
Preimage-type Attacks for Reduced Ascon-Hash:
Application to Ed25519

Marcel Nageler1 , Lorenz Schmid1, and Maria Eichlseder1

Graz University of Technology, Graz, Austria
marcel.nageler@tugraz.at, schmid.lorenz@protonmail.com,

maria.eichlseder@tugraz.at

Abstract. Hash functions and extendable output functions are some of
the most fundamental building blocks in cryptography. They are often
used to build commitment schemes where a committer binds themselves
to some value that is also hidden from the verifier until the opening is
sent. Such commitment schemes are commonly used to build signature
schemes, e.g., Ed25519 via Schnorr signatures, or non-interactive zero-
knowledge proofs. We specifically analyze the binding security when
Ascon-Hash256 or Ascon-XOF128 is used inside of Ed25519, which is
closely related to finding second preimages. While there is ample prior
work on Ascon-XOF128 and Ascon-Hash256, none of it applies in this
setting either because it analyzes short outputs of 64 or 128 bits or
because the complexity is above the security claim and generic attack
of 128 bits. We show how to exploit the setting of finding a forgery
for Ed25519. We find that this setting is quite challenging due to the
large 320-bit internal state combined with the 128-bit security level. We
propose a second-preimage attack for 1-round Ascon-Hash256 with a
complexity of 264 Gaussian eliminations and a random-prefix-preimage
attack (also known as Nostradamus attack) for 1-round Ascon-Hash256,
for the Ed25519 setting, with complexity 229.7 Gaussian eliminations.

Keywords: Digital Signatures · Hash Functions · Preimage Attacks

1 Introduction

The security of hash functions and eXtendable Output Functions (XOF) is com-
monly discussed by analyzing the classical security notions of preimage resistance,
second-preimage resistance and collision resistance. Preimage resistance means
that it is difficult to find a message M for a given hash h, such that H(M) = h.
Second-preimage resistance means that it is difficult to find a second message M ′

for a given M (and thus h) such that H(M ′) = H(M) = h. Finally, collision resis-
tance means that it is difficult to find messages M,M ′ such that H(M) = H(M ′).
These security notions cover many use cases but are not always an exact fit.

For example, when building a commitment scheme from a hash function, the
above notions are not enough. The standard construction is that the committer
chooses some fixed-length random value R, and then generates the commitment h

https://orcid.org/0000-0002-2329-7631
https://orcid.org/0000-0002-8750-7423

for M by hashing h = H(R ∥M) and sending h to the verifier. This construction
is commonly used in the Fiat-Shamir transformation [FS86] which, in turn, is
used for signature schemes like Schnorr signatures [Sch89] and Ed25519 [Nat23]
as well as non-interactive zero-knowledge proofs. Later, the commitment can be
opened by sending R,M to the verifier who checks whether H(R ∥M) = h. Such
a scheme needs to be binding, i.e., it must be difficult for the committer to change
the message M after sending h, and hiding, i.e., it must be difficult for the verifier
to learn (information about) the message M . While binding security follows
from collision resistance of H, hiding security requires additional properties that
ensure that the hash function does not leak some part of the message [HM96].

When a commitment scheme is used in a concrete construction, the security
requirements might again change. For example, the above hash-based commitment
scheme is used in Ed25519, a NIST-standardized deterministic variant of Schnorr
signatures. For this setting Neven et al. [NSW09] define the security requirements
for hash functions as random-prefix-preimage (rpp) resistance and random-prefix-
second-preimage (rpsp) resistance. When formulated in terms of a commitment
scheme, rpp security can be phrased as follows. The attacker picks a commitment
h and is assigned a random prefix R. Then, the attacker has to find a message
M such that H(R ∥M) = h. This attack is also called a Nostradamus or chosen-
target-forced-prefix attack and has been applied generically to Merkle-Damg̊ard
hashing via the Herding attack [KK06], and in dedicated analysis to AES-based
hashing [ZSWH23,DGL+24]. We analyze exactly this setting as it can be used
to create forgeries for Schnorr-based signatures, like Ed25519.

The main motivation for this work is the recent standardization of the Ascon
family for lightweight cryptography by NIST [Nat24]. The standard includes the
hash function Ascon-Hash256 with fixed 256-bit output size and Ascon-XOF128,
which is very similar in its specification, but can return outputs of arbitrary size
while claiming up to 128 bits of security. These hashing functions are significantly
more lightweight than the SHA-2 family, particularly in terms of their area
footprint, which is very relevant for embedded devices and other constrained
environments. This raises the question whether the currently used SHA-512 in
Ed25519 can be replaced by Ascon-XOF128 without loss of security.

Related Work. The Ascon family has been thoroughly analyzed during the
CAESAR and NIST LWC competitions, with the hash functions mainly in focus
for the last few years. NIST’s standardized versions Ascon-XOF128 and Ascon-
Hash256 [Nat24] have some minor differences compared to the submitted versions
Ascon-XOF and Ascon-Hash [DEMS19a] that were the main target of the analysis,
but the results are essentially directly applicable.

While there is ample work on finding preimages for Ascon-XOF128 and Ascon-
Hash256, none of it is applicable to the specific setting of Ed25519. We believe
this is due to 2 reasons. First, the security claim for Ascon-XOF128 with L-bit
output is min(128, L)-bit preimage resistance. As Ascon’s rate is 64 bits, we
primarily see preimage attacks on 64-bit outputs with complexity below 264,
which can then often be generically extended to preimage attacks on 128-bit

2

outputs with complexity below 2128. Attacking longer outputs is not appealing,
since the attack becomes more difficult but the security claim stays 128 bits.
The difficulty is primarily that more permutation calls (i.e., more rounds in
total) need to be attacked to gain sufficient degrees of freedom and match longer
output. However, in 2022 Lefevre and Mennink [LM22] found that the bound for
preimage resistance (but not second preimage resistance) is not tight and can be
increased to 192 bits for 256-bit outputs. This leads to some preimage attacks on
Ascon-Hash256 (with 256-bit output) targeting a complexity below 2192. These
resulting attacks have complexity higher than 2128, above the standard’s security
claim, and are thus worse than the generic random-prefix/second preimage attack.

We summarize existing results in Table 1. The designers of Ascon provide
preliminary analysis, including linear equations obtained from the hash value for
preimages on 2 rounds with 64 bit output and degree-based accelerated brute-
force for 5- and 6-round Ascon-XOF with 64-bit output. Qin et. al. [QHD+23]

Table 1: Comparison of preimage attacks on Ascon-XOF128 or Ascon-Hash256 in
related work. rpp denotes random-prefix preimage. GE: Gaussian eliminations.

Output Setting #R Complexity Strategy Reference

64 bit

preimage 2 231.6 Linearize & Guess [LHC+23]
preimage 2 234 Guess & Determine [BKK24]
preimage 2 239 GE Linearization [DEMS19b]
preimage 3 251 GE Guess & Determine [FLYS23]
preimage 3 256 GE Guess & Determine [BKK24]
preimage 4 263 Guess & Determine [BKK24]
preimage 5 258.9 Degree-Based [DEMS19b]
preimage 6 263.2 Degree-Based [DEMS19b]

128 bit

preimage 2 298 Guess & Determine [BKK24]
preimage 3 2112 Linearize & Guess [LHC+23]
preimage 3 2120 Guess & Determine [BKK24]
preimage 3 2120 Differential-Linear [NHS+24]
preimage 4 2124 Linearize & Guess [LHC+23]
preimage 4 2125 Meet-in-the-Middle [QHD+23]
preimage 4 2125 Differential-Linear [NHS+24]
preimage 4 2127 Guess & Determine [BKK24]

256 bit

preimage 3 2163 Meet-in-the-Middle [DZQ+24]
preimage 3 2184 Differential-Linear [NHS+24]
preimage 4 2185 Meet-in-the-Middle [DZQ+24]
preimage 4 2189 Differential-Linear [NHS+24]
preimage 5 2191 Meet-in-the-Middle [DZQ+24]

any
(n-bit)

2nd preimage 1 264 GE Linearization Section 3
preimage 1 264 GE+ 2n−128 Linearization Section 3
rpp preimage 1 229.7 GE ≈ 235.3 Linearization Section 4

3

apply the Meet-in-the-Middle attack to various sponge-based hash functions and
find preimage attacks for Ascon-XOF with 128-bit output with complexity 2125.

