for decoding BCH and Reed-Solomon codes, it
has found widespread applications in coding theory and cryptanalysis.

In the context of this work, we use the algorithm to recover the minimal
polynomial χ(Y ) that characterizes a sequence of Hamming weights modulo 2.
This polynomial plays a central role in reconstructing secret key elements in our
side-channel attacks on the Classic McEliece cryptosystem. By leveraging alge-
braic properties, the algorithm iteratively updates χ(Y ) based on discrepancies
observed in the sequence, ensuring an optimal reconstruction. For completeness,
the Berlekamp-Massey algorithm is included in the Section A (Algorithm 5).

1.5 Contributions

In this work, we revisit side-channel key-recovery attacks targeting the reference
implementation of Classic McEliece during the decapsulation phase. Building on
the same threat model as in [VCC+25], we propose a novel attack that signifi-
cantly improves upon previous approaches [VCC+25,DCV+25], both in terms of

2 see Remark 5
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computational efficiency and resilience to estimation errors in the side-channel
leakage.

Our contribution is threefold:

– Improved robustness and efficiency. We introduce a new algebraic at-
tack that tolerates realistic noise levels in the leakage and exhibits much lower
computational complexity, especially for high values of the extension degree
m. Unlike prior approaches, our method scales well and remains practical
for large parameter sets relevant to post-quantum security.

– Algebraic framework for noisy leakage. Our analysis offers a new per-
spective on the effectiveness of previous attacks by establishing an algebraic
link between the Hamming weights of intermediate sensitive variables and
the corresponding secret field elements. This connection holds even under
noisy side-channel observations. The framework we develop generalizes to
any F2-linear leakage function, although our results suggest that the parity
of the Hamming weight is the most natural and realistic leakage function in
practice.

– Theoretical insights and generalization. Our results deepen the un-
derstanding of Conjecture 1 from [DCV+25], showing that distinguishing
field elements based on side-channel information remains feasible even when
the exploited leakage is strictly less informative than in previous attacks.
In particular, we explain why primitive elements of F2m can be efficiently
distinguished in the noise-free case, and provide evidence supporting this
behavior under realistic assumptions.

At the core of our approach is an efficient algorithm that operates on Hwt2 ,
the reduction modulo 2 of the matrix of Hamming weights observed during
syndrome computation. This allows for accurate recovery of the pairs (α,γ(α))
with high probability, even in the presence of noise, and with complexity orders
of magnitude lower than previous methods.

1.6 Organization

This article is organized as follows.
In Section 2, we study secret reconstruction from Hamming weight leakage

in a noise-free setting, covering algebraic preliminaries, the reconstruction algo-
rithm, theoretical justification, and complexity analysis.

Section 3 extends this to noisy environments, presenting decoding algorithms
and analyzing success probabilities.

Section 4 discusses applications to other code-based cryptosystems.
Finally, subsection 4.3 addresses implementation considerations and proposes

countermeasures, highlighting decoding methods and general protections against
side-channel leakage.
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2 Recovering (α, β) from H̃wt: algebraic method

2.1 Algebraic preliminaries

Let K be a field, V a vector space, and h a linear endomorphism of V (i.e., a
K-linear map h : V → V ). In the context of this paper, we have K = F2 and
V = F2m or its dual space F∗

2m = {φ : V → F2 | φ linear}.
The following hypothesis on the endomorphism h will be frequently used in

what follows:

The characteristic polynomial χh of h is irreducible. (H1)

Lemma 1. Assuming hypothesis (H1), there are no nontrivial h-stable sub-
spaces of V . In other words, if W ⊆ V satisfies h(W ) ⊆ W , then either W = {0}
or W = V .

Proof. Let W ⊆ V be an h-stable subspace and choose a basis B of V obtained
by extending a basis of W . The matrix of h relative to B then has a block
upper-triangular form: (

h|W ∗
0 hV/W

)
.

Consequently, the characteristic polynomial factors as

χh = χh|W
× χhV/W

.

Since χh is irreducible by hypothesis, one of these factors must be trivial. Hence,
either dimW = 0 (i.e., W = {0}) or dimV/W = 0 (i.e., W = V ). ⊓⊔

In the following, the notation hi denotes the i-th power of the endomorphism
h, i.e., h2(v) = h(h(v)).

Corollary 1. Assume that h satisfies (H1). Then, for any nonzero vector v ∈
V \ {0}, the family

(v, h(v), h2(v), . . . , hdimV−1(v))

forms a basis of V .
Moreover, if dimV ≥ 2, then for any integer i ∈ Z, the family

(hi(v), hi+1(v), . . . , hi+dimV−1(v))

is also a basis of V .

Proof. Consider the subspace

W = ⟨hi(v) | i ∈ N⟩,

the smallest h-stable subspace of V containing v. Since V is finite-dimensional,
there exists a minimal integer n such that

hn(v) ∈ ⟨v, h(v), . . . , hn−1(v)⟩.
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Thus,
W = ⟨v, h(v), . . . , hn−1(v)⟩.

By Lemma 1, the only h-stable subspaces of V are {0} and V itself, and since
v ̸= 0, it follows that W = V . Hence,

(v, h(v), . . . , hn−1(v))

is a spanning set of V . By minimality of n, these vectors are linearly independent,
so n = dimV , proving the first assertion.

Now assume dimV ≥ 2. If ker(h) contains a nonzero vector w, then Kw is
a nontrivial h-stable subspace of dimension 1, contradicting Lemma 1. Hence,
ker(h) = {0}, so h is invertible. Therefore, hi(v) is well-defined and nonzero for
all i ∈ Z. The second assertion then follows directly from the first by applying
powers of h or h−1.

