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Abstract. The Edwards-curve Digital Signature Algorithm (EdDSA) is
a deterministic digital signature scheme that has recently been adopted
in a range of popular security protocols. Verifying an EdDSA signature
involves the computation of a double-scalar multiplication of the form
SB − hA, which is a costly operation. The vector extensions of modern
Intel processors, such as AVX2 and AVX-512, offer a variety of options
to speed up double-scalar multiplication thanks to their massive SIMD-
parallel processing capabilities. However, in certain application domains
like fintech or e-voting, several or many EdDSA verifications have to be
performed, and what counts in the end is not the execution time of one
single signature verification, but how long it takes to verify a certain
number of signatures. For such applications, it makes more sense to use
SIMD instructions to maximize the throughput of a batch of verification
operations instead of minimizing the latency of one verification. In this
paper, we introduce high-throughput AVX2/AVX-512 implementations
of EdDSA verification executing four (resp., eight) instances of double-
scalar multiplication in a SIMD-parallel fashion, whereby each instance
uses a 64-bit element of the 256-bit (resp., 512-bit) vectors. We analyze
three techniques for double-scalar multiplication, one that separates the
computation of SB and hA, while the other two integrate or interleave
them based on a joint-sparse form or non-adjacent form representation
of the scalars S and h. Our experiments with 256-bit AVX2 vectorization
on an Intel Cascade Lake CPU show that the separate method achieves
the best results and reaches a single-core throughput of 48,182 double-
scalar multiplications per second, which exceeds the throughput of the
currently fastest latency-optimized implementation by a factor of 1.33.

1 Introduction

The rise of quantum computing has prompted a global shift towards post-
quantum cryptography (PQC), with NIST standardizing quantum-resistant al-
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gorithms to mitigate future threats. However, the transition to PQC is not in-
stantaneous, and classical cryptographic algorithms like elliptic curve cryptog-
raphy (ECC) remain indispensable in the interim. Hybrid approaches, such as
Apple pq3 [1] and PQXDH [21], which combine ECC with PQC, are emerg-
ing as essential solutions to ensure security and smoothness of this transitional
period. Among ECC-based schemes, the Edwards-curve Digital Signature Algo-
rithm (EdDSA) stands out as a popular component in these hybrid approaches
for its security, efficiency, and simplicity. EdDSA [6] can be described as a variant
of the classic Schnorr signature scheme [27] with some adaptations to improve
both efficiency and security. Most importantly, EdDSA replaces the multiplica-
tive group Z∗

p by the additive group of points on a twisted Edwards curve [5]
that is birationally-equivalent to Curve25519 [4], thereby reducing the execu-
tion time and the size of keys and signatures, respectively. The designers of
EdDSA also slightly modified the procedure for signature generation so as to
support batch verification, which allows for verifying a set of n > 1 signatures
faster than when the conventional verification function is executed n times. As
reported in [6], verifying a batch of 64 EdDSA signatures on an Intel Nehalem
processor is about 52% faster than computing 64 single-signature verifications
separately. On the security side, the improvements include the insertion of the
signer’s public key in the hash computation (to address concerns about multi-
target attacks) and a deterministic generation of the per-message secret scalars
(as a hedge against “bad randomness”). Thanks to all these tweaks, EdDSA is
a robust yet highly-efficient signature scheme that has found broad adoption in
the past 15 years. Besides major security protocols like SSL/TLS, IKEv2, and
SSH, EdDSA (or a variant of it) is also an integral part of various applications
ranging from block chains (e.g., Monero, Tezos, Stellar5) over anonymity tools
(e.g., Tor) to electronic voting systems.

When the message to be signed is short, the most costly computation of the
signature generation is a scalar multiplication rB, where B is a generator of an
additive subgroup of large prime order ℓ and r is in the range of [0, ℓ− 1]. The
optimized EdDSA software described in [6] performs this scalar multiplication
using a fixed-base comb method [8] with a radix-16 signed-digit representation
of r and employs a look-up table of 256 pre-computed points. In this way, the
scalar multiplication needs only 64 point additions (and exactly as many table
queries) and four point doublings. On the other hand, the verification involves
a more costly Double-Scalar Multiplication (DSM) of the form SB − hA, where
B is fixed while A becomes only known at run-time. Most optimized software
libraries perform this computation in an interleaved or a simultaneous fashion
with “joint doublings,” which roughly halves the number of point doublings to
be performed in total compared to a separate computation of SB and hA. The
simplest variant of the simultaneous technique (in [17] referred to as “Shamir’s
trick”) pre-computes the point B − A and performs the DSM via the double-
and-add method, whereby the addend is either B, −A or B − A, depending on
value of the bits of S and h at a certain position. More advanced variants aim

5 See https://www.susanka.eu/coins-crypto (accessed 2025-01-20).
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to reduce the number of additions by lowering the joint Hamming weight of the
two scalars (e.g., through a representation in Joint Sparse Form (JSF) or some
similar low-weight form [29]) and using a table containing linear combinations
of B and A, i.e., the points ±uB ± vA for small u and v [17].

The interleaving technique to perform a DSM differs from the simultaneous
technique since it does not pre-compute B − A (and also no other combination
of B and A) [17]. A basic interleaved computation of SB − hA uses the normal
binary representation of the scalars and adds B and A individually, though the
point doublings are still performed “jointly.” More sophisticated variants of the
interleaving method take advantage of a low-weight expansion of S and h, like
the width-w Non-Adjacent Form (NAF), in combination with two tables, one
containing multiples of B and the other multiples of A [17]. For example, the
EdDSA implementation introduced in [6] leverages a width-5 NAF expansion
of the scalars, i.e., each of the tables contains 2w−2 = 8 points. However, since
one point, namely B, is fixed, it can be beneficial to use tables of different size
along with different representations of the two scalars. Most of these algorithms
for comb or window-based (double-)scalar multiplication are additive variants
of older methods for (multi-)exponentiation, which were widely studied in the
context of classic discrete-logarithm cryptosystems [3,22]. Some exponentiation
techniques can even be traced back to papers from the 1960s, e.g., [2,26].