Several papers build upon the linearization approach, some of them also
inspired by related attacks on Keccak [GLS16]. Li et al. [LHC+23] propose a
linearize and guess approach, where they first guess some set of bits of the input
and then create a linear equation system for the missing bits. Furthermore, they
combine multiple ways of choosing the set of guessed bits to increase the effective
degrees of freedom in their attack. They find preimage attacks with complexity
231.6 and 2124 for 2-round Ascon-XOF with 64-bit output and 4-round Ascon-XOF
with 128-bit output, respectively. Fu et al. [FLYS23] use MILP modeling to find a
good set of guessed bits yielding a preimage attack on 64-bit 3-round Ascon-XOF
with complexity 251. Baek et al. [BKK24] show how to guess bits to be able to
linearize 1 output bit after 4 rounds, leading to attacks on 4-round Ascon-XOF
with complexity 263 and 2127 for 64-bit and 128-bit outputs, respectively.

Based on the improved bound by Lefevre and Mennink on the generic com-
plexity for first preimage attacks of 2192, two papers propose first preimage
attacks with complexity below 2192. Niu et al. [NHS+24] analyze the security
of Ascon-Hash against preimages using high-probability differential-linear distin-
guishers and find preimage attacks for 4-round Ascon-Hash with complexity 2189.
Dong et al. [DZQ+24] use a Meet-in-the-Middle approach to find preimages for
5-round Ascon-Hash with complexity 2191. Note that these works do not apply to
random-prefix/second preimages, where the generic attack has complexity 2128.

Our Contribution. We provide a dedicated analysis of Ascon hashing when used
in Ed25519. We present the first preimage-type attacks on round-reduced Ascon-
Hash256 and Ascon-XOF128 with output longer than 128 bits and complexity
below the claimed 2128. Our contribution can be summarized as follows.

– We propose a second-preimage attack on 1-round Ascon-Hash256 and Ascon-
XOF128 with arbitrarily long outputs with complexity 264. We also extend
this to a first-preimage attack on Ascon-XOF128 with n-bit output with
complexity 264 + 2n−128 which is below the 128-bit claim for n ≤ 255.

– We show that the probability of finding a preimage in a random-prefix-
preimage setting can be greatly amplified by choosing the target state ac-
cording to good linear approximations.

– By combining the amplified probability with a new efficient (≈ 7.9 Gaussian
eliminations) method to find an internal state state matching 128 conditions,
we propose a random-prefix-preimage attack on 1-round Ascon-Hash256 and
Ascon-XOF128 with arbitrarily long outputs with complexity 229.7.

Outline. In Section 2, we discuss background on Ed25519 and the Ascon cipher
suite. In Section 3, we present our second-preimage attack and how to extend
it to a first-preimage attack. In Section 4, we show how we can optimize the
techniques for a random-prefix-preimage attack. We conclude in Section 5.

4

2 Background

In this section, we discuss background on Ed25519 (Section 2.1), background on
Ascon (Section 2.2) and discuss the combination of the two in Section 2.3.

2.1 EdDSA and Ed25519

The Edwards-curve Digital Signature Algorithm (EdDSA) is a digital signature
algorithm based on a deterministic variant of Schnorr signatures [Sch89] which
operates on twisted Edwards curves. It is standardized by NIST as part of the
digital signature standard [Nat23] and also specified in RFC 8032 [JL17]. We
show the signature generation and verification routines in Figure 1.

In contrast to Schnorr signatures, where an ephemeral private key (sometimes
also called a nonce) is required, EdDSA generates this key using a hash over a
private value and the message. There are two versions of EdDSA standardized
by NIST: Ed25519 and Ed448, which provide approximately 128 or 224 bits of
security, respectively. In this work, we focus on Ed25519.

The signature generation for Ed25519 proceeds as follows. First, the private
key d is expanded using SHA-512: h1 ∥h2 = SHA-512(d). Then, the private scalar
s is calculated by interpreting h1 as a little endian integer and clearing bits 0, 1,
2, and 254, and setting bit 255. The ephemeral private key r is formed by hashing
h2 ∥M and interpreting the result as a little-endian integer. The signature is
formed by R ∥ S. The ephemeral public key R is calculated as R = r ·G. Then,
the signer commits to R, Q, and M by hashing h = SHA-512(R ∥Q ∥M). Finally,
S is calculated using S = r + h · s mod n.

M

d H

H

f(·)

·G
r

H
Q

R

M

r + h · s mod n

h

r

s S

R

(a) Signing

H
h

Q

R

M

R+ h ·Q

Q

S ·G ?
= ⊤/⊥

(b) Verification

Fig. 1: Ed25519 signing and verification routines. G is the generator of the Elliptic
Curve Group. Q = s ·G is the public key for the private key d. The inputs of the
hash function H are processed bottom-to-top.

Security requirements for the hash function. The hash function is used
in 3 different contexts with different security requirements when signing a mes-
sage. First, for expanding the private key, the hash function needs to fulfill the

5

requirements of a secure pseudorandom function (PRF). Here, the capabilities of
an attacker are rather limited. However, statistical biases in the output could
lead to attacks. Next, for generating the ephemeral private key r, again a secure
PRF is needed. Here, a statistical bias in the output could be used to recover the
private key by solving an instance of the hidden number problem [BV96]. Finally,
the hash function is used to commit to R, Q, and M . Here, it is sufficient (but
not necessary) for the hash function to serve as a binding commitment scheme.
In other words, for a given/chosen commitment h it must be computationally
hard to find an opening for a value that was not committed to.

Forgeries exploiting non-binding commitment schemes. Neven et al.
more carefully analyze necessary requirements for hash functions used in Schnorr
signatures, and define random-prefix-preimage (rpp) resistance and random-
prefix-second-preimage (rpsp) resistance [NSW09] as necessary requirements. Via
a non-tight reduction in the generic group model, they also prove them to be
sufficient requirements. The two requirements are formulated as follows: For rpp,
the adversary picks a target hash H (corresponding to h in Ed25519), then a
prefix R is chosen at random, finally, the adversary wins if they find a message
M such that H(R ∥M) = H. For rpsp, the adversary picks a message M , then a
prefix R is chosen at random, finally, the adversary wins if they find a message
M ′ such that H(R ∥M) = H(R ∥M ′). From Figure 1b, it is clear that breaking
rpp resistance leads to a forgery: An adversary picks h and S to calculate R using
the verification equation, then a message M with H(R ∥Q ∥M) = h is a forgery.
The same idea works when breaking rpsp by requesting a signature for M .

2.2 The Ascon cipher suite and Ascon-XOF128

Ascon is a family of lightweight cryptographic algorithms for authenticated
encryption and hashing. Originally proposed as a candidate in the CAESAR
competition (2014–2019) [DEMS14] for authenticated encryption (AEAD) and
selected as the winning “primary choice” for lightweight authenticated encryption,
the family was later extended with various keyed and unkeyed hashing functions
[DEMS19a,DEMS24]. The designers’ specification was published in the Journal
of Cryptology [DEMS21]. In the NIST Lightweight Cryptography (LWC) Project,
NIST selected Ascon as the winner of the corresponding LWC competition (2019–
2023). Consequently, NIST standardized a selection of the family members in NIST
SP 800-232, currently available as an initial public draft [Nat24]: the authenticated
encryption scheme Ascon-AEAD128 and the unkeyed hashing functions Ascon-
Hash256 (with fixed 256-bit output), Ascon-XOF128 (eXtendable Output Function
with variable output length), and Ascon-CXOF128 (Customizable XOF with
variable output length and supporting a customization string as an additional
input). All of these are designed for a security level of 128 bits, or more specifically,
min(128, L)-bit preimage resistance and min(128, L/2)-bit collision resistance
of the XOF or CXOF with L-bit hash output. Compared to the designers’
specification, the NIST version incorporates some tweaks, including a switch from
big-endian to little-endian specifications and the addition of the CXOF variant.

6

Specification of the Ascon-p permutation. All Ascon family members are
based on the same lightweight permutation, Ascon-p, with different numbers of
rounds. The round function consists of three steps which operate on a 320-bit
state divided into 5 words S0, S1, S2, S3, S4 of 64 bits each [Nat24]:

– Round constant addition pC : xors a round constant RC to word S2. The
constant is simply a concatenation of two 4-bit counters and can be found in
the specification. While our attacks take the round constants into account,
we do not always mention it explicitly to keep the descriptions simple.