2.2 Linear algebra related to the sequence (wt2(αiβ))i

Let α, β ∈ F2m . For any integer i ∈ N, the element αiβ ∈ F2m has a Hamming
weight modulo 2 denoted by wt2(α

iβ) ∈ F2. In this subsection, we investigate
the algebraic properties of the sequence

Wα,β :=
(
wt2(α

iβ)
)
i∈N,

which takes values in F2.
Our analysis relies on the following fundamental observations:

– The map wt2 : F2m → F2 is an F2-linear form,
– Multiplication by α defines a linear endomorphism hα : F2m → F2m ,
– This endomorphism induces a dual endomorphism h∗

α : F∗
2m → F∗

2m on the
dual space given by

h∗
α(φ)(x) = φ(αx), ∀φ ∈ F∗

2m , x ∈ F2m .

Remark 1. If B is a basis of F2m and B∗ its dual basis, then the matrix repre-
sentation of h∗

α in B∗ satisfies

MatB∗(h∗
α) = MatB(hα)

T .

In particular, the irreducibility condition (H1) on hα is equivalent to the same
condition on h∗

α.

Lemma 2. The hypothesis (H1) on hα is equivalent to the condition F2[α] =
F2m .

Proof. If F2[α] = F2m , then α is a root of an irreducible polynomial χα ∈ F2[Y ]
of degree m. In the basis (1, α, α2, . . . , αm−1), the matrix of the endomorphism
hα is the companion matrix of χα. In particular, the characteristic polynomial
χhα

of hα coincides with χα, which is irreducible.

Conversely, if F2[α] ̸= F2m , then the set W := F2[α] is a nontrivial hα-stable
subspace of F2m . The result then follows from Lemma 1. ⊓⊔
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From now on, we assume hypothesis (H1) for α with m ≥ 2, and denote by

χα = Y m +

m−1∑
ℓ=0

cℓY
ℓ ∈ F2[Y ]

the irreducible monic polynomial of degree m with α as a root. As noted in the
proof, it coincides with the characteristic polynomial of hα (and of h∗

α).

Remark 2. The sequence Wα,β can thus be viewed as the output of a linear
feedback shift register (LFSR) over F2 with feedback polynomial χα (or χα−1 ,
depending on convention). This directly follows from the recurrence relation

αi+m =

m−1∑
ℓ=0

cℓα
i+ℓ

and the linearity of wt2.

We also introduce the family φα[i] := (h∗
α)

i(wt2) ∈ F∗
2m for i ∈ N, and note

that by construction,
φα[i](β) = wt2(α

iβ), (1)

which corresponds to the i-th term of the sequence Wα,β .
From Corollary 1, we deduce that

B∗
α := (φα[0], . . . , φα[m− 1])

is a basis of F∗
2m .

Let Bα be the basis of F2m dual to B∗
α. By definition, the coordinates of an

element δ ∈ F2m in this basis are given by

MatBα(δ) =
(
φα[0](δ), . . . , φα[m− 1](δ)

)T
. (2)

When applied to δ = β, equations (2) and (1) imply that the coordinates of
β in the basis Bα form the initial state (seed) of the LFSR described in Remark
2.

To relate the coordinates of an element δ ∈ F2m in the two bases Bα and
Bcan (see Definition 1), we use the change-of-basis formula:

MatBα
(δ) = MatBα

(Bcan)×MatBcan
(δ). (3)

2.3 Noise-free setting

Thanks to the results from subsection 2.2, we now have all the necessary tools to
build an algorithm that reconstructs pairs (αk, βk) from the sequence of Ham-
ming weights Hwt[: k].

More precisely, let α, β ∈ F2m such that F2[α] = F2m and β ̸= 0. For any
i ∈ [[0, 2t]], define

wi = wt(αiβ) ∈ [[0,m]] and w̄i = wt2(α
iβ) ∈ F2,

so that (w̄i)i are the first 2t terms of the sequence Wα,β .
Then:
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– algorithms, such as Berlekamp-Massey, allow us to recover the minimal poly-
nomial generating a linearly recurrent sequence. By Remark 2, this lets us
reconstruct the polynomial χα from the sequence (w̄i)i∈[[0,2m]]. The condition
F2[α] = F2m (equivalently (H1) on hα) corresponds to degχα = m, which
can be tested. If this test fails (which occurs only for very few choices of α),
we abandon the reconstruction for this specific pair α, β.

– Knowing that α is a root of χα leaves exactly m possible candidates for α.
Denote the roots of χα by α(0), . . . , α(m−1).

– For each α(ℓ), we can compute

Cℓ = MatB
α(ℓ)

(Bcan).

Indeed, by equation (2), we have

Cℓ =
(
wt2((α

(ℓ))ixj)
)
i,j∈[[0,m−1]]

.

Since χα(ℓ) = χα is irreducible of degree m, we have F2[α
(ℓ)] = F2m , so Bα(ℓ)

forms a basis (as shown for Bα in subsection 2.2). Therefore, Cℓ is invertible.
– Whenever α = α(ℓ), combining Equations (3), (2) and (1) yields

MatBcan
(β) = C−1

ℓ × (w̄0, . . . , w̄m−1)
T .

For an arbitrary ℓ, we can always define and compute an element β(ℓ) ∈ F2m

by setting

MatBcan
(β(ℓ)) = C−1

ℓ × (w̄0, . . . , w̄m−1)
T .

Note that the different pairs (α(ℓ), β(ℓ)) thus obtained generate identical se-
quences Wα(ℓ),β(ℓ) since these are outputs of an LFSR with the same minimal
polynomial χα and the same initial state (seed)

MatB
α(ℓ)

(β(ℓ))T =
(
CℓMatBcan

(β(ℓ))
)T

= (w̄0, . . . , w̄m−1)
T .