Vector Extensions. Basically any modern high-performance processor architec-
ture comes with vector instructions to increase the performance of a multitude
of tasks that can take advantage of SIMD-level parallelism, most notably video
processing and computer gaming. Examples of common vector instruction sets
include Intel’s Advanced Vector eXtensions (AVX) and successors (e.g., AVX2
and AVX-512, which support 256-bit and 512-bit vectors, respectively) and the
NEON extensions for the ARM architecture. AVX2 adds 16 vector registers to
the x64 architecture (ymm0–ymm15) and provides instructions for SIMD-parallel
loads/stores and arithmetic operations with a granularity of bytes, half-words
(16 bits), words (32 bits), as well as double-words (64 bits). For example, the
AVX2 instruction vpmuludq performs a 4-way-parallel multiplication on packed
64-bit unsigned integers and yields four 64-bit results. On the other hand, the
ordinary x64 mul instruction executes only a single (64× 64)-bit multiplication
that produces a 128-bit result. AVX-512 further enriches the x64 architecture
with 32 vector registers of a length of 512 bits (zmm0–zmm31). Accordingly, the
vpmuludq instruction is able to execute eight (64× 64 → 64)-bit multiplications
in parallel, i.e., AVX-512 has twice the multiplication-power of AVX2.

Implementation results presented in the literature indicate that the massive
parallel processing capabilities of AVX2 and AVX-512 are relatively difficult to
exploit for elliptic curve cryptosystems like X25519 and Ed25519. An example
of such results are the performance figures of Lib25519 [7] for the computation
of a shared secret key for X25519 (i.e., variable-base scalar multiplication). The
fastest vectorized AVX2 implementation contained in Lib25519 uses 10 limbs
per field-element and reaches an execution time of 87,870 cycles on a Skylake
CPU. On the other hand, an ordinary (unvectorized) x64 implementation has
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an execution time of about 133,947 Skylake cycles, i.e., the AVX2 vector engine
reduces the latency by a factor of 1.52. At a first glance, this performance gain
is relatively disappointing when taking into account that vpmuludq can execute
four times more (64× 64)-bit multiplications than mul or mulx. However, there
are a number of reasons for this modest speed-up, which range from differences
in the representation of the field elements (i.e., 10 versus four or five limbs) to
micro-architectural properties (i.e., instruction latencies and throughputs). An
additional aspect that deserves attention is the fact that the number of limbs
used by the AVX2 implementation (i.e., 10) can not be evenly divided by the
number of 64-bit elements of a vector (i.e., four), which means that numerous
AVX2 instructions are executed on vectors that are half empty. The situation
becomes even worse for AVX-512 because many vectors are 75% empty and, as
a consequence, only two out of the eight 64-bit elements of a vector contribute
to the computation of the result. This under-utilization of vector instructions
causes sub-optimal performance and also wastes a lot of energy.

X25519 Vectorization. Elliptic curve cryptosystems offer many options to take
advantage of parallel processing. Besides the field arithmetic itself, such options
do also exist for the point arithmetic (e.g., certain formulae for point addition
or doubling support the parallel execution of two or more field operations) and
the scalar multiplication (e.g., some scalar multiplication algorithms allow two
point operations to be carried out in parallel). The actual speed-up a software
developer can achieve by taking advantage of SIMD-parallel processing at the
layer of the field arithmetic, point arithmetic, and scalar multiplication is often
restricted by dependencies between operations that enforce a sequential execu-
tion. This explains why the speed-up factor due to vectorization (compared to
conventional execution) is always below the degree of parallelism offered by the
vector instructions. However, in the case of X25519, it seems the performance
one can gain by increasing the parallel-processing capabilities of an execution
environment is significantly below the theoretical maximum. To give a concrete
example, the benchmarking results released in [18] demonstrate that vectorized
implementations of X25519 do not scale particularly well when migrating from
one generation of AVX to the next. While AVX-512 (theoretically) doubles the
degree of parallelism versus AVX2 (since it is possible to execute operations on
eight 64-bit elements instead of four), the actual reduction in execution time is
much smaller, namely only 25% (74,368 versus 99,400 Skylake cycles [18]).

The parallelization bottlenecks sketched above (i.e., partially empty vectors
and sequential dependencies) are highly challenging to overcome, which implies
that latency-optimized implementations are not capable to utilize the massive
computing power of vector engines like AVX2 in an ideal way. This observation
initiated research on how to use vector engines to optimize throughput instead
of latency and paved the way to vectorized implementations of cryptosystems
that have the goal of minimizing the execution time of several instances of an
operation instead of a single instance. For example, such throughput-optimized
implementations have been described for X25519 key exchange [11] and isogeny-
based elliptic curve cryptosystems [10,9]. The variable-base scalar multiplication
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on Curve25519 introduced in [11] reached significantly higher throughput than
any of the latency-optimized implementations from [12,14,13,19,24]. There are
some important differences between optimization for latency and optimization
for throughput. Of course, minimizing the latency of one scalar multiplication
also reduces the total execution time of several scalar multiplications, but due
to the mentioned parallelization bottlenecks, optimizing for low latency entails
a sub-optimal utilization of vector engines. High-throughput implementations
effectively overcome these bottlenecks by executing, for example, four instances
of scalar multiplication in parallel with AVX2 instructions, where each instance
uses a single 64-bit element of a 256-bit vector. This approach naturally solves
the problem of partially empty (or even largely empty) vectors and also reduces
the issues with sequential dependencies because the vast majority of operations
can now be executed in a SIMD-parallel fashion (in essence, the only operation
that is not parallelizable for high throughput is table look-up).