– Nonlinear substitution layer pS : applies the 5-bit S-box S given in
Figure 2a 64 times in parallel in a bit-sliced fashion (vertically, across words).
Here, ⊕ denotes xor and ⊙ denotes and.

– Linear diffusion layer pL: xors different rotated copies of each word
(horizontally, within each word) as specified in Figure 2b.

We denote the state S, at the input to round i and thus to the round constant
addition and S-box, as xi, and the input to the linear layer as yi. Accordingly, we
index the words as x0, . . . , x4 in our analysis, similar to the designers’ notation
[DEMS21]. Since we focus our analysis on single-round permutations, we use i
to index permutation calls instead of rounds.

xi
0

xi
1

xi
2

xi
3

xi
4

RC

1

1

1

1

1

1

yi
0

yi
1

yi
2

yi
3

yi
4

(a) 5-bit S-box S(x) with constant RC

yi
0 ⊕ (yi

0 ≫ 19)⊕ (yi
0 ≫ 28) → xi+1

0

yi
1 ⊕ (yi

1 ≫ 61)⊕ (yi
1 ≫ 39) → xi+1

1

yi
2 ⊕ (yi

2 ≫ 1)⊕ (yi
2 ≫ 6) → xi+1

2

yi
3 ⊕ (yi

3 ≫ 10)⊕ (yi
3 ≫ 17) → xi+1

3

yi
4 ⊕ (yi

4 ≫ 7)⊕ (yi
4 ≫ 41) → xi+1

4

(b) Linear 64-bit functions Σj(yj)

Fig. 2: Round function of Ascon-p in round i.

Specification of Ascon-XOF128. The eXtendable Output Function Ascon-
XOF128 takes a message input M of arbitrary length and produces a hash output
H of arbitrary length. Internally, it uses the 12-round permutation Ascon-p[12]
in a sponge construction [BDPV07] with a rate of r = 64 bits and a capacity of
c = 256 bits, as illustrated in Figure 3.

– Initialization: The state S is initialized with a fixed initial value, specifically

S ← Ascon-p[12](0x0000080000cc0003 ∥ 0256) .

7

IV ∥ 0∗
A
sc
o
n
-p
[1
2
]

Initialization

M0

64

A
sc
o
n
-p
[1
2
]

256

Mn

64

A
sc
o
n
-p
[1
2
]

256

Absorb Message

H0

64

A
sc
o
n
-p
[1
2
]

256

H⌈L/64⌉−1

64

A
sc
o
n
-p
[1
2
]

256

Squeeze Hash

64

256

Fig. 3: Mode of operation for Ascon-XOF128.

– Message Absorption and Padding: The input message M is padded
to a multiple of 64 bits by appending the bitstring 1 ∥ 0∗; in the little-
endian encoding of SP 800-232 and when considering byte-level messages,
this corresponds to appending the byte 0x01 followed by as many zero bytes
as necessary. We remark that this means that when considering bit-level
messages, any 64-bit bitstring except the all-zero string corresponds to a
valid padded last message block; when considering byte-level messages, an
8-byte byte sequence is a valid padded last message block of it ends in 0x01

(or 0x01 0x00, or 0x01 0x00 0x00, etc).
The resulting padded message blocks are indexed as M0, . . . ,Mn when 64n ≤
|M | ≤ 64n+63. For each message block Mi, the state is updated by xoring
the message block and applying the permutation:

S0 ← S0 ⊕Mi

S ← Ascon-p[12](S) .

– Hash Squeezing: If an L-bit hash output is requested, the XOF produces
⌈L/64⌉ output blocks Hj , truncating the last output block accordingly:

Hj ← S0

S ← Ascon-p[12](S) .

Generic security of Ascon-XOF128. XOFs aim to provide similar security
properties as hash functions, but the specific security levels also depend on the
output size. The security level typically increases with the output size according
to generic bounds, but is capped at some target security level based on the
internal primitive and construction. More specifically, Ascon-XOF128 with L-bit
hash output claims min(128, L)-bit (first and second) preimage resistance and
min(128, L/2)-bit collision resistance. The limit 128 = c

2 corresponds to the
birthday bound in the inner part of the state. The function also provides some
additional properties, such as resistance to length-extension attacks. This follows
from the design philosophy of the sponge construction [BDPV07], which is proven

8

to be indifferentiable from a random oracle in the ideal permutation model up to
the birthday bound in the capacity.

In fact, it was recently shown that this bound is not completely tight: Lefevre
and Mennink [LM22] found that while the collision and second preimage security
bounds are tight, the preimage bound is not. For the Ascon hashing functions
including Ascon-XOF128, they showed that up to 192-bit preimage resistance
can be achieved. More specifically, the claim could be updated from min(128, L)
to min(L,max(L − r, c

2)) in the ideal permutation model where L ≤ c, which
corresponds to 192 bits for c = L = 256 as in Ascon-Hash256. This increase is due
to the difficulty of matching multiple squeezed output blocks. However, second
preimage resistance remains at min(128, L). Note that the matching attack was
already described by the Keccak team in 2011 [BDPV11].

This discrepancy is interesting in the context of random-prefix (second)
preimage resistance (rpp and rpsp). In fact, we can show that both correspond to
the second preimage resistance of min(128, L) bits. For rpsp, the matching attack
works as follows. The adversary picks a message M and receives the random
prefix R. They can now compute the intermediate state S⋆ right before squeezing
starts by absorbing R (obtaining SR) and then M . Then, they can build a 5-block
second preimage by constructing an inner collision as illustrated in Figure 4.
Using all 2c/2 = 22r = 2128 candidates of M0 ∥M1 and all of M3 ∥M4, they are
likely to find a match in the inner part of the state SM where M2 is absorbed,
while M2 is chosen to complete the match on the outer part. For an rpp attack
of the same complexity, the adversary can directly choose S⋆ to determine their
chosen target hash H and then proceed as above. These attacks are tight (up to
small constants), since an rpp or rpsp adversary can also produce collisions.

R

A
sc
o
n
-p
[1
2
]

M0

A
sc
o
n
-p
[1
2
]

M1

A
sc
o
n
-p
[1
2
]

M2

A
sc
o
n
-p
[1
2
]

M3

A
sc
o
n
-p
[1
2
]

M4

A
sc
o
n
-p
[1
2
]

H0
A
sc
o
n
-p
[1
2
]

prefix SR SM SM ′ S⋆

Fig. 4: Generic random-prefix (second) preimage (rpp, rpsp) attacks on Ascon-
XOF128 and other sponges.

Dedicated cryptanalysis of Ascon-XOF128. The analysis of Ascon-XOF128
builds directly on the analysis of the closely related submitted candidate design
Ascon-XOF; most results are directly transferable, except if they depend heavily
on minor details such as the initial value and round constants, which are slightly

9

different. For an overview of dedicated preimage attacks relevant for Ascon-
XOF128, we refer to Table 1 in the introduction.

2.3 Ascon-XOF128 and Ed25519

Ed25519 is currently specified for use with SHA-512 only. However, on constrained
platforms and in applications where Ascon is already available, instantiating H
with Ascon-XOF128 instead as a more lightweight alternative has been brought
up repeatedly as a discussion point in the NIST Lightweight Cryptography
process, including the mailing list and workshops [MSP+23]. This is particularly
relevant when the code size and memory requirements are constrained. It is worth
noting that SHA-512, which can provide up to 256-bit security, is not chosen
here due to its formal security level (Ed25519 aims for 128-bit security overall),
but more due to the requirement of hashing the private key to 512-bit outputs
to be used for different purposes, as well as the good software performance on
64-bit CPUs. While Ascon-XOF128 clearly satisfies the functional requirements
to instantiate H and brings in the necessary 128-bit security level, the concrete
security implications with respect to the specific required security properties
warrant further discussion.

One difficult aspect when discussing protocols and composite schemes in-
volving multiple different primitives is how to concretely quantify their security
level, specifically, which unit to use. Classically, the security level of symmetric
primitives and schemes is quantified with respect to the offline and/or online
query complexity of the primitive. For example, the k-bit key recovery security
of a block cipher with k-bit key and n-bit block means that we expect that an
adversary needs a time complexity of around T = 2k (offline) cipher evaluations
to recover the key with a reasonable success probability ε (e.g., T = 2k for ε = 1,
or T = 2k−1 for ε = 1

2 , etc), and access to at least D = 1 (online) data produced
by the target key. However, this is a primitive-dependent metric, and the same
bit-level security for two different primitives does not necessarily correspond to
equivalent effort for the adversary, as in the notable example of password hashing.

