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Abstract. We introduce the use of machine learning in the cryptanalysis
of code-based cryptography. Our focus is on distinguishing problems
related to the security of NIST round-4 McEliece-like cryptosystems,
particularly for Goppa codes used in ClassicMcEliece and Quasi-Cyclic
Moderate Density Parity-Check (QC-MDPC) codes used in BIKE. We
present DeepDistinguisher, a new algorithm that trains a transformer to
distinguish structured codes from random linear codes. The results show
that the new distinguisher achieves high accuracy in distinguishing Goppa
codes, suggesting that their structure may be more recognizable by AI
models. Our approach outperforms traditional attacks for distinguishing
Goppa codes in certain settings and generalizes to longer code lengths
without further training using a puncturing technique. We also present
the first distinguishing results for MDPC and QC-MDPC codes.

Keywords: Classic McEliece · Goppa Codes · QC-MDPC · Code Distin-
guishability · Deep Learning · Transformers

1 Introduction

In recent years, the cryptographic community has been actively preparing for the
cyber-security challenges arising from the impending advent of cryptographically
relevant quantum computers. To address this quantum threat, the National
Institute of Standards & Technology (NIST) started a multi-stage standardization
effort [11] to replace current number-theoretic-based cryptographic standards with
a new generation of quantum-resistant algorithms. In 2024, NIST standardized a
first set of post-quantum cryptography (PQC) standards, including the Module-
Lattice-Based Key-Encapsulation Mechanism (ML-KEM, [39]), the Module-
Lattice-Based Digital Signature Algorithm (ML-DSA, [38]) and the Stateless
Hash-Based Digital Signature Algorithm (SLH-DSA, [40]).
The standardization of post-quantum cryptography is still ongoing, with NIST
currently conducting a fourth round of evaluations to identify additional key
encapsulation mechanisms (KEMs) [41]. Candidates that remain in the fourth
round all belong to code-based cryptography [8,42,18], a family based on the
algorithmic and NP-hardness of decoding random linear codes [6,18]. In particular,
two candidates follow the general framework of the McEliece cryptosystem [35]:
ClassicMcEliece [1] that uses binary Goppa codes as initially proposed by
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Robert McEliece in 1978, and BIKE [37,2] a variant relying on Quasi-Cyclic
Moderate Density Parity-Check (QC-MDPC) codes.

A fundamental question for these schemes, and post-quantum cryptography
in general, is the hardness of the underlying algorithmic problems. This issue
is both critical and highly challenging, as the security of standardized and
candidate schemes for NIST has been intensively scrutinized in the past few
years. Introducing any new cryptanalytic technique can be considered a notable
achievement.

In this context, recent advances in Machine Learning (ML) provide a new
paradigm to accelerate cryptanalysis. In particular, deep learning models – espe-
cially transformer-based architectures – have demonstrated remarkable success
in pattern recognition, feature extraction, and automated discovery of hidden
structures in high-dimensional data. In [49,32,33,50], the authors introduced the
use of transformers to attack the Learning With Errors (LWE) problem [45], a
central problem in post-quantum cryptography. The capability of these models
to learn joint distributions of sequential data makes them a promising tool for
identifying latent structures in algebraic constructions.

This paper presents a novel application of ML techniques to assess the security
of code-based public-key cryptosystems. Specifically, we consider the problem of
distinguishing structured public codes (e.g., Goppa or QC-MDPC) from random
codes. To do so, we design a supervised learning framework on finite field data
and introduce a transformer-based algorithm, DeepDistinguisher, designed to
classify structured codes more effectively. Our work does not directly impact the
security of Classic McEliece; however, we believe that our findings will inspire
researchers to further explore this problem. To our knowledge, this is the first
work that applies ML to a core hardness assumption in code-based cryptography
rather than to side-channel leakage.

We validate our DeepDistinguisher via extensive experiments across a range
of code parameters. For Goppa codes, we empirically demonstrate that Deep-
Distinguisher can classify structured codes from random with high accuracy,
even outperforming the most recent approaches [43,20,13] for some specific
parameters.

Organization of the paper

The paper is organized as follows. We begin with a discussion of prior research
relevant to our approach in 1 which appears as part of this introduction. Then, sec-
tions 2 and 3 provide the necessary background and definitions for understanding
our work.
Our DeepDistinguisher is detailed in Section 4 where we describe the training
framework, data generation process, and evaluation strategies. We highlight the
importance of the choice of deep learning architecture and data representation.
Section 5 presents our experimental results, demonstrating that our model achieves
high classification accuracy and outperforms traditional algebraic distinguishers
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such as FGOPT [20], CMT [13], and syzygy [43] on the toy parameter settings
proposed in [43].
Additionally, we present distinguishing results on ternary Goppa codes, and
certain binary alternant codes, but also the first specific distinguishing results on
(QC) MDPC codes. Although our experimental results are limited, our findings
suggest that distinguishing these codes is easier than finding low-weight codewords,
the approach taken in [37].
Finally, in Section 6, we introduce a more challenging problem: given a public
generator matrix of a Goppa code with missing entries, recover the missing values
such that the outcome is a valid Goppa code. This is a harder problem than
distinguishing and seems impossible without the knowledge of some information
about the private key. Our model successfully recovers these missing values,
demonstrating that the structure of Goppa codes can be learned and exploited by
AI and that our DeepDistinguisher is not simply the statistical distinguisher
described in Appendix A. The code has been open sourced for the community.4

Related work

AI, and more specifically ML, is becoming a powerful approach in cryptanalysis,
with a growing body of research demonstrating that neural networks can detect
patterns. For instance, Gohr [23] showed that deep residual neural networks can
serve as exceptionally strong differential distinguishers—outperforming classical
methods on round-reduced Speck32/64 with very few chosen plaintexts.
In post-quantum cryptography, a first generation of ML techniques were used
in [26] to attack group-based cryptosystems. More recently, the SALSA papers
[49,32,33,50] leveraged recent advances in ML —- in particular the introduction
of transformers [48] – to solve Learning with Errors (LWE) problems. Lastly,
[29] considers learning-based information-theoretic metrics, leveraging mutual
information estimation and binary classification to evaluate the security of
cryptographic schemes under chosen-plaintext attacks (IND-CPA). The study
demonstrates that neural networks can efficiently identify cryptosystems that
are not IND-CPA secure by modeling the distinguishability of ciphertexts as a
classification task.
In this paper, we present the first ML-based attack, DeepDistinguisher, on the
distinguishing problem arising in the security of McEliece-like cryptosystems.
In particular, we consider the Goppa Code Distinguishing (GD) problem [12];
probably the most famous example of code distinguishing problem.

Problem 1 (Goppa Code Distinguishing (GD) problem). Given a generator matrix
G ∈ Mk×n(Fq) of a [n, k]q linear code, the Goppa Code Distinguishing (GD)
problem asks to decide if G is the generator matrix of a Goppa code or a randomly
drawn matrix.