– However, we claim that the original Hamming weight sequences
(
wt((α(ℓ))iβ(ℓ))

)
i

very likely distinguish the m candidate pairs. This allows us to identify a
unique matching pair, which must then be (α, β). Supporting evidence for
this claim is provided in Lemma 3.

The central algorithm of this subsection can thus be summarized in the fol-
lowing pseudo-code.
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Algorithm 2 Constructive algorithm to find pairs.
Input: The matrix Hwt

Output: t good pairs (αk, βk)k∈I with #I = t
1: I = ∅, k = −1 ▷ I is the set of good pairs, k the index of a column
2: while #I ̸= t do
3: k = k + 1 ▷ browse Hwt2 = Hwt (mod 2) column-wise
4: Construct W = (wt2(α

i
kβk))i∈[[0,2m−1]] from column k of Hwt2

5: χ← BM(W) ▷ Apply Berlekamp-Massey’s algorithm to W and store its
generating polynomial

6: if deg(χ) ̸= m then ▷ αk does not satisfy (H1)
7: go to 3 ▷ go to line 3 to take the next column
8: else
9: Compute the roots of χ: α(0), . . . , α(m−1)

10: J = ∅ ▷ J stores the (α(ℓ), β(ℓ)) compatible with Hwt[: k]
11: for ℓ← 0 to m− 1 do ▷ browse the roots of χ
12: Compute

Cℓ =


wt2((α

(ℓ))0x0) . . . wt2((α
(ℓ))0xm−1)

wt2((α
(ℓ))1x0) . . . wt2((α

(ℓ))1xm−1)
...

. . .
...

wt2((α
(ℓ))m−1x0) . . . wt2((α

(ℓ))m−1xm−1)

 , W =


wt2(α

0
kβk)

wt2(α
1
kβk)

...
wt2(α

m−1
k βk)


13: Compute β(ℓ) = C−1

ℓ ×W

14: if (wt((α
(ℓ)
k )i(β

(ℓ)
k )))i = (wt(αi

kβk))i then ▷ use of Hwt

15: J ← Append (α(ℓ), β(ℓ))

16: if #J = 1 then ▷ a single match among the m pairs of candidates
17: αk, βk = J [0]
18: I ← Append (αk, βk, k) ▷ (αk, βk, k) indicates that (αk, βk) generates

column k

Remark 3. The first part of the algorithm could also be applied to various linear
leakages other than wt2. For instance,

– The “trace” operator is also F2-linear, but it might be difficult to obtain via
physical attacks.

– Taking every single coordinate in (F2)
m is F2-linear. This is particularly true

for least significant bit leakage, which in some devices can have a greater
impact on power consumption than other bits.

Note that with such individual leakage (and without data on the full Hamming
weight wt), we cannot distinguish the m roots of a given polynomial χ as done
in line 14 and afterwards.

However, if one has access to two such leakages, each given wrong candidate
α(ℓ) might give rise to different candidates β(ℓ), β(ℓ)′ for each leakage, thus
allowing to eliminate these candidates.
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2.4 Theoretical sufficiency of the knowledge of wt(αiβ)i

We now provide evidence of why the condition in line 16 should often be satisfied.
Given an irreducible F2-polynomial ζ of degree m (from which we construct

F2m and its associated Hamming distance), we say that there is a collision be-
tween the distinct pairs (α, β) and (α′, β′) if the entire sequences (wt(αiβ))i∈N
and (wt((α′)iβ′))i∈N coincide. With the following lemma, we provide a proof for
Conjecture 1.

Lemma 3. Assume that ζ is primitive. Then there is no collision with a pair
(α, β) such that α is primitive.

Remark 4. – The condition that ζ is primitive is necessary. Indeed, computa-
tions show that for some defining polynomials (such as

∑12
i=0 X

i for m = 12)
there are typically clusters of m collisions. From the discussion above Algo-
rithm 2, these clusters must be made of the (α(ℓ), β(ℓ)) with ℓ ∈ [[0,m− 1]].
However, for Classic McEliece, the primitivity condition on ζ is always sat-
isfied.

– The condition that α is primitive is not too restrictive. In the worst case for
Classic McEliece, m = 12, among the 4020 elements α such that F2[α] = F2m ,
1728 are primitive. For the ISO parameters (m = 13), except for α = 0 and
α = 1, all elements are primitive.

– The lemma only tells us that the Hamming weight sequences discriminate
the candidates at some integer index which may be beyond 2t, the length of
the acquired sequence. But, since two different sequences necessarily differ
at some point, there is no reason for the bifurcation not to occur early on.

– Effective computations show that the Hamming weight sequence indeed dis-
criminates the candidates early on.

Proof. of Lemma 3 We can assume m ⩾ 2.
Note that if α is primitive, then α satisfies hypothesis (H1). It follows from

the discussion preceding Algorithm 2 that, whenever there is a collision with a
pair (α′, β′) then α ̸= α′ and χα = χα′ . Since the different roots of a given
irreducible polynomial are related by iterations of the Frobenius automorphism
Fr(δ) = δ2, there exists some i0 ∈ [[1,m− 1]] such that α′ = α2i0 .

Since α is primitive and β ̸= 0, we have F2m \{0} = {αiβ|i ∈ [[0, 2m−2]]}. We
are interested in the indices t0, . . . , tm−1 satisfying αtℓβ = xℓ (ℓ ∈ [[0,m − 1]]).
Since α is primitive, those indices are well-defined modulo 2m − 1. Moreover,
x = xℓ

xℓ−1 = αtℓβ

αtℓ−1β
= αtℓ−tℓ−1 so t0, . . . , tm−1 forms an arithmetic progression in

Z/(2m − 1)Z with a common difference of r := t1 − t0. Since ζ is primitive, x is
a generator of (F2m \ {0},×) so r is invertible in Z/(2m − 1)Z.