Moreover, for primitives in asymmetric cryptography, the best attacks are
typically not generic attacks, but dedicated mathematical algorithms whose
complexity is measured in other–more basic–operations, such as arithmetic opera-
tions. There are different approaches for handling this discrepancy and assigning
bit-level security claims to asymmetric primitives, which relate arithmetic com-
plexities either to the evaluation complexity of the asymmetric primitive or to
a symmetric reference primitive such as AES, as in the case of NIST’s PQC
security levels. A useful intermediate unit is bit operations. On the downside, any
step from primitive-dependent metrics (e.g., cipher evaluations) towards more
general metrics (e.g., bit operations, arithmetic operations) is typically also a
step towards more implementation-specific and platform-specific metrics, which
are often more volatile.

In case of Ed25519, the attack complexity based on solving the discrete
logarithm problem on Curve25519 has been analyzed by Bernstein [Ber06]. He
estimates the complexity to be about 2125 elliptic curve point additions, needing

10

around 210 CPU cycles each. If we generously count each CPU cycle as a 64-bit
operation, this totals to around 2141 bit operations. Other estimates are slightly
higher, at around 2145 bit operations (for success probability very close to 1).

Comparing this to an rpp/rpsp attack on Ascon-XOF128 as in Figure 4, the
attack complexity is dominated by around 2128 permutation calls (absorbing M1)
and around 2128 inverse permutation calls (inversely absorbing M3). One permu-
tation call corresponds to 12 forward rounds of Ascon-p, each of which requires
around 22 + 10 = 32 word operations (xor, and, not; not counting rotations
memory-moving operations, unlike the above estimate), totalling 12 · 32 · 64 ≈ 215

bit operations. Under the very conservative estimate that an inverse permutation
call costs at least as much (while in reality, it is much more expensive), and not
counting further overheads due to large memories or memoryless cycle-finding,
we get an optimistic estimate of around 2144 bit operations overall, comparable
to the cost to attack Ed25519 via discrete logarithms. Thus, using Ed25519 with
Ascon-XOF128 instead of SHA-512 or SHA3-512 is expected to provide the same
overall security level, although Ascon-XOF128 is more lightweight.

3 Forgeries via Second Preimages on Ascon-XOF

In this section, we outline our second-preimage attack on Ascon-XOF128 which
we use to create forgeries for Ed25519+Ascon-XOF128. In contrast to previous
works which focused only on short outputs of 64 or 128 bits, our attack works for
arbitrarily long outputs. Instead of targeting the arbitrarily long output in our
attack, we instead target the internal Ascon state before the output is generated.
This internal Ascon state is directly available to us, since we are performing
a second-preimage attack. Alternatively, our attack can be viewed as a first
preimage attack on the internal state of Ascon.

Our forgery attack proceeds in 3 steps as depicted in Figure 5. First, we show
how to transform the problem of forging a signature into finding a preimage for
an internal Ascon state (Section 3.1). Next, we show how to prepare the internal
state of Ascon to enable the final part of the attack (Section 3.2). Finally, we
show how to connect the prepared internal state to the target state (Section 3.3).

3.1 Forgeries based on second-preimage attacks

The more intuitive forgery attack based on a second preimage proceeds by
obtaining one signature (R,S) for an arbitrary message M . Since the signature is
verified by hashing H(R ∥Q ∥M) = h⋆, where Q is the public key, we can forge
a message by finding an M ′ such that H(R ∥Q ∥M ′) = h⋆. Note that, strictly
speaking, this scenario is not covered by a second-preimage attack, because we
require a special prefix R ∥Q. However, for Ascon and many other iterative hash
functions, this prefix is equivalent to attacking the function with a modified
initial value. Still, we require 1 known signature.

We can formulate a better attack, that requires no known signatures. As
discussed in Section 2.1, we can create forgeries by breaking the commitment

11

Absorb
R||Q||M0||M1

M2

A
sc
o
n
-p
[1
]

x3

M3

A
sc
o
n
-p
[1
]

iv

prepare

Section 3.2

M4

A
sc
o
n
-p
[1
]

xM

vi(a)

linearize

M5

A
sc
o
n
-p
[1
]

vii

M6

A
sc
o
n
-p
[1
]

x6

vi(b)

linearize

M7

A
sc
o
n
-p
[1
]

M8

A
sc
o
n
-p
[1
]

x⋆

v

randomize
i

Section 3.3

H0

iii

Section 3.1
ii

Fig. 5: Finding forgeries with second preimages on Ascon-XOF128.

scheme used for generating the signature. Concretely, we choose an arbitrary
scalar value S and an arbitrary internal Ascon state x⋆ that leads to the output
h⋆. Concretely, we choose a suitable target hash h and an scalar value S. We
find the first half of the signature as

R = S ·G− h⋆ ·Q ,

where G denotes the elliptic curve generator and Q denotes the public key. Finally,
we find a forgery by breaking the random-prefix preimage resistance of the hash
function. That is, we find M such that

H(R ∥Q ∥M) = h⋆ .

Note that we can apply our preimage attack that targets the internal state x⋆

and that we do not require any known signatures.

3.2 Preparing the internal state

As noted in previous works, linearizing the Ascon permutation works best if
the diffusion of the message is limited in the first block. The two most effective
conditions on the internal state are x1 = 0 and x3 ⊕ x4 = 164. As depicted in
Figure 6, these two conditions affect the two And gates that process the message
and force the other input to be zero, hence preventing diffusion of the message
through the And gates. Note that after the S-box, the initial conditions lead
to y4 = 164; we will use this fact in Section 4. However, satisfying these two
conditions simultaneously is not trivial as combined they correspond to 128
single-bit conditions.

Ensuring x3
1 = 0. This step is relatively straight-forward. We start at state

x2 and want to ensure x3
1 = 0. By examining the Ascon S-box (Figure 2a), we

see that the message part (x0) linearly affects y21 after the S-box. Hence, we can
temporarily set M2 = 0 to find what y21 would be: say y21|M2=0 = α. Then we can

set M2 = α, to ensure y21 = 0 and x3
1 = Σ1(y

2
1) = 0.

12

M3 ⊕ α0

0

α2

α3

¬α3

x3

RC

1

1

1

1

1

1

M3 ⊕ α′
0

M3 ⊕ α′
1

α′
2

α′
3

164

y3

Fig. 6: Relevant initial conditions x3
1 = 0 () and x3

3 = ¬x3
4 () limiting the

diffusion of the message ().

Ensuring x3
3 ⊕ x3

4 = 164. To ensure all conditions are satisfied, we propose a
brute-force approach. First, we pick two random messages M0 and M1 and process
them. Next, we use M2 to ensure y21 = 0 as described above. If x3

3 ⊕ x3
4 = 164 we

are done; else, we try again. We expect to need about 264 tries. In Section 4.2,
we improve the time complexity for this step to ≈ 7.9 Gaussian eliminations.

3.3 Completing the second-preimage attack

To complete the attack, we need to gather enough degrees of freedom to generate
a system of equations that has a solution with a high probability. Hence, we
linearize the Ascon permutation both in the forward direction as well as in the
backward direction. Due to the initial conditions, we can linearize two permutation
calls/rounds in the forward direction as depicted in Figure 7. After the 2-round
linearization in forward direction over the variables M3 and M4, the words xM

1 ,
xM
2 , and xM

3 can be described as linear functions of M3 and M4, while xM
0 and

xM
4 can only be described as function of degree 2. For xM

0 , we do not really care,
as this value is xored with M5 anyway. For xM

4 , we will exclude it from our
equation system, and solve repeatedly until we find a solution that works for xM

4 .
When linearizing the backward direction, we find that we can only reasonably
linearize one permutation call as a function of M6. In this case, all expressions
for xM are linear as there is only one equivalent message bit per S-box. If we
try to linearize more permutation calls, we find that the we lose linear equations
more quickly than we gain degrees of freedom by the additional message blocks.

We can formalize parts of the matching point xM
1 , xM

2 , and xM
3 as a linear

function of M3 and M4 using the matrix Af and in the backward direction as a
function of M6 using the matrix Ab:

xM
1 ∥ xM

2 ∥ xM
3 = Af · (M3 ∥M4)⊕ bf ,

xM
1 ∥ xM

2 ∥ xM
3 = Ab ·M6 ⊕ bb .