The GD problem was formally introduced in [12] and was initially believed
to be hard. Thus, it served as an assumption for reducing the security of the
4 Code is available at github.com/facebookresearch/ai4code-cryptanalysis

https://github.com/facebookresearch/ai4code-cryptanalysis
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McEliece cryptosystem to the problem of decoding random linear codes [17]. Our
understanding of the hardness of GD has significantly shifted in the past ten
years, culminating with the so-called syzygy distinguisher [43] that now solves
GD for a broad range of parameters with a complexity asymptotically faster than
the best generic decoding algorithms.
The syzygy distinguisher, as well as improved results on GD such as [14,13], is
built on the polynomial-time distinguisher presented by Faugère, Gautier, Otmani,
Perret, Tillich (FGOPT) [20]. The core idea behind the FGOPT distinguisher is
to analyze the behavior of the Gröbner basis computation [10,9] of an algebraic
system associated to McEliece’s public key. This computation behaves differently
if the algebraic system is generated from a McEliece public key or from a randomly
generated matrix. FGOPT described specific linear relations occurring in such
computations due to the Goppa (or alternant) structure, leading to a polynomial-
time distinguisher solving GD for codes whose rate R = k

n is close to 1. Since this
result, a major open question has been how to extend the distinguishing rate.
At Asiacrypt’23, Couvreur, Mora and Tillich (CMT, [13]) finally demonstrated
that the approach from [20] can be improved. CMT introduced a new algebraic
modeling method and leveraged more general algebraic relations, known as syzy-
gies, arising in the Gröbner basis computations. While FGOPT can distinguish
codes with rates extremely close to 1, CMT pushed the boundaries of success to
distinguishing rates in the range [ 23 , 1].
A central contribution of the latest distinguisher [43] is to precisely predict the
syzygies arising at any step of the Gröbner computations. In particular, such a
distinguisher can solve GD for a broad range of parameters with complexity which
is sub-exponential in the error-correcting capacity. Asymptotically, this removes
the limitation on the rate for the syzygy distinguisher. For fixed parameters,
however, the situation is different. Remark that, unlike FGOPT, the CMT and
syzygy distinguishers are not polynomial-time algorithms. The rate remains a
limiting factor, and certain code parameters cannot be distinguished by either
the syzygy or CMT distinguishers due to fundamental theoretical limitations
and/or computational complexity constraints.
The code distinguishing problem for Quasi-Cyclic (QC) and general Moderate
Density Parity-Check (MDPC) was formally introduced in [37]. To the best of
our knowledge, no dedicated technique exists for distinguishing such codes. The
only known approach, described in [37], relies on finding low-weight codewords
in the public code – a problem equivalent to message recovery. This led the
authors of [37] to introduce an assumption about the (exponential) hardness of
distinguishing MDPC codes.
We emphasize that the hardness of GD has no direct impact on the security
of McEliece yet. That is, there is currently no generic technique to mount an
attack against McEliece using a distinguisher. However, recent results [5,13]
demonstrated that techniques used for distinguishing alternant/Goppa codes can
also be applied to attack a version of McEliece using generic alternant codes with
high rates.
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2 Preliminaries

2.1 Notations

Finite fields. We consider the finite field Fq of order q with q a prime power.
For some integer m > 0,Fqm is a field extension of Fq of degree m: Fqm

∼=
Fq[x]/(g(x)) ∼= Fq[α] with α a root of an irreducible polynomial g(x) of degree
m. Any element β ∈ Fqm can be naturally associated with its vector form in Fq

as (c0, . . . , cm−1) ∈ Fm
q , where β =

∑m−1
i=0 ciα

i.
Vectors and matrices. We use lowercase letters to represent integers, while
integer intervals are expressed as Ja; bK. Matrices are denoted by bold uppercase
letters, and vectors by bold lowercase letters. For a vector v, the notation vi
refers to its i-th component, and v⊤ denotes its transpose. Mk×n(F) will denote
the set of k × n matrices with coefficients over a finite field F.
For a matrix A ∈ Mk×n(F), the element in the i-th row and j-th column is
denoted by aij . A sub-matrix of A, specified by a set of rows I and a set of
columns J , is written as A[I,J ]. Additionally, a specific row or column of a
matrix A is indicated by A[i, :] and A[:, j], respectively.

2.2 Basics of deep learning

Before presenting our approach, we first introduce the fundamental concepts of
deep learning to provide the necessary background for a clear understanding of
our methodology [24].
A deep neural network is a parametric family of functions Fθ : X → Y, where
θ ∈ Rp represents all trainable parameters (i.e., the entries of weight matrices
and bias vectors) [24] and X and Y are measurable spaces. Concretely, for an
input x ∈ X , one may write:

Fθ : x 7→ Wd σ
(
· · ·σ(W1x+ b1) · · ·

)
+ bd,

with each Wi a weight matrix, bi a bias vector, and σ a fixed nonlinearity such
as ReLU (Rectified Linear Unit x → max(0, x)) applied component-wise. In this
case, the trainable parameters of F are θ = {W1, b1, . . . ,Wd, bd}.
Training amounts to minimizing an empirical risk

min
θ

∑
i

ℓ
(
Fθ; xi, yi

)
,

where {(xi, yi)} is a labeled dataset and ℓ is a chosen loss function. A common
case is binary classification, where Y = {0, 1} and one trains Fθ to output
probabilities in [0, 1] by minimizing the binary cross-entropy loss [24]:∑

i

[
− yi log

(
Fθ(xi)

)
− (1− yi) log

(
1− Fθ(xi)

)]
.
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Parameters θ are typically updated via gradient-based algorithms (e.g., stochastic
gradient descent) that converge to a θ∗ that produces accurate predictions on new
(held-out/validation) data. By the universal approximation theorem, sufficiently
large networks can approximate wide classes of continuous functions on compact
domains [16,28].
A Transformer encoder [48] is a deep sequence-to-sequence model that takes an
ordered collection {x1, . . . , xn} ⊆ X—which may be text tokens, image patches,
matrix rows, etc.—and outputs a sequence of embeddings HL ∈ Rn×d. Each xi is
first embedded (or projected) into h0,i ∈ Rd. Then, each of the L layers applies
multi-head self-attention and a small feed-forward sub-network, with residual
connections and normalization. Formally, for layer ℓ, we form affine queries, keys,
and values from Hℓ−1, compute

Att(Q,K, V ) = softmax
(

QK⊤
√
dk

)
V

for each attention head, concatenate the head outputs, and project them. We
update

H ′
ℓ = LayerNorm

(
Hℓ−1 +MultiHeadAtt(Hℓ−1)

)
Hℓ = LayerNorm

(
H ′

ℓ + FFN(H ′
ℓ)
)

All parameters (in the attention and feed-forward blocks) are trained end-to-end
via gradient descent to yield a final encoder representation HL. If the task is a
classification, then we project the hidden state HL into the output space using a
trainable linear layer [48,3].

3 Coding Theory

3.1 Linear Codes and the Bounded Distance Decoding Problem

A [k, n]q linear code C ⊆ Fn
q is a k-dimensional subspace of Fn

q . The rate of C
is defined as k/n and elements of C are called codewords. C can be specified by
a full rank generator matrix G ∈ Mk×n(Fq) such that C = {m ·G | m ∈ Fk

q}.
The standard form of G is G = [Ik | A], with Ik being the k × k identity matrix.
Equivalently, C can be represented by parity-check matrix H ∈ M(n−k)×n(Fq)

that satisfies H · c⊤ = 0(n−k),∀c ∈ C, and its row space is the dual of C.
We introduce below a general operation on codes that will be used to extend the
range of applicability of DeepDistinguisher.