For (α′, β′), the same holds, but we will only need to note that the indices
t′0, . . . , t

′
m−1 defined by (α′)t

′
ℓβ = xℓ satisfy the equality x = (α′)t

′
ℓ−t′ℓ−1 .

We have chosen the indices tℓ since they are precisely the indices for which
wt(αtβ) = 1. From the collision hypothesis, there exists a permutation σ of
[[0,m − 1]] such that for all ℓ, we have t′ℓ = tσ(ℓ). From the relation between
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α and α′, we deduce that α2i0 (tσ(ℓ)−tσ(ℓ−1)) = (α′)t
′
ℓ−t′ℓ−1 = x. In particular,

(tσ(ℓ)2
i0)ℓ also forms an arithmetic progression in Z/(2m − 1)Z with a com-

mon difference of r. This can also be reformulated as follows: (tσ(ℓ))ℓ forms an
arithmetic progression in Z/(2m − 1)Z with a common difference of r2m−i0 .

Let c = σ(1) − σ(0) ∈ [[−m + 1,m − 1]], then rc = tσ(1) − tσ(0) = r2m−i0 .
Similarly let c′ = σ−1(1)−σ−1(0) ∈ [[−m+1,m− 1]], then rc′ = 2i0(tσ(σ−1(1))−
tσ(σ−1(0))) = 2i0r. Combining these two equalities, we get the relation rcc′ =
r2m−i0c′ = 2mr = r. Since r is invertible, this yields cc′ = 1 in Z/(2m − 1)Z.

In Z, −(m − 1)2 ⩽ cc′ ⩽ (m − 1)2. Since (m − 1)2 < 2m − 2 (m ⩾ 2), the
only possibility to get cc′ = 1 in Z/(2m − 1)Z is that cc′ = 1 in Z. So c, c′ = ±1.
This contradicts the equality c′ = 2i0 in Z/(2m − 1)Z (deduced from rc′ = 2i0r)
since i0 ∈ [[1,m− 1]]. ⊓⊔

2.5 Complexity

We analyze here the expected running time of Algorithm 2, which remains prac-
tical even for large values of m. The analysis assumes constant-time arithmetic
over F2m and constant-time evaluation of wt2(·), which is a reasonable assump-
tion given that m is relatively small (e.g., m ≤ 13 in all Classic McEliece pa-
rameters).

The complexity analysis of our algorithm falls under the same hypothesis as
[KM23] and [ABC+22] (Section 5 Selected parameter sets), more precisely, the
code length n → ∞ while m = O(log2(n)) and tm ≈ n

4 .

Lemma 4. The expected running time of Algorithm 2 is

O
(
(n log2(n))

2

nm

)
,

where nm denotes the number of elements in the support L that satisfy the hy-
pothesis (H1). In particular, when 2m − 1 is a prime number, we have nm = n
and the complexity simplifies to O(n(log2(n))

2).

Proof. Let us analyze the cost of a single iteration of the while loop in Algo-
rithm 2, which attempts to recover a pair (α, β).

– Berlekamp-Massey (Step 5): Given a binary sequence of length 2m, the
Berlekamp-Massey algorithm runs in O(m2) operations.

– Root finding (Step 9): We compute the m roots of a degree-m polynomial
over F2m . In characteristic 2, algorithms based on equal-degree factorization
(e.g., via distinct-degree decomposition and root extraction) yield a cost of
O(m3) in practice.

– Matrix construction (Step 12): Computing the matrix Cℓ ∈ Fm×m
2 from

the roots involves O(m2) operations.
– Linear system solving (Step 13): Solving a linear system of size m over

F2m has complexity O(mc), where c ≤ 3 is the exponent of matrix multipli-
cation.
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Overall, the complexity of a single iteration is dominated by the root-finding
and linear system solving steps, and can be upper bounded by O(m3).

Now, we estimate the expected number of iterations Nit needed to recover t
valid (α, β) pairs. Let nm be the number of support elements in L satisfying (H1).
At each iteration, an element from L is sampled uniformly at random. Assuming
independence and no collisions (as suggested by Lemma 3), the probability that
an iteration yields a useful pair is nm/n.

To recover t correct pairs, the expected number of trials follows a geometric
distribution with success probability nm/n, giving:

Nit = t · n

nm
.

Hence, the total complexity is O
(

(n log2(n))
2

nm

)
. In particular, if 2m − 1 is

prime, then L = F∗
2m , and n = nm, so Nit = t and the complexity simplifies to

O(n(log2(n))
2).

⊓⊔

Remark. The above estimate reflects practical costs under realistic parameters,
with m fixed (typically m ≤ 13). The asymptotic expression O

(
(n log2(n))

2

nm

)
is therefore primarily indicative of behavior across increasing security levels.
Our method remains efficient and usable even for extended variants of Classic
McEliece with m > 13.

3 Improved error-correcting algorithm

3.1 Noisy setting

In [VCC+25], the authors proposed a more realistic model. Even in the noise-free
scenario, such as the one in [DCV+25], the accuracy is not equal to 1.

As demonstrated by the DPA contest V37, the acquisition setting can dras-
tically affect the success rate of an attack, or equivalently impact the accuracy
of a distinguisher.