Since the internal state needs to match, we write

(Af ∥Ab) · (M3 ∥M4 ∥M6) = bf ⊕ bb ,

13

α0

0

α2

α3

¬α3

x3

RC

M3

1

1

1

1

1

1

M3 ⊕ α′
0

M3 ⊕ α′
1

α′
2

α′
3

164

Σ0(·)

Σ1(·)

Σ2(·)

Σ3(·)

Σ4(·)

M4

RC

1

1

1

1

1

1

Σ0(·)

Σ1(·)

Σ2(·)

Σ3(·)

Σ4(·)

. . .

. . .

. . .

. . .

. . .

xM

Fig. 7: Linearization over two 1-round permutation calls with initial conditions
satisfied.

and solve for the message blocks. Note that we can deduce M5 in post-processing,
to make sure the value in xM

0 matches. Since the final matrix has dimensions
192×192, we expect one solution on average. For each solution, we check whether
xM
4 matches. Hence, we repeat this process about 264 times. Further optimizations

based on preprocessing the linear system are discussed in [Sch25].
Generating 264 starting states x3 would be too expensive for our attack.

Instead, we add messages M7 and M8 (conforming to padding) before the target
state x⋆ to generate random target states x6 leading to new values for Ab and bb.

Extension to preimage attack. To extend this attack to a first-preimage
attack, we need to find the target state x⋆ based on a hash value / XOF output
h = (H0 ∥H1 ∥H2 ∥ . . .). We can accelerate this process by determining the state
xH0 when H0 is squeezed. We set xH0 = (H0, ϵ1, ϵ2, Σ

−1
0 (H1)⊕ ϵ3, ϵ4), where ϵ1,

ϵ2, and ϵ4 are arbitrary constants and ϵ3 = H0 · ϵ1⊕H0⊕ ϵ1 · ϵ2⊕ ϵ1 · ϵ4⊕ ϵ1⊕ ϵ2
is calculated in such a way that we deterministically match H1 in the next output
block. Any additional output blocks are matched probabilistically, leading to an
overall runtime of 264 + 2n−128 to find a preimage for an n-bit output. This is
below the 128-bit security claim for messages up to 255 bits. We believe this can
be improved by more careful analysis of linearization properties.

4 Forgeries via Random-Prefix Preimages on Ascon-XOF

In this section, we outline our attack on the Ed25519+Ascon-XOF128 signature
scheme construction by attacking Ascon-XOF128 when used as a commitment
scheme. That is, we choose an output for Ascon-XOF128 (commitment) and then
find a preimage (opening) that fits the chosen output. Our attack proceeds in
3 steps as depicted in Figure 8. First, we transform the problem of forging a
signature into finding a random-prefix preimage for Ascon-XOF128 (Section 4.1).
Next, we prepare the internal state of Ascon-XOF128 (Section 4.2). We repeat
this step to prepare many candidates for the final step. Finally, we connect the
prepared internal state with the target hash by solving an equation system over 4
message blocks (Section 4.3). In Section 4.4, we experimentally verify our attack.

14

Absorb
R||Q||M0||M1

M2

A
sc
o
n
-p
[1
]

x3

iv(a)

M i
3

A
sc
o
n
-p
[1
]

M i
4

A
sc
o
n
-p
[1
]

x5

iv(b)

prepare
(iteratively)

Section 4.2

M5

A
sc
o
n
-p
[1
]

M6

A
sc
o
n
-p
[1
]

xM

M7

A
sc
o
n
-p
[1
]

vi

v(a)

linearize

M8

A
sc
o
n
-p
[1
]

i

x⋆

v(b)

linearize

Section 4.3

Mpad

A
sc
o
n
-p
[1
]

H0

iii

Section 4.1
ii

Fig. 8: Finding forgeries with random-prefix preimages on Ascon-XOF128.

4.1 Forgeries based on preimage attacks

For this attack, we make use of the same forgery attack from Section 3.1 where
no known signatures are needed. However, instead of utilizing a second-preimage
attack on Ascon-XOF128, we will now exploit the fact that we can freely choose
the target hash h⋆. Concretely, we will choose a suitable internal 320-bit Ascon
state x⋆, absorb the padding block Mpad = 0x0000000000000001 and generate
the target hash h⋆. We will see that by choosing a suitable x⋆, we can amplify
the probability that we find a solution by 237.4 leading to a very practical attack.

4.2 Preparing the internal state

As discussed in Section 3.2, we require the conditions x1 = 0 and x3 ⊕ x4 = 164

on the internal state (x5, see Figure 8) to limit the diffusion of the message blocks.
This leads to better linearization enabling the rest of the attack.

In Section 3.2, we only needed one state that fulfills the conditions, as we
could generate many target states by prepending message blocks to the actual
target state x⋆. Compared to the second preimage attack, there is no incentive to
randomize the target state x⋆, as we specifically choose x⋆ to make the equation
system easier to solve. Instead, we need to generate a new state that fulfills the
conditions each time we want to try to solve the system. That is, the complexity
contributes a multiplicative factor to the total complexity instead of an additive
one. Note that we can apply this improved method also to the previous attack as
well, altough it does not affect the overall complexity.

Therefore, we propose a more efficient process: First, we use 1 message block
to ensure x1 = 0 like in Section 3.2. We expect a Hamming weight of 32 on
average: HW(x3 ⊕ x4) ≈ 32. Next, we repeatedly use a linearization procedure
over two message blocks to maintain x1 = 0 while increasing HW(x3 ⊕ x4). We
find that after 7.9 repetitions on average (see Section 4.4), all 128 single-bit
conditions are satisfied. Next, we explain the main step of the iterative process.

Increasing the Hamming weight of x3 ⊕ x4. At this point, we start with
x3
1 = 0, x3

2 = α2, x
3
3 = α3, and x3

4 = α4. For the first iteration, we expect

15

HW(α3 ⊕ α4) ≈ 32. We will now describe two permutation calls that process the
messages M3 and M4 with a system of equations and solve the system to increase
the Hamming weight. To prevent the diffusion of M3 through the bottom And
gate (in Figure 6 on page 13) we set the relevant message bits to zero. While this
reduces our overall degrees of freedom by 64−HW(α3 ⊕ α4), it ensures that M3

only diffuses to the first two words of the Ascon state after the first permutation
call. Then, after xoring the message M4, xoring the round constant RC, after
the S-box but before linear layer, we arrive at the state (y40 , y

4
1 , y

4
2 , y

4
3 , y

4
4) as

depicted in Figure 9. The relevant part of the new state is calculated as follows:

y41 = M ′
3 · δ1a ⊕M ′

4 ⊕ δ1b ,

y43 = M ′
3 ⊕M ′

4 · δ3a ⊕ δ3b ,

y44 = M ′
3 · (M ′

4 ⊕ δ4a)⊕ δ4b ,

where M ′
3 = Σ1(M3 ⊕ β1), M

′
4 = M4 ⊕Σ0(M3 ⊕ β0) and each lowercase Greek

letter denotes some 64-bit constant and · denotes bitwise And. Note that y44 is a
nonlinear combination ofM ′

3 andM ′
4 leading to a nonlinear system. However, since

we require Σ1(y
4
1) = 0 or equivalently y41 = 0, we can replace M ′

4 = M ′
3 · δ1a⊕ δ1b:

y43 = M ′
3 · δ′3a ⊕ δ′3b ,

y44 = M ′
3 · δ′4a ⊕ δ4b ,

with δ′3a = δ1a · δ3a ⊕ 164, δ′3b = δ1b · δ3a ⊕ δ3b, and δ′4a = δ1a ⊕ δ1b ⊕ δ4a. Now,
we want to solve Σ3(M

′
3 · δ′3a ⊕ δ′3b) ⊕ Σ4(M

′
3 · δ′4a ⊕ δ4b) = 164. Note that the

condition for y41 = 0 is implicit in this system and will be satisfied when we
calculate M ′

4 as a function of M ′
3. However, we have already spent some degrees

of freedom, so we have 64 equations and only HW(α3 ⊕α4) variables. Hence, the
system of equation most will likely not have a (full) solution. Finding M ′

3 such
that the Hamming weight is maximized is an instance of decoding a linear code.
In our case, we use a greedy algorithm to find a good, but not necessarily optimal,
solution. Concretely, we create a new system of equations that is initially empty
and then add each of the 64 equations that does not contradict this new system.
This process can be thought of as a variant of Gaussian elimination where a row
of the matrix is discarded should it lead to a contradiction. With this process,
we can effectively increase the Hamming weight of α3 ⊕ α4 while keeping α1 = 0.

pC
pS

α0

M3

0
α2

α3

α4

x3

M3 ⊕ β0

M3 ⊕ β1

β2

β3

β4

pL

M4

M ′
4

M ′
3

γ2
γ3
γ4

pC
pS

. . .