Definition 1 (Punctured Code). Given a code C ⊆ Fn, and a subset I ⊂
J1;nK, the punctured code over I is defined as :

PI(C) =
{
(ci)i∈J1;nK\I

∣∣c ∈ C
}
.

Code-based cryptography [8,42,18] is based on the intractability, i.e. NP-Hardness,
of the Bounded Distance Decoding (BDD, [6]) problem:



AI for Code-based Cryptography 7

Problem 2 (Bounded Distance Decoding (BDD) problem). Given the generator
matrix G ∈ Mk×n(Fq) of an [n, k]q linear code, a target c ∈ Fn

q , and an integer
t > 0, the BDD problem asks to find – if any – m ∈ Fk

q such that:

wH(c−m ·G) ≤ t,

with wH being the Hamming weight of the vector, i.e. the number of its non-zero
coordinates.

Solving BDD for random codes, i.e. random generator matrices G ∈ Mk×n(Fq), is
a long-standing problem whose most effective algorithms are all computationally
intractable [47,7,18].

3.2 McEliece Framework and Code Distinguishing Problem

The McEliece cryptosystem [35] is certainly the most popular code-based public-
key cryptosystem. In particular, round-4 NIST candidates ClassicMcEliece
[1] (which is based on the Niederreiter variant) and BIKE [2] follow the general
framework described below.

– Secret-Key. A structured generator matrix Gs ∈ Mk×n(Fq) of a [n, k]q
linear code with a known decoding algorithm.

– Public-Key. A scrambled generator matrix G ∈ Mk×n(Fq) derived from
the secret-key Gs.

– Encryption. Given a message m ∈ Fk
q , the ciphertext is computed as

c = m · G + e ∈ Fn
q , where e ∈ Fn

q is an error vector of small Hamming
weight.

– Decryption. Given a ciphertext c ∈ Fn
q , the receiver applies the code’s

decoding algorithm to recover the message m.

From this description, it is clear that the security of McEliece (message-recovery)
relies on the hardness of BDD. In addition, it is natural to introduce a general
distinguishability problem for a structured family of linear codes F .

Problem 3 (Code Distinguishability (CD) problem). Given a generator matrix
G ∈ Mk×n(Fq) of an [n, k]q linear code, the CD problem asks to decide if G is
the generator matrix of an F -code or randomly drawn.

In this paper, F includes Goppa or alternant (G ,A ) codes as well as MDPC
and QC-MDPC (M ,Q ∩ M ) codes.

3.3 Alternant and Goppa Codes

The family of codes used in ClassicMcEliece can be conveniently described by
introducing Generalized Reed-Solomon codes.
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Definition 2 (Generalized Reed-Solomon Code, [44]). Let α = (α1, . . . , αn) ∈
Fn
q be an n-tuple of distinct elements in Fq, called a support, and β = (β1, . . . , βn) ∈

(F∗
q)

n an n-tuple of nonzero elements in Fq, called multiplier. The Generalized
Reed-Solomon code of length n and dimension t, denoted by GRSq,n,t(α,β), is
defined as:

GRSq,n,t(α,β) = {(β1f(α1), . . . , βnf(αn)) | f ∈ Fq[x],deg(f) < t}.

Remark that the following weighted Vandermonde matrix is a generator matrix
of the GRS code.

Vt[α,β] =


β1 β2 · · · βn

β1α1 β2α2 · · · βnαn

...
...

. . .
...

β1α
t−1
1 β2α

t−1
2 · · · βnα

t−1
n

 .

Alternant codes can be viewed as subfield subcodes of GRS codes.

Definition 3 (Alternant Code, [34]). Let α ∈ Fn
qm be a support and β ∈

(F∗
qm)n be a multiplier as in Definition 2 such that n ≤ qm. The alternant code

of degree t, denoted by Aq,n,m,t(α,β), is given by:

Aq,n,m,t(α,β) = GRSqm,n,t(α,β)⊥ ∩ Fn
q .

Aq,n,m,t(α,β) is [n, k ≥ n−mt]q linear code.

Once the support and multiplier vectors are known, alternant codes of degree t
can be decoded in polynomial-time up to errors with Hamming weight t/2 [34,
Ch. 12]. McEliece cryptosystem relies on a sub-class of alternant codes.

Definition 4 (Goppa Code, [25]). Let α = (α1, . . . , αn) ∈ Fn
qm be a support

and g(x) ∈ Fqm [x] be a degree t square-free polynomial, called a Goppa polynomial,
such that g(αi) ̸= 0,∀ 1 ≤ i ≤ n. The Goppa code, denoted Gq,n,m,t(α, g), is
defined as follows:

Gq,n,m,t(α, g) = Aq,n,m,t

(
α,

1

g(α)

)
.

Gq,n,m,t(α, g) is an [n, k ≥ n−mt]q linear code.

Goppa codes, viewed as alternant codes, naturally inherit a decoding algorithm
that corrects up to t/2 errors. For binary Goppa codes (q = 2), we can improve
this bound to correct twice as many errors in polynomial-time.

3.4 Codes with Sparse Parity-Check Matrices

BIKE [37,2] relies on linear codes described by compact and sparse matrices.

Definition 5 (Moderate Density Parity-Check codes, [37]). An (n, k, w)-
MDPC code is a linear code of length n, co-dimension k admitting a parity check
matrix with constant row weight w which scales in O(

√
n log n).
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BIKE adds a structure to MDPC codes allowing to decrease the size of the
public-key.

Definition 6 (Quasi-cyclic codes, [37]). An [n, k]q-linear code is Quasi-Cyclic
(QC) if there is some integer ℓ with n = ℓn0 such that every cyclic shift of a
codeword by ℓ places is again a codeword.

3.5 Solving the Code Distinguishing Problem

A well-studied example of a code distinguishing problem occurs when the family
F is restricted to Goppa or alternant codes (section 3.3). This corresponds to the
classical McEliece scheme and the Goppa Code Distinguishing (GD) problem.
The first efficient algorithm for solving this problem, FGOPT [20], relies critically
on the code rate k/n. In [20,13], the authors precisely characterize the range of
parameters for which FGOPT can distinguish Goppa codes in polynomial time.

Definition 7 (Square–distinguishable Goppa code). A Goppa code G(α, g),
with α = (α1, . . . , αn) ∈ Fqm a support and g(x) ∈ Fqm [x] a Goppa polynomial
of degree t, is said to be square–distinguishable if:

n >

(
tm+ 1

2

)
− m

2
(t− 1)(t− 2), when t < q − 1 (1)

n >

(
tm+ 1

2

)
− m

2
t
(
(2eG + 1)t− 2(q − 1)qeG−1 − 1

)
, otherwise, (2)

where eG = min{i ∈ N | t ≤ (q − 1)2qi}+ 1 =

⌈
logq

(
t

(q−1)2

)⌉
+ 1.

Note that similar results can be derived for alternant or binary Goppa codes.
In [13], Couvreur, Mora and Tillich (CMT) extended the concept of distinguish-
able codes by introducing a new class called d-distinguishable codes. This concept
is based on invariants related to the Hilbert function, a fundamental tool from
commutative algebra [15], commonly used to assess the complexity of Gröbner
basis computations [10,9]. In particular, it applies to Pfaffian ideals, i.e. ideals
generated by symbolic minors of skew-matrices [36,19], modeling specific relations
of alternant and Goppa codes.