Indeed, in practice the accuracy of the Hamming weight distinguisher is less
than 1, which is why they consider noisy estimations of the actual Hamming
weight. The error on these estimations is defined by a categorical random vari-
able. More precisely, an estimated weight sequence W̃ is a column vector of the
noisy matrix H̃wt, defined as:

H̃wt[:, j] =
(
wt(αi

jβj) + εi,j
)
i∈J0;2t−1K ,

with εi,j ∈ {0, 1,−1}. In other words, we can write W̃ = W + E , where W is
the correct Hamming weight sequence and E represents the error sequence. For a
deeper understanding of the error model, we refer the reader to [GCCD23,VCC+25].
7 https://dpacontest.telecom-paris.fr/v3/index.php

https://dpacontest.telecom-paris.fr/v3/index.php
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Notice that taking the mod 2 of the estimated weight sequence yields:

W̃2 = W2 + E2,

where W2 is the correct mod 2 weight sequence and E2 is the mod 2 error
sequence with ei ∈ {0, 1}. Typically: - ei = 1 indicates an error at position i in
W2 (i.e., εi ∈ {1,−1}), - ei = 0 indicates an error-free position (i.e., εi = 0).

This leads us to the central question:
Can we recover the BM polynomial generating the sequence W2 from a noisy

sequence W̃2?
To answer this, we propose two solutions: Algorithm 3 and Algorithm 4.

Before analyzing these methods in detail, we outline the main steps of our error
correction strategy.

1. Mod 2 error correction:
– Use Algorithm 3 or Algorithm 4 to determine a BM polynomial that is

likely to be the original polynomial generating the LFSR W2.
– Recover E2 and hence W2 using this polynomial.

2. Recover potential pairs:
– Apply Algorithm 2 (from line 6 to line 13) to recover a list of candidate

pairs (α, β) satisfying W2(α, β) = W2, where:

W2(α, β)
def
=
(
wt2(α

i
kβk)

)
i∈J0;2t−1K .

3. Compute valid pairs: For each candidate (α, β), compute the sequence:

W(α, β)
def
=
(
wt(αi

kβk)
)
i∈J0;2t−1K ,

and retain the pairs satisfying the following conditions:
– On the error-free positions, the Hamming weight must match exactly:

W(α, β)J0;2t−1K\supp(E2) = W̃supp(E2)c .

– On error positions, the difference must be ±1:(
W(α, β)− W̃

)
supp(E2)

∈ {−1,+1}#supp(E2).

If no pair satisfies these conditions, then the BM polynomial found in Step
1 was likely not the correct one.

Remark 5. These techniques can be extended to other error models, where errors
ei on the Hamming weights lie in [[−c, c]] for some c > 1, with high probabil-
ity for ei = 0 and low probability that |ei| > 1 (e.g., a discrete Gaussian-like
model). This can be handled either by keeping Step 3 unchanged (thus rejecting
sequences where |ei| > 1), or by allowing a small number of discrepancies below
a defined threshold.



18 Authors Suppressed Due to Excessive Length

Algorithm 3 Majority rule

Input: W̃2 — noisy mod 2 Hamming weight sequence obtained from SCA
Output: Most probable χk generating W2

1: Polys← [ ]
2: for i← 0 to ⌊log2( t

m
)⌋ do

3: s← 2i

4: for j ← 0 to 2t− 2ms do
5: w ← W̃2[j : s : j + 2ms]
6: poly ← BM(w)
7: if deg(poly) = m and LSB(poly) = 1 then
8: Polys.append(poly)

return argmaxp∈Polys #{q ∈ Polys | q = p} ▷ Most frequent polynomial

3.2 Algorithms for error correction

Algorithm 3 takes a noisy mod 2 Hamming weight sequence W̃2 as input. It
explores multiple sub-sequences of length 2m with various spacings (Line 2),
applies the Berlekamp-Massey (BM) algorithm, and collects valid polynomials
of degree m with least significant bit equal to 1 into the list Polys. The most
frequent polynomial in this list is returned as the best candidate.

Algorithm 4 Sequence distance

Input: W̃2 — noisy mod 2 Hamming weight sequence obtained from SCA
Output: Most probable BM polynomial χk and corresponding denoised sequence W2

1: poly_saved← 0, min_error ← 2t+ 1
2: for i← 0 to 2t− 2m do
3: w ← W̃2[i : i+ 2m]
4: poly ← BM(w)
5: Seq ← LFSR(poly, w, length = 2t)

6: error ← dist(Seq, W̃2)
7: if error < min_error then
8: min_error ← error
9: poly_saved← poly

10: seq_saved← Seq
return poly_saved, seq_saved

Algorithm 4 takes a different approach: for each position in the sequence W̃2,
it considers a window of size 2m, computes the corresponding BM polynomial,
and reconstructs a candidate sequence for W2 by generating values both in the
forward and backward directions using a Linear Feedback Shift Register (LFSR).
The forward sequence is obtained by applying the LFSR from the initial window,
and the backward sequence is built similarly by reversing both the window and
the polynomial. The concatenation of these two partial sequences yields a full-
length candidate sequence.
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This candidate is then compared to the noisy sequence W̃2 using the Ham-
ming distance. The algorithm selects the polynomial that minimizes this dis-
tance, under the assumption that the correct polynomial will generate a sequence
closer to the original, with fewer mismatches.

Importantly, as long as there exists at least one error-free sub-sequence of
length 2m in the original sequence W2, the Berlekamp-Massey algorithm will re-
cover the correct connection polynomial for that segment. In practice, we observe
that wrong polynomials typically result in sequences with significantly more dis-
crepancies, making this distance-based selection reliable when the overall noise
level remains moderate.
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Fig. 1: Experimental success rate for polynomial recovery using majority vote
rule and minimal distance.