M ′
3 · δ1a ⊕M ′

4 ⊕ δ1b
M ′

3 ⊕ δ2
M ′

3 ⊕M ′
4 · δ3a ⊕ δ3b

M ′
3 · (M ′

4 ⊕ δ4a)⊕ δ4b

y4

pL

= 0

= 164

Fig. 9: Iteratively finding the initial conditions x1 = 0 () and x3 = ¬x4 ().
Some bits of M3 are used to compensate the missing initial conditions on x3⊕x4.

16

We find that by repeating it on average 7.9 times, we can fulfill all 128 conditions
and enable the next step of the attack.

4.3 Completing the preimage attack

Now, we have an efficient routine to generate a state x5 = (α0, 0, α2, α3,¬α3) using
7.9 Gaussian eliminations on average. However, even with all initial conditions,
a linearization attack like in Section 3.3 would still need approximately 264

repetitions to be successful. Hence, we analyze how we can improve the attack by
controlling the target value x⋆. We depict this part of the attack in Figure 10.

Choosing a Suitable Target Value. To choose the target value x⋆, we first
recall that y54 = 164 due to the initial conditions (see Figure 6 on page 13). This
implies that x6

4 = 164 since Σ4(1
64) = 164. Based on this fact, we can derive that

the difference y62 ⊕ y63 is biased (see Figure 10 on page 18):

y62 ⊕ y63 = M ′
6 · δ3a ⊕ 164,

with δ3a denoting a uniform 64-bit constant. So for those bits where the bit of
δ3a is zero, the difference is guaranteed to be 1, while for the other the difference
is controlled by M ′

5. We can also explain this fact by examining the linear
approximation table of the Ascon S-box which confirms that x4,i = y2,i ⊕ y3,i
with p = 75% and we know that x6

4 = 164.
To exploit this property, we analyze the algebraic normal form of the inverse

S-box when the rate bits are set to a given constant in Table 2. We find that for

Table 2: Algebraic normal form of component functions of the inverse S-box. The
highlighted values ensure x2 ⊕ x3 = 1 after adding the round constant RC.

x0 x1 x2 x3 x4

S−1(y ∥ 0000) 1 y y + 1 0 0
S−1(y ∥ 0001) 1 y + 1 y 1 0
S−1(y ∥ 0010) 0 y y + 1 1 1
S−1(y ∥ 0011) y y + 1 y + 1 0 1
S−1(y ∥ 0100) 0 0 0 y y
S−1(y ∥ 0101) 0 y + 1 y 0 1
S−1(y ∥ 0110) y 1 1 y + 1 0
S−1(y ∥ 0111) 1 y y 1 y
S−1(y ∥ 1000) y y + 1 y 1 y
S−1(y ∥ 1001) y y y + 1 1 y
S−1(y ∥ 1010) y + 1 y + 1 1 0 y + 1
S−1(y ∥ 1011) 0 y 0 0 y + 1
S−1(y ∥ 1100) y + 1 1 y y 1
S−1(y ∥ 1101) y + 1 y 1 0 y + 1
S−1(y ∥ 1110) 1 0 0 y + 1 y + 1
S−1(y ∥ 1111) y + 1 y + 1 y + 1 1 0

17

pC
pS

M5

α0

0
α2

α3

¬α3

x5

pL

y5 M6

M ′
6

M ′
5

γ2
γ3

164

x6

pC
pS

. . .

M ′
5 · δ1a ⊕M ′

6 ⊕ δ1b
M ′

5 ⊕ δ2 ⊕ 164

M ′
5 ⊕ δ2 ⊕M ′

6 · δ3a
M ′

5 · (M ′
6 ⊕ δ4a)⊕ δ4b

y6 = yM

p−1
L

M ′
8 ⊕RC

164

0

M ′
8 ⊕ 164

M7

. . .

x7

p−1
S

pC

M ′
8

164

0

164

RC

y⋆

Fig. 10: Main part of the attack. The left side, satisfying the initial conditions x5,
is connected to the fixed target state y⋆ = p−1

L (x⋆). We express y6 from the left
and from the right and match the equations. By inserting the green equation ()
into the red equation (), we get a linear system.

S−1(y ∥ 1011), we get x2 = 1 and x3 = 0. Similarly, for S−1(y ∥ 1101), we get
x2 = 0 and x3 = 0. By combining these two patterns (S−1(y ∥ 1011) for most
bits and S−1(y ∥ 1101) for those bits where the round constant RC flips a bit of
x2), we can ensure that x7

3 = 164 and x7
4 = 0. Since these two constants are fixed

points of the linear layer Σ2/Σ3, we get the same constants before the linear layer
at the state y6: y63 = 164 and y62 = 0. Consequently, we get 64−HW(δ3a) ≈ 32
equations for free, greatly improving the probability that we get a solution.

With the target state selected, we can formulate the equation system:

Σ1(M
′
5 · δ1a ⊕M ′

6 ⊕ δ1b) = M ′
8 ⊕RC ,

Σ2(M
′
5 ⊕ δ2 ⊕ 164) = 164 ,

Σ3(M
′
5 ⊕ δ2 ⊕M ′

6 · δ3a) = 0 ,

Σ4(M
′
5 · (M ′

6 ⊕ δ4a)⊕ δ4b) = M ′
8 ⊕ 164 ,

where each δ is a 64-bit constant and RC = RC ⊕ 164.

Simplifying the equation system by changing variables. At this point, the
last word of the equation system is nonlinear, however, from the second equation
we see that M ′

5 = δ2. By simplifying, we get linear equations:

Σ1(M
′
6)⊕M ′

8 = RC ⊕Σ1(δ2 · δ1a ⊕ δ1b) ,

M ′
6 · δ3a = 0 ,

Σ4(M
′
6 · δ2)⊕M ′

8 = 164 ⊕Σ4(δ4a · δ2 ⊕ δ4b) .

Here, we can already see the improvement by choosing a suitable target state y⋆,
as the equation M ′

6 · δ3a = 0 is a tautology for 64−HW(δ3a) bits. By substituting
M ′

8 = Σ1(M
′
6)⊕RC ⊕Σ1(δ2 · δ1a ⊕ δ1b), we can further simplify:

M ′
6 · δ3a = 0 ,

Σ4(M
′
6 · δ2)⊕Σ1(M

′
6) = Σ4(δ4a · δ2 ⊕ δ4b)⊕Σ1(δ2 · δ1a ⊕ δ1b)⊕RC .

Now, we have a linear equation system with 64 variables and 64 + HW(δ3a)
equations. After we solve the equation system with Gaussian elimination, we can

18

deduce M ′
8 from M ′

6. Then, we find M5 = Σ−1
1 (M ′

5) ⊕ α0, M6 by seeing what
value we need to xor to get x6

0 = M ′
6, M7 by seeing what value we need to xor

to get x7
0 = M ′

8 · RC ⊕RC, and M8 = Σ0(M
′
8).

Probability of finding a solution. The overall complexity of the attack
depends on the probability that the constructed system of equations has at least
one solution. The final linear system of equations has 64 variables and X#eq ∼
64 + B(n = 64, p = 0.5) equations, where B denotes a binomial distribution
for n trials with probability p. So, for a single equation system, the logarithm
of the probability to find at least one solution is distributed according to a
binomial distribution: psol ∼ 2−B(n=64,p=0.5). To predict the overall complexity,
we calculate the expected value of psol:

E(psol) =
64∑
k=0

2−k ·
(
64

k

)
· 0.5k · 0.564−k ≈ 2−26.56,

which we later also verify experimentally. This is an improvement by a factor of
237.4 compared to the previous 2−64.

Overall complexity. We need 7.9 Gaussian eliminations on average to find a
starting point and 1 Gaussian elimination to see whether we find a solution for
this starting point. As we need to repeat this process on average 226.56 times the
expected complexity of the attack is (7.9 + 1) · 226.56 ≈ 229.7.