Definition 8 (d-distinguishable, simplified from [13]). Let C be an [n, tm]Fqm

linear code, P+
2 (C) be the Pfaffian ideal associated to C [13, Sec. 5.2] and HFP+

2 (C)
be the corresponding Hilbert function. C is said to be d-distinguishable from a
generic [n, tm] linear code over Fqm when the following holds:

HFP+
2 (C)(d) ̸= max

(
0,

d∑
i=0

(−1)i

tm+ d− i− 1

(
n− tm

i

)(
tm+ d− i− 1

d− i+ 1

)(
tm+ d− i− 1

d− i

))

1-distinguishable codes correspond to square–distinguishable Goppa codes (Defi-
nition 7). In [13], the authors demonstrated that d-distinguishability, for d > 1,
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allows to distinguish a broader family of codes than FGOPT, albeit at a higher
computational cost. In particular, the complexity of the CMT distinguisher is
bounded from above by:

O

(((
tm

2

)
− k + 1

)((
tm
2

)
+ dreg − 1

dreg

)ω)
, (3)

where 2 ≤ ω < 3 is a feasible linear algebra constant, and dreg is the degree of reg-
ularity [4], i.e. the maximum degree reached in the computation of (degree-based)
Gröbner basis of the Pfaffian ideal P+

2 (C). In [13], the authors conjecture that dreg

behaves asymptotically as dreg ∼ c (tm)2

n−tm , where c is a constant close to 1
4 . These

lead to a new algorithm that distinguishes codes with a rate in the range [2/3, 1].
Its complexity interpolates between polynomial-time (square–distinguishable
Goppa codes) and super-exponential in the error-correcting capability of the code
for constant rates.
The syzygy distinguisher [43] includes and extends previous results. It refines
the algebraic modeling from CMT and conducts a more precise analysis of
the syzygies occurring during a Gröbner computation. The dimension of these
syzygies are related to so-called Betti numbers that depend on the structure of
the code considered. These allow the author to present a new distinguisher that
is asymptomatically independent of the rate. Its complexity is bounded from
above by

κ = q

(
ω R2

1−R+o(1)
)

(logq logq(n))3

(logq(n))2
n
,

where R is the rate of the dual code R = mt/n, and ω is the linear algebra
exponent. The algorithm is not polynomial-time, but remains sub-exponential in
the error-correcting capacity.

4 A Transformer-Based Algorithm for Code Distinguishing

In this section, we introduce a novel and natural method for code distinguishing
based on deep learning. The motivation behind this approach is that a deep
learning model, trained to classify samples from different families of codes,
can potentially identify patterns revealed by a public generator matrix. Unlike
classical approaches that rely on predefined heuristics or algebraic properties, a
deep learning model can adaptively discover hidden structural differences between
code families if any.

4.1 Deep Distinguisher

Let F ∈ {G ,A ,M ,Q∩M } denote the code family of interest (Goppa, alternant,
MDPC, and QC-MDPC codes), at a high level, we aim to learn a parametric
classifier

Dθ : Fk×n
q −→ [0, 1],
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where Dθ is a function parameterized by θ ∈ Rdmodel and Dθ(G) estimates the
probability that the public generator matrix G spans a code in the target family
F . During training, we sample labeled pairs

(
G(i), y(i)

)
with

y(i) =

{
1, if G(i) generates a code in F ,

0, otherwise,

and minimize the empirical cross-entropy loss

L(θ) = − 1

N
log

[ N∏
i=1

Dθ(G
(i))y

(i)(
1−Dθ(G

(i))
)1−y(i)]

.

At inference time, we apply a threshold τ ∈ (0, 1) - usually 1
2 - to obtain a binary

decision rule:

b̂(Gtest) =

{
1, Dθ(Gtest) ≥ τ,

0, Dθ(Gtest) < τ,

Model architecture. Similarly to [46], our approach leverages an encoder-only
Transformer model, which has demonstrated strong performance compared to
other models we tried, namely, logistic regression, fully connected neural nets
(FCN) and convolutional networks. Fully connected networks of the same size
as our model do achieve some good accuracies after some period of training as
shown in table 8 in the appendix, but we find that they are very slow at learning
and rarely find the best solution that yields 100% accuracy.
The model processes an input sequence of vectors through an embedding layer,
followed by four layers consisting of self-attention and feed-forward networks.
Each vector in the sequence has an embedding dimension of demb = 1024.
In the self-attention mechanism, the model employs multi-head attention mecha-
nism with h = 4 heads, where each head operates on a subspace of dimension
dhead = demb

h = 256. The input vectors are first projected into these lower-
dimensional subspaces, processed independently by each head, and then recom-
bined to restore the original embedding dimension.
The feed-forward network (FFN) in each block consists of two linear transforma-
tions with a GELU [27] non-linearity in between. It first expands the dimension
to 4× demb = 4096 using a fully connected layer, applies the activation function,
and then projects the vectors back to the original embedding dimension demb.
After processing through these layers, the final sequence representation is obtained
via max-pooling over the sequence length. The resulting pooled vector is then
linearly projected into a scalar, which serves as the model’s logit and is used in the
loss function for optimization. We use Adam optimizer [30] with warmup ≈ 1000
steps and set the learning rate to lr = 10−5 and weight decay to ω = 10−3. We use
a binary cross-entropy loss function to optimize the model during training which
is basically maximizing the likelihood of the training batches. To evaluate the
model’s performance, we measure accuracy and precision on a separate balanced
test set.
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Data Representation. This is a crucial factor in achieving our distinguishing
results. In fact, given that the input is a standard form matrix over a finite
field, multiple encoding strategies are possible, including a flat token stream, 2-D
patches (table 6), and column-sequence encodings, as explained in appendix C.
Among these, the row-sequence strategy is the most effective: To reflect that
G forms a row basis of a linear code, we treat the matrix as a sequence of row
vectors. Each row is first cast into a numeric vector by lifting the finite field
entries to R using the encoding guidelines described below, then linearly projected
into the Transformer’s embedding space. We add an absolute positional encoding
on the sequence level.
When the base field is not F2, we encode the field elements differently based on
the value of q. If q is prime, we use angular embedding as in [46], which doubles
the dimension of the rows. Otherwise, if q is a prime power, we first represent
the elements as vectors of polynomial coefficients, then apply the appropriate
encoding based on the prime base field.
Example: The field F9 can be constructed as an extension of the base field F3

using the irreducible polynomial x2 + 1. Let z be one of its roots. F9 elements
are expressed as a+ bz with a, b ∈ F3. Therefore, we represent these elements as
vectors (a, b). Now to encode F3 elements, we use angular embedding, resulting
in a 4 dimensional vector (cos(2π a

3 ), sin(2π
a
3 ), cos(2πi

b
3 ), sin(2πi

b
3 )) ∈ R4.