Our Contributions. Previous research on throughput-optimized implementation
of elliptic curve cryptography solely considered key exchange schemes such as
X25519. In this paper, we introduce the first high-throughput implementation
of the Ed25519 signature system, especially the verification. More precisely, we
present a vectorized implementation of Ed25519 verification that can execute
four instances of a DSM of the form SB − hA (with a fixed point B) in parallel
using AVX2 instructions, whereby each instance occupies a 64-bit element of the
256-bit vectors. Both scalars, as well as point A, can be different in each of the
four instances. Such a throughput-optimized implementation of the verification
has many real-world use cases. For example, it allows one to quickly check the
validity of a chain of (typically three) certificates used by TLS to authenticate
web servers. This validation can take advantage of a parallel execution of the
DSMs needed to verify the three signatures in the certificates. Blockchains, like
those used by crypto currencies, require verifications of large numbers of signa-
tures to confirm the validity of the transactions in a block before the block can
be added to the chain. What counts in the end is the time needed for all these
verification operations and not for a single one. Similarly, (very) large numbers
of signatures have to be verified by e-voting systems, which is much faster when
the DSM implementation targets high throughput instead of low latency.

Our main contribution is a detailed analysis and comparison of algorithms
for DSM to identify the best one for maximizing throughput. These algorithms
include simultaneous and interleaved techniques, which are widely used by low-
latency implementations, but also an uncommon approach that fully separates
the computation of SB and hA. This separated method exploits the individual
arithmetic strengths of the twisted Edwards model and the Montgomery model
by performing the fixed-base scalar multiplication SB with a comb method on
the twisted Edwards curve, but the variable-base scalar multiplication hA on
the birationally-equivalent Montgomery curve using a Montgomery ladder, as
proposed in [16]. Our results for AVX2 show that, somewhat surprisingly, the
separated method achieves the best results and outperforms the simultaneous
and interleaving techniques. Consequently, DSM algorithms that are efficient in
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terms of latency are not (necessarily) the best option in a throughput-oriented
setting, and this seems to hold also for AVX-512. We mainly focus on AVX2 in
this paper as AVX2 instructions are supported by basically any modern Intel
CPU, while relatively few come with AVX-512. However, we also present some
results for an AVX-512 implementation executing eight instances in parallel.
These results show that AVX-512 instructions almost double the throughput
of the AVX2 implementation, which confirms the scalability of the separated
technique for DSM. In addition, the comparison between AVX2 and AVX-512
results indicates that the implementation makes near-ideal use of the enormous
parallel processing power of modern Intel CPUs. Our software is available at:

https://github.com/zh-bw/AVXEd25519

2 Background

2.1 Notation

This section presents the symbols used throughout the paper. For prime-field
operations, we use q to denote the prime defining the underlying field, and the
prime field with q elements is written as Fq. The SIMD-parallel field arithmetic
operates on limb vectors and limb vector sets, with the same representation as
defined in [11]. In the case of AVX2, a limb vector consists of four limbs (each of
a length of 29 bits), but these four limbs belong to four different field elements
and not to one and the same field-element. Since we use 29-bit limbs, four field
elements can be stored in nine limb vectors, called a limb vector set. A limb
vector is represented by a bold lowercase letter (e.g., v), and a limb vector set
by a bold uppercase letter (e.g., V ). Furthermore, we denote a twisted Edwards
curve as ET , and a curve over Fq as ET (Fq). The base point (generator) of
ET is represented by B, its order by ℓ, and d denotes the curve parameter. An
uppercase letter in script style (e.g., P) represents a point vector set. Specifically,
O is used for a point vector set containing only neutral elements. We use || to
indicate the concatenation of strings.

2.2 Intel AVX2 extensions

In this work, we take advantage of the 256 bit vector extensions, namely using
AVX2 instructions, to enhance the throughput of our software. Intel’s Advanced
Vector eXtension 2 (AVX2) is an instruction set extension designed for the SIMD
parallel computing paradigm. It was first introduced with the Haswell microar-
chitecture in 2013, and is now supported by most of the main stream processors.
AVX2 is built upon its original AVX, by expanding the width of the vector to
256-bit, and increasing the operand number from two to three in instruction
format. AVX2 has sixteen 256-bit vector registers (ymm0-ymm15) and hundreds
of vector instructions. We test our software on an Intel Cascade Lake processor.
As a super-scalar processor, Cascade Lake follows an out-of-order fashion when
assigning the micro-operations decoded from the AVX instructions to different

https://github.com/zh-bw/AVXEd25519
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execution ports. The Cascade Lake has a very identical architecture to its pre-
decessor Skylake [30], which means it has eight execution ports (port 0 to 7).
Ports 0, 1, and 5 can handle vector instructions, while ports 2, 4, 5, and 7 are
used for memory access instructions. Branching and other instructions are as-
signed to port 6. Taking some arithmetic and logical operation instructions as
an example, we summarize their latency, CPI, and execution ports6 in Table 1.
To be specific, the registers of three operands in use for AVX2 instructions are
ymm, ymm, ymm.

As mentioned in the last section, we will describe the implementation details
of our throughput-optimized EdDSA software using AVX2 as a case study be-
cause AVX2 is more widely available than AVX-512. However, we also developed
a prototype for AVX-512, which was relatively simple since AVX2 and AVX-512
are very similar when optimizing for high throughput. As will be shown in Sec-
tion 4, the throughput almost doubled when we migrated our software from
AVX2 to AVX-512.

Table 1. Execution details of example instructions.

Operation Instruction Latency CPI Ports

ADD vpaddq 1 0.33 0, 1, and 5
MUL vpmuludq 5 0.50 0 and 1
AND vpand 1 0.33 0, 1, and 5
OR vpor 1 0.33 0, 1, and 5
XOR vpxor 1 0.33 0, 1, and 5

2.3 Ed25519

Ed25519 is an instance of EdDSA based on an elliptic curve known as Ed-
wards25519. It is defined by the formulae:

x2 + y2 = 1 + dx2y2,

where d is a specific constant with d = −121665/121666, and all operations
are performed over the prime field Fq with q = 2255 − 19. Ed25519 plays a key
role in transport layer protocols such as TLS and was included in the FIPS185-
6 Digital Signature Standard by NIST in 2023. In the following, we provide a
brief overview of the main algorithms of Ed25519. For more details, we refer the
reader to [6].

Point encoding and decoding. All integers are coded in the little-endian
format. A point P = (x, y) on ET (Fq) is encoded as follows. First, clear the

6 See https://uops.info/table.html

https://uops.info/table.html
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most significant bit of the y-coordinate and encode it as a 256-bit string in
little-endian format. Then, copy the least significant bit of the x-coordinate to
the place of the most significant bit of the final bit-string. The point encoding
can be defined formally as:

Encode(P ) = (xmod 2) || y.