4.4 Experimental evaluation

The code for this experimental evaluation is available online1.
We implement the routine of Section 4.2 to find a state that matches the

initial conditions. By trying 5000 different random states, we find that we need
on average 7.9 Gaussian eliminations corresponding to 16.8 message blocks to
find a state that fulfills all initial conditions. We show the distribution of the
number of Gaussian eliminations needed in Figure 11.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0%

5%

10%

15%

20%
Expected value µ ≈ 7.9

Number of Gaussian eliminations

F
re
q
u
en

cy

Fig. 11: Experimental complexity of finding initial state (n = 5000)

1 http://github.com/isec-tugraz/ascon-rpp-preimages.

19

http://github.com/isec-tugraz/ascon-rpp-preimages

We implemented the random-prefix-preimage attack of Section 4 in C++ and
performed it for the Ascon-Hash256 IV. Out of 234.5 random prefixes M0 ∥M1,
we find that 294 of them lead to a successful preimage attack, corresponding
to a rate of one solution every 226.47 tries, which closely matches our statistical
estimate. On our server with 2 AMD EPYC 9754 CPUs we find one random-
prefix-preimage about every 27 seconds (3.2 core-hours). On the same hardware
this corresponds to roughly 235.3 brute-force attempts. Note that with a more
optimized implementation of Guassian elimination this number would be lower.

5 Conclusion

In this paper, we have shown second-preimage and random-prefix-preimage
attacks on 1-round Ascon-XOF128. These are the first preimage attacks on round-
reduced Ascon-XOF128 with 256-bit output and Ascon-Hash256 with complexity
below the claimed 128-bit security. For second-preimage attacks and random-
prefix-preimage attacks, the security claim is also matched by a generic attack.
Both our attacks apply in settings where Ascon-XOF128 or Ascon-Hash256 are
used as a commitment scheme as they allow us to break the binding property. This
property is required by the Fiat-Shamir transformation [FS86], which is commonly
used to transform interactive zero-knowledge proofs into non-interactive zero-
knowledge proves or signature schemes like in Ed25519.

We propose a second-preimage attack on 1-round Ascon Hash with complexity
264, which we also extend to a first-preimage attack on Ascon-XOF with outputs
up to 255 bit for a complexity below 2128. We find that by specifically exploiting
the fact that we can freely choose the hash output, our random-prefix-preimage
attack is faster by a factor of 234.3 compared to our second-preimage attack.

We believe our work can be built upon in future work. In particular, being able
to choose the target state might allow improved cryptanalysis on other sponge-
based hash functions as well using our techniques. Furthermore, increasing the
number of attacked round is of high interest. However, since the core of our
attack necessarily spans 3 permutation calls to get enough degrees of freedom,
increasing the number of attacked rounds implies analyzing 6 rounds of Ascon
over all capacity bits, which may be challenging given the 128-bit security level.

Acknowledgments. We would like to thank Fredrik Meisingseth for insightful
discussions on probability theory. This research was funded in part by the
European Research Council (ERC) Starting Grant KEYLESS (#101165216).

References

BDPV07. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Sponge functions. Ecrypt Hash Workshop 2007, 2007. URL: https://
keccak.team/files/SpongeFunctions.pdf.

BDPV11. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Cryptographic sponge functions, 2011. URL: https://keccak.team/files/
CSF-0.1.pdf.

20

https://keccak.team/files/SpongeFunctions.pdf
https://keccak.team/files/SpongeFunctions.pdf
https://keccak.team/files/CSF-0.1.pdf
https://keccak.team/files/CSF-0.1.pdf

Ber06. Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In
PKC 2006, volume 3958 of LNCS, pages 207–228. Springer, 2006. doi:

10.1007/11745853_14.
BKK24. Seungjun Baek, Giyoon Kim, and Jongsung Kim. Preimage attacks on

reduced-round Ascon-XOF. Des. Codes Cryptogr., 92(8):2197–2217, 2024.
doi:10.1007/s10623-024-01383-0.

BV96. Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the
most significant bits of secret keys in Diffie-Hellman and related schemes.
In CRYPTO ’96, volume 1109 of LNCS, pages 129–142. Springer, 1996.
doi:10.1007/3-540-68697-5_11.

DEMS14. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon v1. Submission to the CAESAR competition, 2014.
URL: https://competitions.cr.yp.to/round1/asconv1.pdf.

DEMS19a. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon v1.2. Submission to the NIST Lightweight Cryptography
competition, 2019. URL: https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.

pdf.
DEMS19b. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin

Schläffer. Preliminary analysis of Ascon-XOF and Ascon-Hash. IACR
Cryptology ePrint Archive, Paper 2024/908, 2019. URL: https://eprint.
iacr.org/2024/908.

DEMS21. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon v1.2: Lightweight authenticated encryption and hashing.
Journal of Cryptology, 34(3):33, 2021. doi:10.1007/s00145-021-09398-9.

DEMS24. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon MAC, PRF, and short-input PRF – lightweight, fast, and
efficient pseudorandom functions. In CT-RSA 2024, volume 14643 of LNCS,
pages 381–403. Springer, 2024. doi:10.1007/978-3-031-58868-6_15.

DGL+24. Xiaoyang Dong, Jian Guo, Shun Li, Phuong Pham, and Tianyu Zhang.
Improved meet-in-the-middle Nostradamus attacks on AES-like hashing.
IACR Transactions on Symmetric Cryptology, 2024(1):158–187, 2024. doi:
10.46586/tosc.v2024.i1.158-187.

DZQ+24. Xiaoyang Dong, Boxin Zhao, Lingyue Qin, Qingliang Hou, Shun Zhang, and
Xiaoyun Wang. Generic mitm attack frameworks on sponge constructions.
In CRYPTO 2024, volume 14923 of LNCS, pages 3–37. Springer, 2024.
doi:10.1007/978-3-031-68385-5_1.

FLYS23. Qinggan Fu, Ye Luo, Qianqian Yang, and Ling Song. Preimage and collision
attacks on reduced Ascon using algebraic strategies. IACR Cryptology
ePrint Archive, Paper 2023/1453, 2023. URL: https://eprint.iacr.org/
2023/1453.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In CRYPTO ’86, volume 263 of
LNCS, pages 186–194. Springer, 1986. doi:10.1007/3-540-47721-7_12.

GLS16. Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applications
to cryptanalysis of round-reduced Keccak. In ASIACRYPT 2016, volume
10031 of LNCS, pages 249–274, 2016. doi:10.1007/978-3-662-53887-6_9.

HM96. Shai Halevi and Silvio Micali. Practical and provably-secure commitment
schemes from collision-free hashing. In CRYPTO ’96, volume 1109 of LNCS,
pages 201–215. Springer, 1996. doi:10.1007/3-540-68697-5_16.

21

https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/s10623-024-01383-0
https://doi.org/10.1007/3-540-68697-5_11
https://competitions.cr.yp.to/round1/asconv1.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://eprint.iacr.org/2024/908
https://eprint.iacr.org/2024/908
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/978-3-031-58868-6_15
https://doi.org/10.46586/tosc.v2024.i1.158-187
https://doi.org/10.46586/tosc.v2024.i1.158-187
https://doi.org/10.1007/978-3-031-68385-5_1
https://eprint.iacr.org/2023/1453
https://eprint.iacr.org/2023/1453
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/3-540-68697-5_16

JL17. Simon Josefsson and Ilari Liusvaara. Edwards-curve digital signature
algorithm (EdDSA). RFC 8032, 2017. doi:10.17487/rfc8032.

KK06. John Kelsey and Tadayoshi Kohno. Herding hash functions and the Nos-
tradamus attack. In EUROCRYPT 2006, volume 4004 of LNCS, pages
183–200. Springer, 2006. doi:10.1007/11761679_12.

LHC+23. Huina Li, Le He, Shiyao Chen, Jian Guo, and Weidong Qiu. Automatic
preimage attack framework on Ascon using a linearize-and-guess approach.
IACR Transactions on Symmetric Cryptology, 2023(3):74–100, 2023. doi:
10.46586/tosc.v2023.i3.74-100.

LM22. Charlotte Lefevre and Bart Mennink. Tight preimage resistance of the
sponge construction. In CRYPTO 2022, volume 13510 of LNCS, pages
185–204. Springer, 2022. doi:10.1007/978-3-031-15985-5_7.