4.2 Datasets

We consider Goppa and Alternant codes with a fixed code length n. For a given set
of parameters — extension degree m and degree t ∈ N — we generate a dataset
DF uniformly from the family F of codes, retaining only the codes of rank
k = n−mt. Each generator matrix is computed in standard form. Additionally,
we generate a dataset DR by uniformly sampling random linear codes with the
same parameters and size, following the same procedure. We define D = DF ∪DR,
and use the notation Dq,n,m,t to explicitly specify the parameters when needed.
It is important to note that F ⊂ R, meaning that, when generating the dataset
for random linear codes, there is a non-zero probability that some samples might
belong to F codes (e.g., Goppa or alternant codes). However, this probability is
negligible due to the structure of the family F and the comparatively vast size
of R. As a result, its impact on the dataset is statistically insignificant for our
analysis.

5 Experiments and Results

In this part, we present the experimental results of the DeepDistinguisher
on alternant/Goppa codes (introduced in section 3.3) and MDPC/QC-MDPC
codes (section 3.4). In the former case, we follow the methodology introduced in
[43] to derive the parameters q, t,m and n (the code dimension is computed as
k = n−mt). The approach is as follows:
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– First, we fix the field size q and the extension degree m. We set the length
as n = qm (full support) and find the largest t for which the code can be
distinguished.

– Once such t is identified, we fix its value as well as the corresponding q and
m. We then search for the smallest value of n that is still distinguishable.

Our experimental results for DeepDistinguisher are presented in two parts. In
section 5.1, we analyze a specific set of parameters introduced in [13,43]. The code
considered is relatively small (length at most 64). However, this allows explicit
comparison of different distinguishers on a common benchmark. In section 5.2,
we present more extensive results; pushing the practical experiments to code of
length up to 1024. We conclude this part by providing experimental results for the
codes underlying BIKE; demonstrating the flexibility of the DeepDistinguisher
distinguisher (section 5.3).

5.1 Comparing Distinguishers for Goppa on a Small Benchmark
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Fig. 1: Model accuracy as a function of code length. The model is trained on
Binary Goppa Codes with extension degree m = 6 and irreducible polynomials of
degree t = 3 as in [13] and [43]. The line and scatter points indicate the evaluation
accuracy of our model on each tested value of code length. The scatter color
indicates the range where the model was trained (n = 24 + 8k for k = 0, 1, ..)
showing that the model generalizes well to unseen input shapes. For attacks
from the literature, we show the smallest code length reported in their respective
papers, as no accuracy measures were provided.

In [13,43], the authors presented experimental results for their distinguishers on a
Binary Goppa code with q = 2,m = 6 and t = 3. The maximal length is n = 64,
the FGOPT distinguisher will be able to distinguish up to nsquare = 62. The
CMT distinguisher [13] reported nCMT = 59 and [43] brings down to nsyzygy = 50.
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Below this length, the conditions for distinguishability from [43] are not verified
anymore.
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Fig. 2: Heatmap of the classification accuracy on test sets for q = 2,m = 6 as a
function of code length n and degree parameter t. In this experiment, one model
is trained per value of t only. Meaning the model is trained on codes with varying
lengths n, allowing the model to interpolate well to unseen code lengths.

As highlighted in Figures 1 and 2, our distinguisher works for any code length
tested, with nearly 100% accuracy for most values of n ≥ 40. We set a lower
bound on the values of n such that the rate is no less than 0.20, which, for
instance, corresponds to n > 22 when t = 3. The accuracy tends to drop for very
small code rates.
In this case of q = 2,m = 6, our distinguisher works for all values of t ∈ J2 : 9K,
and achieves perfect accuracy when t ≤ 6. Figure 2 shows a heatmap of our
model’s accuracy across different values of n and t. This visualization provides a
comprehensive overview of how accuracy varies with these parameters, serving as
a benchmark for further investigations and comparisons with other approaches
and future works.
Inference Complexity. Since we are using a standard model size throughout
our work, we can give an estimate of the time complexity of our distinguisher.
In fact, the complexity of this distinguisher is determined by its inference time,
which corresponds to performing a forward pass through the trained model times
the number of calls to the model which is usually once. This cost is proportional
to the model size (with at most ≤ 50M parameters) and scales polynomially
with the input parameters k, n. In practice, calling our model takes about 10
milliseconds (ms) on CPU (or 100ms in one CPU thread) and less than ≈ 1ms
on a GPU. While training requires several hours, it is a one-time, offline process
whose cost will be amortized.

5.2 Distinguishing Goppa and Alternant Codes

Goppa codes demonstrate distinguishability across a range of parameters with
some specific configurations that achieve perfect accuracy. Binary codes of length
n = 128 and extension degree m = 7 can be distinguished up to polynomial
degree t = 8, with 100% accuracy for t ≤ 4 as shown in table 2. For larger
codes such as n = 512,m = 9, the model - of the same size as the 128-model -
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distinguishes codes up to t = 4. In general, we observe that the accuracy of the
model is lower as the degree of the Goppa polynomial t and the extension degree
m increase. Experiments show that alternant codes are harder to distinguish
from random codes, achieving accuracy better than random only when t ≤ 3, for
codes of length n = 64 and extension degree m = 6, as demonstrated in Table 1.

Table 1: Distinguishing accuracy for Goppa/alternant codes with n = 64. In this
experiment, for each parameter tuple (q, n,m, t), the model is trained on a dataset
Dq,n,m,t of total size ≤ 40 million samples and evaluated on 10 k unseen samples.
We use a batch size b = 512; the number of training steps (listed below) lets the
reader compute the effective training-data budget (min{40m, steps×batch size})
and the number of epochs (steps × batch size /40m).

Code (q,m) Degree (t) Rate (R) Accuracy (%) Training Steps

Goppa

(2, 6)

2 0.81 99.12 1K
3 0.72 98.88 8.5K
4 0.63 98.52 22K
5 0.53 98.24 48.5K
6 0.44 96.68 243K
7 0.34 84.60 848.5K
8 0.25 57.42 90K
9 0.16 75.92 296.5K

(3, 4)

2 0.88 98.25 9.8K
3 0.81 98.02 82K
4 0.75 90.34 154.2K
5 0.69 54.71 113.8K
6 0.63 52.52 44.8K

Alternant (2, 6)
2 0.81 57.82 15.6K
3 0.72 53.06 14.4K
4 0.63 51.80 18.8K

Goppa Codes with q = 3,m = 4, n = 64. When considering ternary Goppa
codes with m = 4, we observe that the distinguishing task is more challenging
compared to the binary case. Nevertheless, our distinguisher remains effective up
to degree t = 6 (corresponding to a code rate of R = 0.63 ) as shown in Table 1.
As the degree increases, accuracy drops considerably. For t = 4, the accuracy
decreases to 90.34%, and for t = 5, it drops sharply to 54.71%, indicating that
distinguishing becomes significantly harder.

Goppa Codes with q = 2,m = 7. We train the distinguisher on a 12M
dataset of binary codes of extension degree m = 7 while varying the code lengths
and degrees t. But first, we train on maximal code length n = 128 to figure out
the highest distinguishable value of polynomial degree t. As illustrated in table 2,
the model perfectly distinguishes codes up to t = 4 which corresponds to a code
rate of R = 0.78; a rate that is not square-distinguishable due to the condition in
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Equation (1). The accuracy starts to drop beyond that value of t but still does
better than random. The highest degree t we can distinguish is t = 8 with a rate
of R = 0.56 but only with a accuracy 0.52%. This rate is beyond the CMT [13]
distinguishable range (R ≥ 2/3). More details are provided in table 2.