Figure 1 shows the success rate of the two approaches in recovering the correct
characteristic polynomial when the full-length sequence is affected by a number
of random local bit flips. This noise model reflects typical side-channel mea-
surement errors encountered when estimating the parity of Hamming weights.
As illustrated in the figure, the distance-based approach (Algorithm 4) demon-
strates greater resilience to noise. These empirical results can be compared with
the theoretical predictions presented in Figure 2b.

During our experiments with the majority rule method, we observed that
feeding Berlekamp-Massey with faulty sequences of length 2m often led to re-
peated recovery of the same incorrect polynomial. This negatively impacts the
success rate of the attack, as it shows that the presence of a single error within
a 2m-length window can result in a persistent incorrect output. In contrast, the
distance-based method appears more robust: a sequence of length 2t affected by
errors still allows recovery of the correct polynomial as long as it contains one
error-free sub-sequence of length 2m.

It is important to emphasize that both methods rely on the assumption that
a correctly recovered characteristic polynomial—based on what is believed to
be an uncorrupted sub-sequence can be used to reconstruct the full guessed
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sequence. This reconstructed sequence allows for the identification of error posi-
tions within the original noisy sequence. However, even when the error positions
are known, determining the direction of the error (i.e., whether the Hamming
weight was over- or underestimated) remains unresolved at this stage. This am-
biguity is precisely addressed in Step 3 of the procedure described in the previous
subsection.

A key empirical observation is the following: among 20,000 reconstruction
attempts for (α, β) under a low accuracy scenario (0.74), only 392 yielded the
correct pair. Crucially, among the remaining 19,608 incorrect predictions, only
one incorrect pair was not rejected by Step 3. This highlights the effective-
ness of the verification step: under reasonable accuracy conditions, the set I of
candidate pairs (α, β) produced by Algorithm 2 contains the correct pair with
high probability, and is extremely unlikely to contain false positives.

3.3 Success probability

Since, an unerroneous 2m sequence allows one to reconstruct the correct se-
quence, we shall focus our analysis on this problem. Hence, the first step is to
determine the probability that the error vector e of a given Hamming weight
admits a zero sub-block of length 2m.

The proofs of the results of this section are postponed to Appendix B

Lemma 5. Let e ∈ F2t
2 with wt(e) = l. The probability that ∃I ⊂ J0; 2t− 1K s.t.

eI = 0#I and #I ≥ 2m equals

⌊ 2t−l
2m ⌋∑
j=1

(−1)j+1
(
l+1
j

)(
2t−2mj

l

)(
2t
l

) (4)

Now, let us see how the weight wt(e) depends on the accuracy of the classifier.

Remark 6. Recall that H̃wt[, i] = (wt(βi)+ ε0,i, . . . ,wt(α
2t−1
i βi)+ ε2t−1,i) where

εj,i is a random variable that follows the categorical distribution, Pr(εi = 0) = a
and Pr(εi = −1) = Pr(εi = 1) = 1−a

2 . When moving down to F2 (where
1 = −1) we obtain that e is a Bernoulli vector with Pr(ei = 0) = a and
Pr(ei = 1) = 1 − a. This implies that wt(e) is a discrete random variable that
follows the Binomial distribution B(1− a, 2t).

Proposition 1. The probability that Algorithm 4 output the correct sequence
given a, the accuracy of the classifier, equals

2t∑
l=0

(1− a)la2t−l

⌊ 2t−l
2m ⌋∑
j=1

(−1)j+1

(
l + 1

j

)(
2t− 2mj

l

)
(5)

As demonstrated in Equation (2), the probability of successfully recovering
a value of α is expressed as a function of both the distinguisher accuracy (see
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Fig. 2: Theoretical probability of success of Algorithm 4 for all Classic McEliece
parameters in function of a) wt(e) and b) accuracy.

Figure 2b) and the error weight (see Figure 2a). The analysis reveals that the
effectiveness of the attack is significantly influenced by the chosen security pa-
rameters. In particular, increasing these parameters tends to improve the success
rate of the attack.

To assess the tightness and reliability of the theoretical bounds, extensive
experiments were carried out. These confirmed that the theoretical predictions
closely match the experimental outcomes. This correspondence is particularly
valuable for evaluators: instead of performing full-scale attacks, one can estimate
the distinguisher’s accuracy and directly use the theoretical formula given in
Equation (5) to predict the attack’s success rate. This approach can substantially
reduce evaluation time while maintaining meaningful security insights.

Bounding the accuracy Typically, it suffices to correctly recover t distinct pairs
(α, β) in order to compute the polynomial γ(x), which can then be used to recon-
struct the full private key (see Section 4.1). Assume further that the extension
field F2m is generated by a primitive polynomial—this is indeed the case for
all ISO-specified parameter sets. As indicated by Lemma 3, this implies that
no collisions are expected among the (α, β) pairs recovered via Algorithm 2.
Consequently, we can lower bound the success probability of Algorithm 4 by
t/n.

This observation allows us to derive a lower bound on the distinguisher accu-
racy a needed to ensure that Pr(success) ≥ t/n. For all Classic McEliece param-
eter sets (see Table 1), the ratio t/n is slightly below 0.021. Through numerical
computation, we determined that this implies a lower bound of a ≥ 0.74.

However, if one aims to employ more advanced techniques for key recov-
ery—such as those described in [KM23,DCV+25]—then more than t correct α
values are required. In particular, the method in [KM23] demands mt+1 correct
values, leading to a stricter accuracy requirement of a ≥ 0.815 for our algorithm.
This same lower bound also applies in scenarios where mt+ δ correct values are
needed, as discussed in [DCV+25].
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The source code for our experiments is available at https://github.com/
vingrosso/keyRecoveryClassicMcEliece.