MSP+23. John Preuß Mattsson, Göran Selander, Santeri Paavolainen, Ferhat Karakoç,
Marco Tiloca, and Robert Moskowitz. Proposals for standardization of the
Ascon family. NIST Lightweight Cryptography Workshop 2023, 2023.

Nat23. National Institute of Standards and Technology. Digital signature stan-
dard (DSS). Technical Report Federal Information Processing Standards
Publications (FIPS) 186-5, 2023. doi:10.6028/nist.fips.186-5.

Nat24. National Institute of Standards and Technology. Ascon-based lightweight
cryptography standards for constrained devices: Authenticated encryption,
hash, and extendable output functions. Technical Report NIST Special
Publication (SP) 800-232 (Initial Public Draft), 2024. doi:10.6028/nist.
sp.800-232.ipd.

NHS+24. Zhongfeng Niu, Kai Hu, Siwei Sun, Zhiyu Zhang, and Meiqin Wang. Speed-
ing up preimage and key-recovery attacks with highly biased differential-
linear approximations. In CRYPTO 2024, volume 14923 of LNCS, pages
73–104. Springer, 2024. doi:10.1007/978-3-031-68385-5_3.

NSW09. Gregory Neven, Nigel P. Smart, and Bogdan Warinschi. Hash function
requirements for Schnorr signatures. J. Math. Cryptol., 3(1):69–87, 2009.
doi:10.1515/jmc.2009.004.

QHD+23. Lingyue Qin, Jialiang Hua, Xiaoyang Dong, Hailun Yan, and Xiaoyun
Wang. Meet-in-the-middle preimage attacks on sponge-based hashing. In
EUROCRYPT 2023, volume 14007 of LNCS, pages 158–188. Springer, 2023.
doi:10.1007/978-3-031-30634-1_6.

Sch89. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In CRYPTO ’89, volume 435 of LNCS, pages 239–252. Springer, 1989.
doi:10.1007/0-387-34805-0_22.

Sch25. Lorenz Schmid. Preimages for Ascon-Xof in EdDSA. Master’s thesis, Graz
University of Technology, 2025. doi:10.3217/6jv2t-pgn22.

ZSWH23. Zhiyu Zhang, Siwei Sun, Caibing Wang, and Lei Hu. Classical and
quantum meet-in-the-middle Nostradamus attacks on AES-like hashing.
IACR Transactions on Symmetric Cryptology, 2023(2):224–252, 2023.
doi:10.46586/tosc.v2023.i2.224-252.

A Detailed Experimental Results

22

https://doi.org/10.17487/rfc8032
https://doi.org/10.1007/11761679_12
https://doi.org/10.46586/tosc.v2023.i3.74-100
https://doi.org/10.46586/tosc.v2023.i3.74-100
https://doi.org/10.1007/978-3-031-15985-5_7
https://doi.org/10.6028/nist.fips.186-5
https://doi.org/10.6028/nist.sp.800-232.ipd
https://doi.org/10.6028/nist.sp.800-232.ipd
https://doi.org/10.1007/978-3-031-68385-5_3
https://doi.org/10.1515/jmc.2009.004
https://doi.org/10.1007/978-3-031-30634-1_6
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.3217/6jv2t-pgn22
https://doi.org/10.46586/tosc.v2023.i2.224-252

Table 3: Examplary random-prefix-preimage for 1-round Ascon-Hash256, breaking the binding property of the commitment
scheme. Each row states a message block and the internal state after Xoring the message and applying the Ascon permutation.

Mi x0 x1 x2 x3 x4 Comment

9b1e5494e934d681 4bc3a01e333751d2 ae65396c6b34b81a 3c7fd4a4d56a4db3 1a5c464906c5976d Ascon-Hash256 IV
M0 685903260457ea53 7970a54f7a956205 e9a17ea5020eaf64 d414b335e550a038 ce2b77bea3c33fae 6c4b2bc95f2b8612 randomize
M1 af1cb14c5d612ec1 916deea6ca0c72b3 0a6160777409cca1 70870fd1dfdfed47 085e826fa9975606 f358a8241564bdab randomize

M2 18caa93c20b674b7 387d44f426400f5d 0000000000000000 20cd0294856ce9d9 e661109dca462fe5 a5ae5f097f76c9e7 x1 = 0

M0
3 02034e8424004000 7b5fd54cc3442713 79b3c813ba6959a9 8e981997454cb201 eb022c6a4ca098c2 8d1249789d7b6069

M0
4 01f669c9a1d2ac91 f8a9dabce0271af2 0000000000000000 5e954963f707cbff 93940c511e30a8b1 b0a4a03ea5cf574c HW(x3 ⊕ x4) = 44

M1
3 00002c0313ccfde0 08e2144b56261f9d ce0ae2d036a6b480 5fea35b137080f08 ade02e27b0350c3a eeab32c89a199854

M1
4 15a3f9744b803c32 00e92efb764370dc 0000000000000000 daae749cd5a45915 c38ee7010cc0932f e458bcdef33f6cd0 HW(x3 ⊕ x4) = 53

M2
3 00844284fede47b6 39714d7a7ada4901 ba0e93d81e0db0a2 45855c2dc2b33c60 867ea1897720a565 36660897bf93eb2d

M2
4 f0ecba1838f63fe3 ae7c216a92878d36 0000000000000000 d08ff4f28c946d24 67e6360c2c81f91f ea19c9f3d37e06e0 HW(x3 ⊕ x4) = 60

M3
3 84651c261793f7ac f0b342b5edf85168 0b62ef4c276c5728 3640848a0a9f0819 1227e8b7b5b1f1c1 8d1bffffffc6ffff

M3
4 40cfd2b5adc1516c 3ad693c7c7a2c56b 0000000000000000 051854c4920ed35c fbdc2a1e3a528196 4423d5e1c5ad7e69 HW(x3 ⊕ x4) = 63

M4
3 12ea247b8325fbbc 76c4d6d49a7b27a3 0bad11bcb3f78c5c 065d504c96d30a8b 16bd4fa276b7e65b bf7fffffffdfffff

M4
4 d44b76d580c036c3 e52f8615a999649f 0000000000000000 eb86bd4233149d27 b7aa2d4e2d66f7f0 4c55d2b1d299080f HW(x3 ⊕ x4) = 63

M5
3 701b354e4cb8b2d3 0bb9f7786ebb76c5 58a0a5c730f2b3ff 034a6a4a21329678 01f5d6d1c2c6be3e fbf7fffffffdffff

M5
4 abb1f71862b2a4f7 e12feb45172b0c5b 0000000000000000 b864c997c9c9cc64 d5174e2ae7415ebf aae8b1d518bea140 HW(x3 ⊕ x4) = 63

M6
3 68cf246ff07f4737 e2614bcbe9faa9bb ada27d29b6866f6f 1a7f8a7d4d76f992 aa62f368370fa547 7effffffffbfffff

M6
4 2b434b61edbc88fa 7c76c3ee03ffe1f7 0000000000000000 56927a3259d256c6 4f1fd664b03eb777 70e0299b4fc14888 HW(x3 ⊕ x4) = 62

M7
3 1a442a5a23dc2146 07643ea2da87265e b008f46aaa6d1b88 3f2d4cccc6bd2280 a15eca1a17a2f10e 3e7fffffff9fffff

M7
4 a66c7fabd8c72266 40f931a2dc9d06e2 0000000000000000 ec3d2628b747674a 455dd67eb2e95fa1 baa229814d16a05e HW(x3 ⊕ x4) = 64

M5 fbd9a0e8fd133565 512431250c059e61 e0b3d4c3f1117122 7f750bbc5f6f9c12 6039208051811284 ffffffffffffffff

M6 47a0bf2fae0db670 45d9c05dee430635 d6ffe8ad49ad9387 ffffffffffffffff 0000000000000000 d6ffe8ad49ad93cc matching point xM

M7 932628f0a7ee95b1 01a0b14024b94fd2 ffffffffffffffff 0000000000000000 ffffffffffffffff 960000002580004b x4 = Σ4(RC)
M8 01a0b14024b94fd2 ce097679458004f9 d9b4fffef753fffb ac0000000000006f 9625cb00258972c0 0000000000000000 cancel x0

Mpad 0000000000000001 19970aba0d463889 333c724c2fe75a29 4d47ac0188d8b030 a6e0330b337df6e8 43d58d477b36f471 state after padding

23

	Preimage-type Attacks for Reduced Ascon-Hash: Application to Ed25519