Table 2: Distinguishing Results for Binary Goppa Codes with n = 128, m = 7.
Balanced dataset D[q, n,m, t] of total size 40 million samples and evaluated on
10k unseen samples. We also show the time complexity of the classical attacks

[13] Csparse
CMT = 3

((
tm
2

)
− k + 1

) ((tm2 )+dreg−1

dreg

)2
. Our attack’s cost is the inference

cost which is less than 100 milliseconds on one CPU core for most experiments.
Goppa Degree (t) Rate (R) Accuracy (%) Training Steps CCMT

2 0.89 98.14 2K -
3 0.84 99.48 91K 224

4 0.78 98.88 36K 241

5 0.73 64.52 579K 265

6 0.67 57.00 115K 297

7 0.62 54.42 411K ✗ 2139

8 0.56 52.38 20K ✗ 2193
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Fig. 3: Heatmap of model accuracy for classifying Goppa codes vs random codes
q = 2,m = 7 as a function of code length n and degree parameter t.

Next, we systematically vary the code length for each degree t to identify the
point at which our distinguisher fails. Figure 3 presents a heatmap of accuracies
for different pairs (n, t), illustrating the performance across various code lengths
and degrees. These results serve as complementary benchmarks to the m = 6
case, where performance appears to be saturated, providing additional insights
into our distinguisher’s behavior. Notably, no public implementations of classical
attacks are available for direct comparison, making our results a standalone
reference for this setting.
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Goppa Codes n = 256. To test the limits of our model on larger codes, we
generate datasets of 8M samples (4M for each class) for codes of length 256.
We train the model of the same size on these datasets and report the accuracies
obtained in Table 3. We notice the performance degrading fast with the degree t
and only do better than random for t ≤ 5. Further efforts and resources in terms
of dataset generation, model size, and training compute are needed to figure out
the scaling laws of our approach.

Table 3: Classification Accuracy (%) on balanced 10k eval datasets of binary
irreducible Goppa codes of length n = 256. The model used is the same throughout
the paper: a tokenizer-free encoder only transformer with 4 layers and d = 1024
embedding dimension.

Degree (t) 2 3 4 5 6

n = 256,m = 8 98.06 98.38 60.36 54.74 51.66

A notable pattern during training as shown in Figure 4, is that the loss often
almost stagnates for an extended period without the gradients vanishing before
abruptly decreasing at a specific training step, denoted as Tq,m,t. This drop in
loss tends to consistently occur much later for larger values of t, though the exact
nature of the dependency between t and Tq,m,t remains unclear. This raises a
question about the applicability of gradient-based optimization on such tasks.
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Fig. 4: Evolution of evaluation accuracy during training of the classifier over
Goppa codes vs random codes with parameters n = 64, q = 2,m = 6. The color
represents different values of the polynomial degree t.

Larger codes with Code Puncturing. We applied the strategy discussed
in Appendix B to evaluate the model trained on binary Goppa codes with
m = 7, n = 128 on codes of parameters n = 1024,m = 10, t = 2 using algorithm 2
with 1000 trials. This experiment yields a 70% accuracy suggesting that there
are probably unknown relationships between families of binary Goppa codes over
different field extensions.

5.3 Distinguishing MDPC and QC-MDPC Codes

We adopt the same framework outlined in BIKE [2]. Specifically, we take ℓ =
2, n = ℓr, implying that QC-MDPC code has rate 1

2 and the corresponding
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parity-check matrix is composed of two circulant blocks. We train the model on
codes of length n = 158 and vary the row weight w. Taking a block size r = 79
prime and odd values of w/2 ensures that the circulants are invertible in Fq,
which explains the values of w considered in Table 4. This table shows that we
can distinguish MDPC codes up to w = 14 while for QC-MDPC, we could only
distinguish codes with row weight w = 6.
This outcome is somewhat surprising, as one might expect the additional structure
introduced in the Quasi-Cyclic case to make classification easier rather than
harder. However, the circulant structure seems to introduce constraints that
makes it more challenging for the model to extract distinguishing features. An
avenue of improvement is to elaborate an effective representation of this structure
in a way that helps the learning of the model.

Table 4: Maximum evaluation accuracy on Moderate-Density Parity-Check
(MDPC) codes versus Quasi-Cyclic MDPC codes on the distinguishing task.
The number of training steps needed to achieve these accuracies is also reported.

Code length Code Row weight Eval Train.
& dim (n, r) (w) Accuracy Steps

158, 79

MDPC

10 97.14 445K
11 74.36 265K
12 65.39 200K
13 58.28 145K
14 54.90 220K
16 51.73 335K
18 51.05 220K

QC-MDPC

6 98.02 78K
10 51.31 738K
14 51.36 1.08M
18 51.21 905K

6 Hidden Goppa Code Problem

We introduce a new problem related to Goppa codes stronger than distinguishing
but weaker than the key-recovery problem.

Problem 4 (Hidden Goppa Code (HGC) problem). Given a parameter ζ > 0, and
matrix G̃ ∈ Mk×n(Fq ∪ {∗}) with at most ζ placeholder symbols ∗, the HGC
problem asks to find – if it exists – a completion Ĝ ∈ Mk×n(Fq) of G̃ (i.e.
obtained by replacing all placeholder symbols ∗ by field elements) such that Ĝ is
a valid generator matrix for a Goppa code G(α, g) with α ∈ Fn

qm a support and
g(x) ∈ Fqm [x] a Goppa polynomial of degree t.

This problem is trivial in the case of random linear codes, since any solution
makes a valid code. However, for Goppa codes, the structure imposed by the
algebraic properties of the code constrains the space of possible solutions. This
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structure is defined by the Goppa polynomial and the support set, which are
not directly visible in the generator matrix. Therefore, any solution to the HGC
problem must implicitly respect these hidden parameters, making it a non-trivial
task.
It is known that revealing only tm+ 1 Goppa support points suffices to recover
the McEliece secret key in polynomial time [31]. Thus, although HGC does
not explicitly output any secret-key data, extracting a trained model’s implicit
knowledge—via interpretability or inversion techniques—could yield exactly the
partial hints that classical algebraic attacks [22,21] lift to a complete key-recovery
breach.
DeepRecover: Using the same transformer architecture as for the DeepDistinguisher
with several hidden elements ranging between ζ = 1 and ζ = 80 out of mt(n−mt)
entries (e.g. 624 for m = 6, t = 2, n = 64), we were able to successfully train
the model on this task achieving a component-wise accuracy as high as 80% for
binary [64-52]-Goppa codes over extension degree m = 6 as shown in table 5.
We find that larger values of ζ accelerate the model training but converge to a
less optimal solution. Further investigations are required to understand better
the limits of the feasibility of this problem. It is evident that there is a theoretical
upper bound of ζ beyond which the number of possible solutions explodes and
we think that our model works partially because, for the values we chose of ζ,
the solution is either unique or there are not many solutions, allowing the model
to recover the solution that we used to generate the given sample (generate a
Goppa code, hide some entries, then ask the model to recover that exact solution
instead of recovering any valid solution). It’s worth noting that thanks to our
DeepDistinguisher, we could also train the DeepRecover model to recover any
valid solution since we can test in a gradient-friendly way whether a matrix is
Goppa or not with high accuracy.