The point decoding takes a 256-bit string s as input. First, it extracts the y-
coordinate from s with y = (s255, ..., s0)2. Then, it recovers the x-coordinate by
calculating x =

√
(y2 − 1)/(dy2 + 1). If s255 ̸= x mod 2 then set x = q − x. The

point decoding fails if either y /∈ Fq or the square root does not exist. The point
decoding can be defined formally as:

Decode(s) = (x, y).

Key generation. The private key and public key are generated using Algo-
rithm 1. The execution time of key generation is dominated by the fixed-base
scalar multiplication sB.

Algorithm 1 Ed25519 key generation

Output:(sk, pk).

1: sk ← {0, 1}256 ▷ Generate a random 256-bit integer
2: Hash(sk) = (h511, ..., h0)2
3: s = 2254 +

∑
3≤i≤253 2

ihi

4: pk = Encode(sB)
5: return (sk, pk)

Signature generation. The input to the signing procedure is the signer’s key
pair (sk, pk), and a message M of arbitrary size. The signature is calculated as
shown in Algorithm 2. The execution time of signature generation is dominated
by the fixed-base scalar multiplication rB.

Algorithm 2 Ed25519 signature generation

Input:(sk, pk), message M .
Output:(R ||S).
1: Hash(sk) = (h511, ..., h0)2
2: r = Hash((h511, ..., h256)2 || pk ||M) mod ℓ
3: R = Encode(rB)
4: S = r +Hash(R || pk ||M)s mod ℓ ▷ s is obtained at key generation
5: return (R ||S)
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Signature verification. To verify a signature (R ||S) on message M , given
signer’s public key pk, the signature verification proceeds as specified in Algo-
rithm 3. The verification time primarily depends on the DSM, i.e., the com-
putation of SB − hA, for which we discuss some efficient implementations in
Section 3.

Algorithm 3 Ed25519 signature verification

Input:pk, message M , (R ||S).
Output:Accept or Reject.

1: R′ = Decode(R)
2: A = Decode(pk)
3: if any Decode fails then
4: return Reject
5: end if
6: h = Hash(R || pk ||M)mod ℓ
7: if R′ = SB − hA then
8: return Accept
9: end if
10: return Reject

3 Implementation

When assuming that the message M to be signed is not excessively long, the
most time-consuming operation in EdDSA verification is the DSM of the form
R = SB − hA, which contains a fixed-base scalar multiplication SB and a
variable-base scalar multiplication hA. From a high-level perspective, there ex-
ist two main techniques for computing a DSM, namely (i) the combined approach
that computes SB and hA with joint doublings (two variants of this approach,
namely the simultaneous and interleaving technique, were sketched in Sect. 1),
and (ii) the separate approach that computes SB and hA sequentially and in-
dependently of each other. The former approach usually takes advantage of a
special representations of the scalars to reduce the number of point operations,
e.g., Non-Adjacent Form (NAF) or Joint-Sparse Form (JSF), whereas the latter
utilizes the birational equivalence between the twisted Edwards model and the
Montgomery model.

In this section, we show how the Intel AVX2 instructions can be used to
execute four DSM instances in parallel, each with different points and scalars, to
improve the throughput of EdDSA verification, whereby the NAF-based, JSF-
based, and separate approaches are considered. Our throughput-optimized soft-
ware enables a “batch execution” of EdDSA verification since four EdDSA sig-
natures are verified simultaneously (the number of parallel instances increases
to eight in the case of AVX-512). Therefore, our throughput-optimized imple-
mentation is somewhat similar to the (algorithmic) batch verification described
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in [6]. However, this batch verification has two disadvantages compared to our
approach. First, batch verification is only effective when the size of the batch
is relatively large (in Sect. 1 we mentioned a speed-up of 52% for a batch size
of 64), whereas our implementation is able to boost throughput with a batch of
only four (AVX2) or eight (AVX-512) signatures. Second, when the verification
of a batch fails, each signatures still needs to be verified separately. In addition to
describing throughput-optimization with AVX2 (resp., AVX-512), we also study
how one can further improve the throughput by applying multiprocessing.

3.1 Limb Vector Sets

Similar to [11], the data structure we operate on for the field arithmetic is a
(4× 1)-way limb vector set. For each field element, we employ a 29-bit-per-limb
(i.e., radix-229) representation, meaning nine limbs are needed in total. Given
four field elements a, b, c, and d, the (4×1)-way limb vector V is defined formally
as

V = [a, b, c, d] = [

8∑
i=0

229iai,

8∑
i=0

229ibi,

8∑
i=0

229ici,

8∑
i=0

229idi]

=

8∑
i=0

229i[ai, bi, ci, di] =

8∑
i=0

229ivi,

where vi = [ai, bi, ci, di] is called a limb vector. As explained in the previous
section, in the case of AVX2 a limb vector set consists of nine limb vectors,
each containing four limbs from four different field elements. Analogous to [11],
a point vector set is then used for the elliptic curve arithmetic. Given four points
A, B, C, and D in affine coordinates, the point vector set P is defined formally
as

P = [A,B,C,D]

= [(xA, yA), (xB , yB), (xC , yC), (xD, yD)]

= ([xA, xB , xC , xD], [yA, yB , yC , yD])

= (xP , yP),

where the limb vector set xP (resp. yP) represents the x-coordinate (resp. y-
coordinate) of four points. For points in projective coordinates, the correspond-
ing point vector set is P = (XP , YP , ZP). We adopt the formulas for point
addition/doubling from [20].