4 Applications

We now demonstrate two distinct contexts in which Algorithm 2 can serve as a
foundational component for well-known key-recovery attacks.

4.1 Breaking Goppa codes with hints

Our approach fits within a broader framework—namely, the problem of breaking
binary Goppa codes with additional side information (or hints). In this setting,
the attacker is given the public binary Goppa code (i.e., a random basis for
the private code, or equivalently, the matrix Hpub), along with a set of helpful
hints. The objective is to recover the private key, more specifically, the Goppa
polynomial γ(x) and the private support L ⊆ F2m .

Although it is always possible to define a canonical support Lcan = {αi | i ∈
[[0, 2m − 2]]}, where α is a generator of F∗

2m , two main challenges arise:

1. The exact positions (indices) of the elements αi within the actual support L
are unknown.

2. It is unclear which specific elements of F2m have been excluded during the
construction of L.

Except for the recent work in [DCV+25], existing solutions to this prob-
lem [Sen00,KM23] do not explicitly analyze how these hints are generated, nor
do they quantify the amount of side information required to recover the private
key.

In Table 3, we outline how the results of our method can be used to generate
the necessary hints for input to these established Goppa code equivalence solvers.

Algorithm 2 output Hints Complexity Article

t pairs (αi,γ(αi)) γ(x) O(n3 + 2hn2 logn) [Sen00]
a ≥ 0.74

mt+ 1 pairs (αi,γ(αi)) mt+ 1 elements αi O(n5) [KM23]
a ≥ 0.815 t(m− 2) + 1 elements αi and γ(x) O(n4)

mt+ δ pairs (αi,γ(αi)) mt+ δ correct pairs (αi, g(αi)) O
(
n(mt)c−1

)
, c ≤ 3 [DCV+25]

a ≥ 0.815

Table 3: The hints provided by Algorithm 2 as input to existing solvers for Solv-
ing the Goppa code equivalence problem together with the minimum accuracy.

https://github.com/vingrosso/keyRecoveryClassicMcEliece
https://github.com/vingrosso/keyRecoveryClassicMcEliece
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4.2 Other McEliece variants

Alternant codes and Generalized Reed-Solomon codes are both algebraic codes
that were used in a McEliece type cryptosystem. We can show that our method
can be applied to any of these codes in order to recover their structure. The un-
derlying idea is that all these codes admit as parity-check matrix a Vandermonde
type matrix. To define these code we require a support L def

= {α0, . . . , αn−1} ⊂
F2m of length |L| = n (n ≤ 2m) and a multiplier u ∈ Fn

2m , with ui ̸= 0.

V k(v,L)
def
=


v0 . . . vn−1

α0v0 . . . αn−1vn−1

...
. . .

...
αk−1
0 v0 . . . αk−1

n−1vn−1

 .

The Generalized-Solomon code of dimension k and length n can be defined
as follows

GRSk(u,L)
def
= {(u0f(α0), . . . , un−1f(αn−1) | f ∈ F2m [x] , deg(f) < k} .

The dual of a GRS code is still a GRS code, formally, we have GRSk(u,L)⊥ =
GRSn−k(v,L) where v−1

i = ui

∏
i̸=j(αi − αj). This implies that V n−k(v,L)

is a parity-check matrix of GRSk(u,L). A Reed-Solomon code is a GRS with
multpiplier u = (1, . . . , 1).

An alternate code of order r, denoted by Altr(u,L), is a subfield-subcode,
that can be defined using the parity-check matrix as follows

Altr(u,L) = {c ∈ Fn
2 | V r(u,L)cT = 0}.

Its dimension is k ≥ n − rm. Now we can see that G (γ,L) = Altt(u,L) with
ui = γ(αi)

−1, where γ(αi) ̸= 0, ∀αi ∈ L.

Remark 7. Since Algorithm 2 recovers pairs (αi, βi) using the Hamming weight
matrix of the Vandermonde matrix V (v,L), we have

– for Goppa codes we recover βi = γ−1(αi);
– for alternant codes we recover βi ∈ F2m ;
– for GRS code we recover βi = (ui(

∏
i̸=j(αi − αj))

−1 for ui ∈ F2m ;
– for Reed-Solomon codes we can recover βi = (

∏
i̸=j(αi − αj))

−1.

4.3 Countermeasures

While our attack shows that decoding implementations based on Berlekamp–
Massey and matrix–vector multiplications are vulnerable to side-channel leak-
age through Hamming weight observations, several effective countermeasures are
available.

First, high-performance embedded implementations such as [CC21] use trans-
posed additive FFTs to compute the double syndrome. This design substan-
tially modifies the leakage characteristics and greatly reduces the correlation
with Hamming weight, making our attack ineffective in such environments.
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Second, notice that removing the computation of the private syndrome com-
pletely eliminates side-channel attacks such as [DCV+25,VCC+25] and even our
attack. Theoretical solutions exist, since the classical Niederreiter scheme does
not require to re-compute the double syndrome vector. Indeed, the ciphertext z
could be directly decrypted by the following well-known procedure: i) compute
z∗ = S−1z, where S is the non-singular matrix used to compute the systematic
form of Hpriv, and ii) decode z∗ using Patterson decoding algorithm. However,
we want to stress that it is not yet clear how to implement Patterson’s algorithm
efficiently and securely in constant time [Ber24].

Beyond changing the decoding algorithm or syndrome computation method,
standard side-channel countermeasures—including masking techniques [ISW03]
and shuffling [VMKS12]—can be employed to further mitigate leakage during
the decoding process.

We strongly recommend that any deployment of Classic McEliece or simi-
lar code-based cryptosystems combine algorithm-level protections with robust
implementation-level countermeasures to ensure resilience against both classical
and quantum-capable adversaries.