Degree (t) Best Accuracy

2 0.80
3 0.76
4 0.64
5 0.58
6 0.50

Table 5: Best component-wise accuracy for each polynomial degree t after training
on Goppa codes with parameters q = 2, n = 64,m = 6. An accuracy of 50% is as
good as random guessing.

7 Conclusion

DeepDistinguisher achieves near-perfect classification on small parameters,
however, its decisions cannot be explained by any linear function of the generator-
matrix entries—indeed, training a logistic-regression (which would be able to find
any affine hyperplane separating Goppa codes from non-Goppa codes) baseline
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recovers only the total-Hamming-weight test we described in appendix A, which
fails to approach 100 % accuracy and degrades rapidly as parameters grow.
Instead, our transformer must be exploiting non-linear correlations among the
row-space basis vectors. In the small parameter regime, the algebraic structure of
a Goppa generator matrix induces strong, low enough order correlations among
its rows that our transformer’s attention layers can easily pick up.
As the code rate k/n = 1−mt/n decreases by increasing t or m, the algebraic
degree of the true invariants rises—forcing the model to learn ever more com-
plex multilinear monomials—yet our fixed-size network and finite training set
lack the capacity and coverage to generalize over that explosion of possibilities.
Consequently, beyond a certain threshold in mt, DeepDistinguisher’s accu-
racy collapses to chance, mirroring the known intractability of distinguishing
large-parameter Goppa codes from random codes.
Future explainability work should apply attention-map visualization and gradient-
based saliency on the embeddings of Goppa code matrices to pinpoint exactly
which combinations of row-interaction features carry the distinguishing signal.
This work is a first step in applying machine learning to code-based cryptography,
opening up new possibilities for research. Future work could focus on improving
these models, trying to distill a classical approach or algorithm that our model
may be approximating, and figuring out the recurring behavior of the gradient
descent when training on mathematical problems.
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A A Simple Statistical Hamming Weight Distinguisher

In this section, we present a simple statistical distinguisher based on an experi-
mental observation about the distribution of generator matrices of Goppa codes.
Computing the total Hamming weight of these matrices allows us to distinguish
Goppa codes from uniform random codes, although with weaker performance
compared to other methods.

We now fix the parameters under consideration, namely the code length n,
extension degree m, Goppa degree t, and the dimension k = n − mt, and we
consider random codes with the same dimension. Given a generator matrix
G ∈ Mk×n(Fq) from a code family F ∈ {G ,R} (for Goppa versus random), we
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define its total Hamming weight as

wH(G) =

k∑
i=1

wH(gi),

where gi is the i-th row of G. The variable wH(G)|F is a random variable
that takes discrete values, with the distribution denoted as pF . To check for
any differences in the behavior of wH(G)|F between the two distributions, we
empirically estimate the total variation distance between fG and fR using 1M
samples:

DTV (f̂G , f̂R) =
1

2

∑
x∈X

|f̂G (x)− f̂R(x)|.
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Fig. 5: Total variation distance of empirical distributions pG (Goppa) and pR

(Random) of the total Hamming weight metric for binary codes of length n = 64
with varying extension degree m and polynomial degree t. The distance axis is
in log scale showing the distance exponentially converging to 0. The plateauing
might be because of the estimation error being high. 1M samples were used for
probability estimation.

The empirical distributions f̂G and f̂R are shown as histogram plots in the
appendix Figure 6 for codes of length n = 64 and extension degree m = 6.
We can see that the distributions don’t match especially for small values of t
and exceptionally for t = 9 when n = 64 and m = 6 which is not the case for
larger codes. We show this by also varying the extension degree and plotting
the empirical TV distance in Figure 5 as a function of m and t. The distance is
significant for small values of t but exponentially decreases.
To devise a statistical distinguisher, we can employ a hypothesis test based on
the likelihood ratio. In the random case, the distribution of the total Hamming
weight is known; a binomial distribution since it’s a sum of independent Bernoulli
variables with pR = 0.5, NR = mt(n − mt) (only codes in standard form are
considered). For the Goppa case, we make an assumption that the distribution is
also a binomial and empirically estimate p̂G and N̂G using some training data.
Given a sample x = wH(G), we compute the likelihood ratio:

logΛ(x) = log

(
N̂G

x

)(
NR

x

) + x log
p̂G

pR
+ log

(1− p̂G )
N̂G −x

(1− pR)NR−x
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Fig. 6: Histograms of the total Hamming weight of the generator matrix of Goppa
codes versus random linear codes: wF (G) =

∑k
i=1 wH(gi) for binary codes with

parameters n = 64,m = 6 while varying polynomial degree t.

The distinguisher can therefore be expressed as follows:

D(G) = 1{logΛ(x)>τ}(wH(G))

Using this simple distinguisher with τ = 0, we can achieve a test accuracy of
73% on a balanced 1M dataset with the parameters of the first graph (t = 2, n =
64,m = 6) of Figure 6 and 62% accuracy on t = 3 and only 57% for t = 4.
It’s worth noting that by changing the sampling distribution over random linear
codes from uniformly random to B(p)k×(n−k) (independent Bernoulli entries) for
p matching the experimental value for Goppa codes of the same parameters, this
distinguisher will degrade.

B Out-of-distribution Evaluation: Punctured Codes

To evaluate the distinguisher on instances of larger code lengths, we puncture
the code by truncating the public generator matrix to fit into the training shape
and assess the model on the resulting code. Initially, this approach does not yield
satisfactory results when applied just once. However, by repeatedly truncating
the original matrix through subsampling of rows and columns, and evaluating
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Fig. 7: To assess an [8, 4]-model (trained on codes of length n = 8 and dimension
4) on a [16, 8]-code, we puncture the input code by sampling i0 = j0, . . . , i3 = j3
and j4, . . . , j7 randomly to create a new [8, 4]-code in standard form.

the model on each of these subsampled matrices, we can improve performance.
By aggregating the results, we determine an optimal decision threshold based on
the number of positive classifications or vote counts on a validation set.

Algorithm 1 Sample Punctured SubCode
1: procedure SamplePuncturedSubCode(G)
2: Input: Generator matrix G =

(
Ik0 | A

)
∈ Fk0×n0

q

3: Output: Punctured subcode matrix G[I,J ]
4: Sample valid (n, k) such that k ≤ k0 and n− k ≤ n0 − k0
5: Sample k row indices I from J0; k0 − 1K without replacement.
6: Sample n− k column indices J ′ from Jk0;n0 − 1K
7: Form the set of column indices J = J ′ ∪ I
8: return submatrix G[I,J ]
9: end procedure

More formally, given G =
(
Ik0

A
)
∈ Fk0×n0

q a standard form generator matrix
of a linear code C ∈ F , to evaluate the model on punctured subcodes of C, we
first sample one of the training code parameters (k, n) such that k ≤ k0 and
n− k ≤ n0 − k0. Then sample k row indices I and n− k column indices J ′ from
the matrix A in addition to the k columns forming the identity matrix of shape
k: J = J ′ ∪ I. This is important because during training, the model only sees
standard form matrices so we don’t expect it to generalize to unseen input in
those first columns. Therefore, the identity matrix acts as a positional encoding
of the sequence. Finally, we assess the model on G[I,J ].
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Algorithm 2 Evaluate distinguisher on larger codes using puncturing.