3.2 Implementation using NAF-based approach

The first implementation option uses the ω-NAF representation [28] for the
scalars, applied with a so-called interleaving technique [15]. This NAF-based
approach relies on two look-up tables, one for the fixed point B and the other
for the variable point A, using a coefficient of the ω-NAF expansion (of the
scalar) as the input for a table. Taking scalar h and point A as an example, the

ωA-NAF expansion of h is h =
∑l−1

i=0 hi2
i, where each coefficient |hi| < 2ωA−1,
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1 #include <immintrin.h>
2 /* 4-way arithmetic operations on packed 64-bit integers */
3 #define VSUB(X, Y) _mm256_sub_epi64(X, Y)
4 #define VABS32(X) _mm256_abs_epi32(X)
5 /* 4-way bitwise logical operations on packed 64-bit integers */
6 #define VXOR(X, Y) _mm256_xor_si256(X, Y)
7 #define VAND(X, Y) _mm256_and_si256(X, Y)
8 #define VOR(X, Y) _mm256_or_si256(X, Y)
9 #define VSHR(X, Y) _mm256_srli_epi64(X, Y)

10 /* Other 4-way operations on packed 64-bit integers */
11 #define VSET164(X) _mm256_set1_epi64(X)
12 #define VSET64(W, X, Y, Z) _mm256_set_epi64x(W, X, Y, Z)
13 #define VZERO _mm256_setzero_si256 ()
14 /* Structure for projective point representation */
15 typedef struct projective_point {
16 __m256i x[NWORDS ];
17 __m256i y[NWORDS ];
18 __m256i z[NWORDS ];
19 } ProPoint;

Listing 1. Defined macros for AVX intrinsics and structure for point representation.

1 void table_query(ProPoint *r, ProPoint *table , __m256i b)
2 {
3 const __m256i babs = VABS32(b), one = VSET164 (1);
4 __m256i xP[9], yP[9], zP[9], t[9], temp , bsign , bmask;
5 uint32_t xcoor [4][9] , ycoor [4][9] , zcoor [4][9] , index [4];
6 int i, j;
7

8 /* Extract the coefficients from a vector */
9 for (i = 0; i < 4; i++) index[i] = ((( uint32_t *) &babs)[i*2] + 1) / 2;

10 /* Start table query*/
11 for (i = 0; i < 4; i++) {
12 for (j = 0; j < 9; j++) {
13 xcoor[i][j] = (( uint32_t *) &table[index[i]].x[j])[i*2];
14 ycoor[i][j] = (( uint32_t *) &table[index[i]].y[j])[i*2];
15 zcoor[i][j] = (( uint32_t *) &table[index[i]].z[j])[i*2];
16 }
17 }
18 /* Form the point vector set with query results */
19 for (i = 0; i < 9; i++) {
20 xP[i] = VSET64(xcoor [3][i], xcoor [2][i], xcoor [1][i], xcoor [0][i]);
21 yP[i] = VSET64(ycoor [3][i], ycoor [2][i], ycoor [1][i], ycoor [0][i]);
22 zP[i] = VSET64(zcoor [3][i], zcoor [2][i], zcoor [1][i], zcoor [0][i]);
23 }
24 /* Conditional negation */
25 bsign = VSHR(b, 31);
26 bmask = VSUB(zero , bsign);
27 for (i = 0; i < 9; i++) {
28 temp = VAND(VXOR(xP[i], yP[i]), bmask);
29 xP[i] = VXOR(xP[i], temp);
30 yP[i] = VXOR(yP[i], temp);
31 }
32 mpi29_copy_avx2(t, zP);
33 mpi29_gfp_neg_avx2(t);
34 mpi29_cswap_avx2(zP, t, bsign);
35 /* Copy final result to the point vector set */
36 mpi29_copy_avx2(r->x, xP);
37 mpi29_copy_avx2(r->y, yP);
38 mpi29_copy_avx2(r->z, zP);
39 }

Listing 2. Simplified C source code of batch table query.
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Algorithm 4 Batch DSM implementation using NAF-based approach.

Input: Fixed base point vector set B, variable base point vector set A, scalar sets S
and H, a precomputed table TB for B, and window sizes ωA and ωB

Output: R = SB −HA
1: TA ← TableComputation(A) ▷ Compute the look-up table for A
2: S′ ← ωB-NAF(S), H′ ← ωA-NAF(H)
3: t←MaxLength(S′,H′)
4: R← O, P ← O
5: for i from t− 1 to 0 by 1 do
6: R← PointDoubling(R)
7: if S′

i ̸= 0 then

8: P ← TableQuery(TB, ⌊ |S
′
i|+1

2
⌋) ▷ Refer to Listing 2

9: R← PointAddition(R,P)
10: end if
11: if H′

i ̸= 0 then

12: P ← TableQuery(TA, ⌊ |H
′
i |+1

2
⌋) ▷ Refer to Listing 2

13: R← PointAddition(R,P)
14: end if
15: end for
16: return R

i.e., the range of the coefficients and the size of the look-up table is determined
by ωA. In addition, in this expansion, the most significant coefficient hl−1 is
non-zero, and all non-zero coefficients are odd. The associated look-up table is
composed of the points{

Ai = (2i+ 1)A
∣∣ 0 ≤ i < 2ωA−2

}
.

Note the specific parameters ωB = 7 and ωA = 5 are used in state-of-the-art
NAF-based implementations, e.g., [13] and [7], and therefore we adopt the same
setting for our implementation.

Algorithm 4 describes our batch DSM implementation using the NAF-based
approach. After getting the NAF representations of the scalars, we first identify
the longest NAF expansion among all instances and pad others with zeros on
the MSB side. Then, the main loop (line 5 to 15) starts, in which each iteration
processes a single coefficient of each expansion. Note that, if a coefficient is zero in
an instance, the related table query and point addition could be skipped for this
instance. However, due to the SIMD pattern, we will skip the computation only
if all coefficients in the four (resp., eight) instances are zero. A slightly simplified
version of the batch table-query is shown in Listing 2, which is implemented using
the AVX2 intrinsics and projective point representation detailed in Listing 1. The
table query loads points in extended affine coordinates7, and to handle the case
that some coefficients in a vector are zero, the point at infinity (again in extended
affine coordinates) is included in the look-up table.

7 An extended affine point has the form (u, v, w), where u = (x + y)/2, v = (y −
x)/2, w = dxy, and d is the parameter of the twisted Edwards curve [6].
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Algorithm 5 Batch DSM implementation using JSF-based approach.