5 Conclusion

In this work, we introduced a novel algebraic key-recovery attack against the
reference implementation of the Classic McEliece KEM in scenarios involving
side-channel leakage. Our method advances the state of the art by offering im-
proved computational efficiency and enhanced robustness to estimation errors
arising from noisy side-channel observations.

By analyzing the structure of the leakage and employing linear-algebraic
techniques over finite fields, we demonstrated that it is possible to recover the
secret key even in the presence of realistic noise, with the success probability
depending primarily on the accuracy of the underlying classifier. Importantly, our
approach scales well to larger parameter sets, making it practical for attacking
implementations targeting higher security levels.

We also provided theoretical justification for the feasibility of distinguishing
field elements via side-channel measurements, thereby offering partial validation
of conjectures previously proposed in the literature.

Furthermore, we discussed the broader relevance of our techniques to other
code-based cryptosystems, including their application to generic Goppa and al-
ternant code key-recovery scenarios. Our framework serves as a foundation for
combining algebraic recovery strategies with other advanced cryptanalytic tools.

Future work will focus on extending our analysis to broader error models,
improving recovery rates under lower measurement accuracy, and designing more
effective countermeasures. In addition, we plan to evaluate our attack on actual
power traces collected from hardware implementations, in order to assess its
practical impact in real-world environments.
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A Berlekamp-Massey Algorithm

Algorithm 5 Berlekamp-Massey Algorithm
Input: A sequence W = (w0, w1, . . . , w2m−1) of Hamming weights modulo 2
Output: The minimal polynomial χ(Y ) that generates the sequence
1: L← 0 ▷ Current length of the characteristic polynomial
2: χ(Y )← 1 ▷ Initialize the polynomial as 1
3: χtemp(Y )← 1
4: ∆← 1 ▷ Discrepancy value (initialized)
5: lold ← 0 ▷ Index of last successful update
6: for i = 0 to 2m− 1 do ▷ Iterate over the sequence
7: Compute the discrepancy: ∆← wi +

∑L
j=1 χjwi−j ▷ If ∆ = 0, the sequence

remains consistent with the current polynomial
8: if ∆ ̸= 0 then ▷ Update is needed if the discrepancy is nonzero
9: χtemp(Y )← χ(Y ) ▷ Backup the current polynomial

10: Update χ(Y ) : χ(Y )← χ(Y )−∆Y i−loldχtemp(Y )
11: if 2L ≤ i then ▷ Check if the length of χ should be increased
12: L← i+ 1− L ▷ Update the length of the polynomial
13: lold ← i

14: return χ(Y ) ▷ Return the minimal polynomial

B Proofs of results from Section 3.3

Let us begin with the proof of Lemma 5. We shall first recall some of the conven-
tions needed here. [xl]P (x) will denote the extraction of the coefficient Pl from
P (x) =

∑n
i=0 Pix

i. Also we will denote the binary alphabet by A = {0, 1}. Let
A∗ = ε, 0, 1, 00, . . . denote the free monoid of finite length binary words where
string concatenation is the monoid operation (ε = 1A∗ being the empty word).
In terms of non-commutative formal series we can write( ∑

w∈A∗

w

)(
1A∗ −

∑
a∈A

a

)
= 1A∗ . (6)

Enumeration of binary words can now be done using the ordinary generating
series. For example, when searching for all binary words of a given length, say
l we are extracting [xl] 1

1−(x+x) = 1
1−2x since both letters from A count the

same, which gives 2l binary words. We can now proceed to the proof of our
result.

Proof. To estimate the wanted probability we will determine its complement, i.e.,
the probability of having all blocks of consecutive zeros with length at most 2m−
1. Thus, we need to enumerate all binary words of length 2t with l occurrences
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of the letter 1 having less than 2m consecutive 0s. Such words are of the form
0<2m(10<2m)l. If we map the letter 0 into the formal variable z and 1 into x we
get that extracting [z2t−l] from (1+ z+ · · ·+ z2m−1)l+1 gives the wanted result.
Indeed, in terms of (now commutative) formal series in z, we have

[xlz2t−l]
∑
i≥0

(1 + z + · · ·+ z2m−1)
(
x(1 + z + · · ·+ z2m−1)

)i
[xlz2t−l]

∑
i≥0

xi

(
1− z2m

1− z

)i+1

[z2t−l]

(
1− z2m

1− z

)l+1

.

The coefficient of z2t−l in (1+z+· · ·+z2m−1)l+1 also denoted in the literature
by
(
l+1
2t−l

)
2m−1

is a generalization of the binomial coefficient which admits the
following combinatorial formula (see [BBK08])

(
l + 1

2t− l

)
2m−1

=

⌊ 2t−l
2m ⌋∑
j=0

(−1)j
(
l + 1

j

)(
2t− 2mj

l

)
.

The total number of binary words of length 2t having l occurrences of 1
equals

(
2t
l

)
which yields the wanted result. ⊓⊔

Now, we can continue with the proof of Proposition 1

Proof. Using Lemma 5 and Remark 6 we deduce

Pr(succes) =

2t∑
l=0

Pr(succes | wt(e) = l)Pr(wt(e) = l) (7)

=

2t∑
l=0

(
2t

l

)
(1− a)la2t−l

⌊ 2t−l
2m ⌋∑
j=1

(−1)j+1
(
l+1
j

)(
2t−2mj

l

)(
2t
l

) (8)

=
2t∑
l=0

(1− a)la2t−l

⌊ 2t−l
2m ⌋∑
j=1

(−1)j+1

(
l + 1

j

)(
2t− 2mj

l

)
(9)

⊓⊔
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