Require: Generator matrix G =
(
Ik0 | A

)
∈ Fk0×n0

q , number of trials m
Ensure: Aggregated result of model evaluations
1: function EvaluateModel(G, k0, n0,m)
2: Initialize result_sum ← 0
3: for i = 1 to m do
4: Gpunc ← SamplePuncturedSubCode(G, k0, n0)
5: result ← EvaluateDistinguisher(Gpunc)
6: result_sum ← result_sum + result
7: end for
8: return result_sum
9: end function

C Possible Data Representations

Among the key questions raised during the experiments is how to best represent
numerically the input matrices G as sequences of numerical values/vectors which
is the standard input to a transformer.
Flat token stream. A naïve language-model baseline flattens the generator
matrix G row by row, inserting a special end-of-row separator after each row.
Every finite-field symbol is then treated as a categorical token and embedded via
a randomly-initialised lookup table. Although straightforward, this representation
is inefficient: the resulting sequence length is kn (or k(n− k) if the identity block
of a systematic form is omitted), and the attention cost grows quadratically with
that length. Moreover, the model must learn the algebraic relationships between
field elements entirely from data, because none of that structure is provided a
priori.
2-D patches in order to reduce the number of tokens, one can think of frag-
menting the matrix G into patches and assign a token id to each distinct patch.
The patch size is quantified by height h × width w. A large patch size would
result in a shorter sequence but with a large vocabulary since patches become
more distinct from each other. Some results are reported in table 6.
A column-sequence representation is certainly feasible and experimented with;
however, our experiments show that the row-sequence approach delivers the
strongest results. The next-best option is a patch-embedding scheme with patch
height h = 1, which essentially preserves the row-wise structure and therefore
benefits from a similar inductive bias.

D Implementation details

Datasets are generated using SageMath and saved in files for training. One
noticeable artifact that occurs when standardizing non standard form binary
codes in SageMath is that the resulting distribution of the generator matrix
entries are not uniform due to the algorithm used to swap columns. Plotting the
probabilities that an entry is 1 shows that some cells are less likely to be one.
This occurs regardless of the code family. One way to avoid this is to simply
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Extension
degree

Polynomial
degree Tokenization Patch Eval Accuracy Eval recall Eval Specificity

8 2

1x4 0.711 0.771 0.649
1x8 0.693 0.763 0.619
4x1 0.601 0.762 0.446
4x4 0.592 0.620 0.563
8x1 0.585 0.710 0.458

8 3

1x4 0.529 0.725 0.334
1x8 0.550 0.694 0.406
4x1 0.534 0.545 0.524
4x4 0.512 0.473 0.551
8x1 0.529 0.640 0.417

8 4

1x4 0.530 0.323 0.732
1x8 0.521 0.630 0.407
4x1 0.526 0.608 0.444
4x4 0.514 0.391 0.638
8x1 0.516 0.610 0.425

Table 6: Performance of the DeepDistinguisher distinguisher on classifying
Goppa code generator matrices over Fq (here q = 2) when tokenizing the inputs
by 2D patches, showing evaluation accuracy, recall, and specificity for different
polynomial degrees and tokenization patch sizes. The data parameters are q =
2,m = 8, n = 128

discard non standard codes meaning we keep only about 29% of the codes. We
use a small transformer of size ≈ 50 million trainable parameters with 4 layers
and embedding dimension d = 1024. Our implementation is using torch and is
based on the public implementation of SALSA [49].

E Model Architecture Ablations

We perform a detailed comparison of four neural architectures-Fully-Connected
Network (FCN), LeftRight FCN, Attention FCN, and DeepDistinguisher—on
binary Goppa codes with parameters m = 6, n = 64, across polynomial degrees
t ∈ {2, 3, 4, 5, 6}. All models are matched to roughly 23–28 million parameters to
ensure a fair comparison of efficiency and performance.
DeepDistinguisher consistently achieves the highest evaluation accuracy and
recall for every degree t, and does so with markedly fewer training steps than
the competing architectures. At lower degrees (t = 2, 3), all models achieve high
accuracy (≥ 0.965), but DeepDistinguisher converges in only 1000 and 24500
steps, respectively—an order of magnitude faster than Attention FCN and two
orders faster than FCN variants. As t increases, the performance gap widens: for
t = 4, 5, DeepDistinguisher maintains near-perfect accuracy (0.980–0.984) with
moderate training times (133 000–569 500 steps), while the other models suffer
substantial drops in recall and overall accuracy. Even at the highest complexity
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Table 7: Fixed experimental hyperparameters for n = 64

Parameter Value

Model encoder-only
Dataset Goppa code dataset (n = 64), 6 M samples per class
Batch size (train / val) 512 / 2000
# training samples 12 000 000
# max epochs 30 or accuracy ≥ 0.99
Eval samples per validation 20 000
Validation interval every 1000 steps
Optimizer AdamW with linear warmup

• Learning rate 1× 10−5

• Warmup steps 1000
• Weight decay 1× 10−3

Gradient clipping norm 5.0
Encoder architecture 4 layers, 4 heads, 1024-d embeddings
Positional timescale 40
Precision float16

(t = 6), DeepDistinguisher attains 0.961 accuracy and perfect specificity in
under one million steps, whereas the alternatives fall below 0.650 accuracy.
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Polynomial
degree Architecture

Eval
Accuracy

Eval
Recall

Eval
Specificity

Train
Min Loss Steps

2 Attention FCN 0.982 0.972 0.992 0.044 11500
2 DeepDistinguisher 0.990 0.980 1.000 0.060 1000
2 LeftRight FCN 0.981 0.966 0.996 0.077 65000
2 FCN 0.981 0.966 0.996 0.069 123000

3 Attention FCN 0.980 0.963 0.996 0.060 423000
3 DeepDistinguisher 0.983 0.971 0.995 0.054 24500
3 LeftRight FCN 0.971 0.955 0.986 0.057 1109000
3 FCN 0.965 0.934 0.995 0.080 826000

4 Attention FCN 0.865 0.747 0.980 0.281 1226500
4 DeepDistinguisher 0.980 0.965 0.995 0.048 569500
4 LeftRight FCN 0.887 0.788 0.988 0.254 1051500
4 FCN 0.866 0.747 0.980 0.229 577500

5 Attention FCN 0.765 0.536 0.988 0.443 1039500
5 DeepDistinguisher 0.984 0.973 0.995 0.066 133000
5 LeftRight FCN 0.765 0.538 0.985 0.409 567500
5 FCN 0.688 0.551 0.828 0.281 1149500

6 Attention FCN 0.620 0.454 0.790 0.265 319000
6 DeepDistinguisher 0.961 0.922 1.000 0.112 972000
6 LeftRight FCN 0.654 0.401 0.911 0.440 669000
6 FCN 0.543 0.387 0.696 0.419 291500

Table 8: Comparison of evaluation accuracy, recall, specificity, minimum training
loss, and number of training steps for each model architecture across Goppa
polynomial degrees t on data of binary Goppa codes with m = 6, n = 64.
The considered models here are Fully-Connected Neural Network (FCN), Deep-
Distinguisher which the encoder only transformer, Left Right FCN which is a
model that consists of applying an FCN on the left of the input matrix and on
the right, operating on both rows and columns of the input matrices. Attention
FCN is a custom encoder with self-attention layer and FCN only. Models are
parameterized such that they have approximately the same size of 23− 28 million
parameters.
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