Input: Fixed base point vector set B, variable base point vector set A, and two scalar
sets S and H

Output: R = SB −HA
1: (S′,H′)← JointSparseForm(S,H)
2: t← max(S′,H′)
3: T ← [−A,B +A,B,B −A] ▷ Compute the look-up table
4: R← O, P ← O
5: for i from t− 1 to 0 by 1 do
6: R← PointDoubling(R)
7: Di ← 3S′

i +H′
i

8: if Di ̸= 0 then
9: P ← TableQuery(T ,Di) ▷ Refer to Listing 2
10: R← PointAddition(R,P)
11: end if
12: end for
13: return R

3.3 Implementation using JSF-based approach

The second implementation option uses the JSF [29] representation for scalars,
and needs only one joint look-up table containing besides the two points B and
−A also their sum and difference. The JSF expansion uses a signed coefficient
set {−1, 0, 1} to represent two scalars s and h in a matrix of the form:(

sl−1 sl−2 · · · s0
hl−1 hl−1 · · · h0

)
,

where s =
∑l−1

i=0 si2
i and h =

∑l−1
i=0 hi2

i. Thus, the corresponding look-up table
contains four entries, namely [−A,B+A,B,B−A]. The JSF of two scalars has,
in the average case, a joint Hamming weight of 0.5 and, therefore, reduces the
number of point additions by 25% compared t o a conventional implementation.
The idea of reducing the joint Hamming weight of two scalars can be extended
in two directions. First, one can extend the digit set from {0,±1} to {0,±1,±3}
or {0,±1,±3,±5} to further reduce the Joint Hamming weight (e.g., from 0.5
to roughly 0.38 when ±3 is included in the digit set) at the expense of a larger
table. A second direction is to generalize the JSF to support more than two
scalars, e.g., to minimize the joint Hamming weight of eight scalars, which is
relevant in the case when four DSMs are computed in parallel.

Algorithm 5 presents our batch DSM implementation using JSF-based ap-
proach. Compared to the NAF-based implementation (Algorithm 4), the main
difference is that the processed coefficient is now a linear combination di of a
column (si, hi) from the matrix, instead of the JSF expansion itself. On the other
hand, a similarity is that we will skip the table query and point addition in an
iteration only if all coefficients being processed are zero.
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3.4 Implementation using the separate approach

The third implementation option is computing two scalar multiplications SB
and hA separately. Cheng et al. [11] present a batch implementation of fixed-
base scalar multiplication used in X25519 key generation8, whereby the table
query operation loads all possible points (related to a scalar nibble) from a pre-
computed table and employs a mask to extract the right one to ensure constant-
time execution. Their implementation prevents cache-timing attacks at the cost
of additional operations, which is not necessary for our implementation since
the two scalars used in EdDSA verification are not secret. Our implementation
therefore selects the corresponding points straightforwardly, and thus reduces
the execution time9.

Algorithm 6 Scalar multiplication on TE curve using Montgomery ladder [16]

Input: Twisted Edwards curve ET over Fq of cardinality hℓ where ℓ is prime, rational
point P = (x, y) ∈ ET (Fq) with ord(P ) ≥ ℓ, scalar k ∈ [0, ℓ− 1].

Output: Point Q = kP in projective coordinates.
1: if k = 0 then return (0 : 1 : 1)
2: if k = ℓ− 1 then return (−x : y : 1)
3: Pm ← TedToMon(P )
4: (Q1, Q2)←MonLadder(Pm)
5: Qr ← RecoverY(Q1, Q2, Pm)
6: Q←MonToTed(Qr)
7: return Q

The basic idea is to use the twisted-Edwards model of the curve for the
fixed-base scalar multiplication SB and the birationally-equivalent Montgomery
model for the variable-base scalar multiplication hA. Algorithm 6 describes the
the computation of hA more formally. We compute hA using the Montgomery
ladder on a Montgomery curve that is birationally-equivalent to the twisted
Edwards curve, which requires a mapping of points from one curve model to the
other. These mappings utilize the point conversion formula in [5]. The mapping
from twisted Edwards to Montgomery involves a conversion from projective to
affine coordinates (so that we can use the conventional Montgomery ladder), for
which our implementation adopts a simultaneous inversion technique [23]. Given
a point P ′ = (XP ′ , YP ′ , ZP ′) in projective coordinates on the twisted Edwards
curve, the corresponding point P = (XP , YP , ZP ) in projective coordinates on
the birationally-equivalent Montgomery curve (i.e., constant a = 486662) can be

8 From a high-level perspective, this implementation is a SIMD-parallel variant of the
fixed-base scalar multiplication in [6], which, as mentioned in Sect. 1, uses a look-up
table with 256 points and executes 64 point additions and four doublings.

9 One should switch back to constant-time table query when processing sensitive val-
ues.
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1 void ted_mul_varbase(ProPoint *r, ProPoint *p, const __m512i *k)
2 {
3 ProPoint h, q1, q2 , q3;
4 AffPoint s;
5 __m256i t[9];
6 /* Convert point on Ed25519 to Curve25519 */
7 conv_ted_to_mon (&h, p);
8 /* Obtain the affine coordinate of the input point on Curve25519 */
9 mpi29_gfp_inv_4x1w(t, h.z);

10 mpi29_gfp_mul_4x1w(s.x, t, h.x);
11 mpi29_gfp_mul_4x1w(s.y, t, h.y);
12 /* Perform variable base multiplication on Curve25519 */
13 mon_mul_varbase (&q1 , &q2, k, s.x);
14 /* Perform point recovery on Curve25519 */
15 point_recovery (&q3, &s, &q1, &q2);
16 /* Convert point on Curve25519 to Ed25519 */
17 conv_mon_to_ted(r, &q3);
18 }

Listing 3. Simplified code of (4× 1)-way variable-base multiplication

computed as shown on the left side of the formulae below

XP = (ZP ′ + YP ′)XP ′ XP ′ = ModSqrt(−a)XPYP (XP + ZP )

YP = ModSqrt(−a)(ZP ′ + YP ′)ZP ′ YP ′ = (XP − ZP )YPZP

ZP = (ZP ′ − YP ′)XP ′ ZP ′ = YPZP (XP + ZP ).

The mapping in the other direction can use the formulae on the right side. Af-
ter the mapping of point A, we take advantage of the Montgomery ladder [23]
to compute the scalar multiplication kP , which operates on only the affine
x-coordinate of the point P , i.e., XP and ZP . Then, to recover the affine y-
coordinate of the point P needed by EdDSA, we use the y recovery formula
from [25]. Given the two points Q1 = kP = (X1, Z1) and Q2 = (k + 1)P =
(X2, Z2) output from Montgomery ladder and P = (xP , yP ), we can recover the
full projective coordinate (Xrec, Yrec, Zrec) on Curve25519 by:

Xrec = 2ByPZ1Z2X1

Yrec = Z2[(X1 + xPZ1 + 2aZ1)(X1 + xPZ1)]− 2aZ2
1 − (X1 − xPZ1)

2X2

Zrec = 2ByPZ1Z2Z1.

Finally, the recovered point is converted back to its corresponding point on the
twisted Edwards curve. The associated code is shown in Listing 3.

While the basic principle is relatively simple, one has to pay attention to
certain corner cases in the point mappings and the recovery of the y-coordinate,
which can fail the implementation. All these corner cases were analyzed in [16].
In short, encountering these corner cases can be avoided when we insist that
the scalar is fully reduced (i.e., in in the range [0, ℓ − 1]) and the point A does
not have low order. These are exactly t he requirements imposed by widely-used
software libraries like LibSodium (see [16] for details).
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1 void multiprocessing_example ()
2 {
3 /* Set thread number to 3 */
4 omp_set_num_threads (3);
5 /* Start the multiprocessing implementation */
6 #pragma omp parallel
7 {
8 #pragma omp sections
9 {

10 #pragma omp section
11 double_scalar_mul_4x1w ();
12 #pragma omp section
13 double_scalar_mul_4x1w ();
14 #pragma omp section
15 double_scalar_mul_4x1w ();
16 }
17 }
18 }

Listing 4. Example code of a multiprocessing implementation of batch DSM using
three threads.

3.5 Applying multiprocessing

To further improve software throughput, we take advantage of thread-level
parallelism in addition to the parallelism offered by the vector instructions, for
which we use OpenMP10. The provided directive #pragma omp parallel allows
the user to distribute a computation across multiple threads. Since in the batch
implementation each instance of DSA is independent, which implies that no
synchronization between threads is actually needed, applying multiprocessing
to our software is straightforward. To be specific, we simply use the OpenMP
API directives sections and section to allocate a single (4 × 1)-way DSM to
each thread. Taking a multiprocessing implementation using three threads as an
example, the associated code snippet is shown in Listing 4.

4 Evaluation

To measure the performance of our software, we use an Intel Xeon W-2245
Cascade Lake CPU, which is clocked at 3.9GHz. Both Turbo Boost and Hyper-
Threading are disabled during the measurements. Our source code is compiled
using Clang version 14.0.0 with the optimization flag11 -O2, to ensure align-
ment with other benchmark implementations [13,7]. The source code of the field-
arithmetic operations was taken from the implementation described in [11], for
which the source code is linked in the paper.

We benchmarked our three different DSM implementations described in Sec-
tion 3 on said CPU, and present the measured results in Table 2. The separate
approach clearly turns out to be the most efficient implementation option for

10 https://www.openmp.org
11 The optimization level does not have a significant impact on the results in our

experiment.

https://www.openmp.org
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Table 2. Latency and throughput of our AVX2 software on Intel Xeon W-2245 Cascade
Lake CPU (latency is the execution time of four parallel instances).

DSM implementation Latency Throughput

NAF-based approach 494,376 cycles 31,654 ops/sec
JSF-based approach 502,868 cycles 31,117 ops/sec
separate approach 324,772 cycles 48,182 ops/sec

Table 3. Probability of skipping the table query and point addition in a single iteration.

Representation #Instances Probability

5-NAF
1 83.6%
4 48.7%

7-NAF
1 87.7%
4 59.0%

JSF
1 49.5%
4 6.2%

batch DSM, showing an improvement of the throughput by more than 52% com-
pared to the other two options. A major reason is that the execution time for
the separate approach does not depend on the representation of the scalars. In
the NAF- and JSF-based implementations, the execution time is affected by the
“density” of zero coefficients in their scalar representations since they allow one
to skip operations (i.e., table query and point addition). Most latency-optimized
implementations (e.g., [13,7,16]) adopt either a NAF- or JSF-based approach
because it can yield fewer table lookups and point additions. However, the prob-
ability of skipping operations in NAF- and JSF-based implementations is much
lower in a batch implementation, as shown more concretely in Table 3. The prob-
ability data are obtained from the experiments, where for each case, we examined
one million random 255-bit integers (i.e., scalars). Per Table 3, the table query
and point addition are skipped with a high probability in the single-instance
case, but becomes much lower when four-instance are computed in parallel, as
these operations will be skipped only if all the processed coefficients of the batch
are zero. Furthermore, this issue will be even amplified if a more powerful vector
extension is used, such as AVX-512, which allows one to compute eight DSMs in
parallel instead of four. As a result, the separate method is a better implemen-
tation option for batch DSM software since it is completely unaffected by this
issue.

We also carried out some experiments with variants of the JSF that try to
minimize the joint Hamming weight of eight scalars, but the probability for
skipping a table-query and point addition was always below 10%. Since this is
only a marginal improvement over the conventional JSF representation, we did
not consider it in the implementation described below. However, we remark that
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Table 4. Comparison between our implementation (based on separate approach) and
other AVX2 implementations of DSM on an Intel Xeon W-2245 Cascade Lake CPU,
and the most efficient latency-optimized implementation is used as the baseline for
throughput comparison.

Reference Latency #Instances Throughput Ratio

[13] 142,119 cycles 1 27,526 ops/sec 0.76
[7] 108,253 cycles 1 36,138 ops/sec 1.00

This work 324,772 cycles 4 48,182 ops/sec 1.33

Table 5. Latency and throughput of our separate-approach-based DSM implementa-
tion using AVX2 on an Intel Xeon W-2245 Cascade Lake CPU, where the multipro-
cessing is applied.

#Thread Latency #Instances Throughput Ratio

1 324,772 cycles 4 48,182 ops/sec 1.00×
2 328,932 cycles 8 95,173 ops/sec 1.98×
4 328,790 cycles 16 190,400 ops/sec 3.95×
8 330,135 cycles 32 379,251 ops/sec 7.87×
16 678,912 cycles 64 368,843 ops/sec 7.66×

the throughput for the JSF-based implementation could be further improved by
a few percent when an advanced JSF variant is used.

Table 4 shows the comparison between our most efficient implementation,
i.e., the implementation based on the separate approach, and the currently best
latency-optimized AVX2 implementations of DSM on Ed25519. We compiled
the implementation of [13] with the same Clang version and -O2 flag, whereas
the implementation of [7] was compiled with GCC 11.4.0 and -O2 flag since
the GCC executable achieved better performance for this implementation than
Clang. Notably, both [13] and [7] implementations use the NAF-based approach
where ωB = 7 and ωA = 5 (as mentioned in Section 3.2). In Table 4, the ratio
is calculated by comparing the throughput between the baseline and the tar-
geted implementation, which indicates that our software achieves a 33% higher
throughput than the best latency-optimized implementation.

Table 5 and Figure 1 present the performance data of our AVX2 implementa-
tion when multiple threads are used to further improve the software throughput,
where the throughput improvement ratio increases linearly until eight threads.
Beyond eight threads, the improvement diminishes and plateaus at a certain
level. We also use the Intel Vtune Profiler14 to investigate the logical core usage
at different thread numbers, which shows the usage of logical cores matches the

13 This is obtained by dividing the overall latency by the number of instances, entry
for latency is 103 cycles/# inst., entry for throughput is 103 ops/sec.

14 https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-

profiler.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
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Fig. 1. Latency13and throughput of our separate-approach-based DSM implementation
using AVX2 on an Intel Xeon W-2245 Cascade Lake CPU, where the different numbers
of threads are enabled.

thread number when the number is below eight. Once the thread number ex-
ceeds eight, the logical core usage stabilizes at approximately 7.8 out of 16 cores.
The reason is that there are eight physical cores and 16 logical cores on an Intel
Xeon W-2245 CPU, with one set of AVX units per physical core. As a result,
the overhead caused by the thread context switching will be introduced when
the enabled thread number exceeds the actual physical core number. Therefore,
the optimal thread number for our parallel implementation equals the number
of physical cores of the CPU, which is eight on Intel Xeon W-2245 CPU. In this
setting, the throughput is 379, 251 DSMs per second, as shown in Table 5.

Finally, we carried out some experiments with an AVX-512 implementation
that computes eight DSMs in a SIMD-parallel fashion; the results can be found
in Table 6. These results show that the throughput almost doubles when migrat-
ing from AVX2 to AVX-512. This is an important result since it confirms that
optimizing for throughput allows one to overcome the parallelization bottlenecks
of latency-oriented implementations (i.e., half-empty vectors and sequential de-
pendencies) discussed in Section. 1. However, we note that the throughput gain
is a bit below the (theoretical) factor of two in practice when shifting to AVX-
512. We believe that one of the reasons is a higher Cycles-Per-Instruction (CPI)
count for some instructions in AVX-512 than in AVX2. For example, for the ad-
dition (vpaddq) and XOR (vpxor), the CPI count is 0.33 in the AVX2 instruction
set, while it is 0.5 in AVX-512.
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Table 6. Latency and throughput of our separate-approach-based DSM implementa-
tion using AVX-512 on an Intel Xeon W-2245 Cascade Lake CPU, where the multi-
processing is applied.

#Thread Latency #Instances Throughput Ratio

1 415,177 cycles 8 75,385 ops/sec 1.00×
2 420,727 cycles 16 148,867 ops/sec 1.97×
4 424,115 cycles 32 295,184 ops/sec 3.92×
8 423,650 cycles 64 591,326 ops/sec 7.84×
16 807,653 cycles 128 623,011 ops/sec 8.26×

5 Conclusion

In recent years, EdDSA has been adopted in a multitude of applications, rang-
ing from security protocols over blockchains to electronic voting systems. In
many application scenarios, users care about how many operations, especially
signature verifications, can be performed within a certain time, instead of how
quickly a single operation can be processed. However, virtually all software opti-
mizations for EdDSA described in the literature focused on reducing the latency
of one execution of the verification operation. In this paper, we proposed to
use the vector engines of modern Intel processors to optimize throughput, where
each signature can be verified independently but concurrently. We explored some
state-of-the-art options for implementing DSM, namely the JSF-based approach,
the NAF-based approach, and the separate approach. Our experiments confirm
that for throughput-optimized software, the separate approach is the most effi-
cient implementation option for batch DSM and improves throughput by 52%
compared to the other two approaches. We found that for the two combined
approaches, which are widely used in most of the latency-optimized implemen-
tations, lose the advantages of avoiding point operations at the evaluation stage
for batch implementation, and this impact is amplified when a more powerful
vector engine, e.g., AVX-512 is used. Our most efficient implementation (i.e., the
implementation based on the separate approach) achieves a 33% higher through-
put compared to the best latency-optimized implementation. In addition, we can
further enhance our software throughput by utilizing multiprocessing and found
that the optimal thread number for parallel implementation matches the num-
ber of physical CPU cores. The Xeon W-2245 CPU we used for benchmarking
has eight cores and is capable of executing 623,011DSMs per second. However,
there exist Cascade Lake CPUs with up to 28 cores, which means that a single
CPU could reach a throughput of roughly two million EdDSA verifications per
second.

We envision that this paper will serve as inspiration for future research in
throughput-optimized cryptography, motivated by our observation that the best
implementation option for latency-optimized software is not necessarily ideal
when high throughput is the main goal. As part of our future work, we plan to
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develop an EdDSA verification implementation using the latest AVX-512IFM
instructions, which will further improve the throughput per core.
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