
Accelerating Post-quantum Secure zkSNARKs by
Optimizing Additive FFT

Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

Department of Electrical and Computer Engineering
University of Waterloo, Waterloo, ON, Canada
{mbadakhshan,ssamanta,ggong}@uwaterloo.ca

Abstract. Zero-Knowledge Succinct Non-Interactive Arguments of
Knowledge (zkSNARKs) are increasingly utilized across diverse appli-
cations. While significant advances have been made in the development
of post-quantum secure zkSNARKs, these schemes face challenges, in-
cluding substantial computational complexity. In this paper, we propose
leveraging the Cantor special basis in post-quantum secure zkSNARKs
operating over binary extension fields. This approach enables the op-
timization of the additive Fast Fourier Transform (FFT) algorithm in
Aurora, a post-quantum secure zkSNARK, by replacing the previously
used Gao–Mateer FFT with the Cantor and LCH FFTs. Our imple-
mentation demonstrates a significant reduction in computation time for
Aurora, with the potential to accelerate other zkSNARKs utilizing ad-
ditive FFTs. Additionally, we present a detailed theoretical analysis of
the computational costs of the Cantor FFT algorithm, providing exact
counts of additions, multiplications, and precomputation overhead. Fur-
thermore, we analyze the FFT call complexity within the encoding of
the Rank-1 Constraint System in the Aurora zkSNARK.

Keywords: Post-quantum secure zkSNARK · R1CS · Aurora · Additive
FFT · Cantor Algorithm · Gao–Mateer Algorithm

1 Introduction

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zkSNARK)
protocols are cryptographic schemes involving a prover and a verifier. The prover
generates a publicly verifiable and succinct proof that demonstrates knowledge
of a witness vector (secret inputs) satisfying a given constraint system. The
proof does not reveal any information about the witness itself. These proto-
cols have a wide range of applications, from post-quantum secure digital signa-
ture algorithms [2,17,18,32] to privacy preserving applications over blockchains
[8,14,43,47], and blockchain scalability solutions using rollups [16,44]. The effi-
ciency of the prover and verifier algorithms, along with the proof size of the
zkSNARK protocol, are crucial factors influencing the cost-effectiveness and
overall practicality of the aforementioned applications. Additionally, two other
important factors are: whether the zkSNARK protocol relies on a trusted setup

2 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

or employs a transparent setup, and, whether it offers plausible post-quantum
security against a malicious prover with quantum capabilities.

Optimizing or accelerating the implementation of algorithms in zkSNARKs
is an active and popular area of research [5,23,40,6,31]. In parallel, optimizing
the Fast Fourier Transform (FFT) over additive groups has been a significant
focus of study [15,27,26,37,36]. The FFT over additive groups can be utilized
in various zkSNARK protocols operating over binary extension fields. Examples
of such protocols include Ligero [1], STARK [4], Aurora [10], Fractal [21], and
Polaris [25].

The FFT over additive groups, known as the additive FFT, over finite fields
was developed in the late 1980s. Wang and Zhu [46] first introduced this concept,
followed independently by Cantor [15]. These algorithms evaluate polynomials of
degree less than n = 2m over m-dimensional affine subspaces of F2k , where k =
2ℓ. This was later generalized to arbitrary k by von zur Gathen and Gerhard [27],
but this incurred a higher computational cost. Subsequently, Gao and Mateer [26]
proposed two algorithms based on Taylor expansions: one applicable to arbitrary
k, with lower complexity than the method of von zur Gathen and Gerhard, and
another optimized for additive FFTs of length 2m, where m is a power of two,
reducing the number of additions while matching Cantor’s multiplication count.

Lin et al. [38] later introduced the LCH basis, constructed from the vanishing
polynomials, enabling FFTs with O(n log n) additions and multiplications. They
also developed conversion algorithms [37] between the LCH and monomial bases,
requiring O(n log n log log n) additions and no multiplications under the Cantor
special basis, with further refinements in [22]. These methods have been applied
to fast binary polynomial multiplication [19,20,35]. Since additive FFTs require
input lengths that are powers of two, a polynomial with (t + 1) coefficients
(i.e., of degree t) must be zero-padded to length 2m if t+ 1 < 2m. Bernstein et
al. [13] addressed this by modifying the Gao–Mateer algorithm to skip operations
on known-zero coefficients. Further improvements were made by Bernstein and
Chou [12], incorporating the Cantor special basis and tower field constructions,
particularly for FFTs of length up to 64.

For this study, we select Aurora [10] to demonstrate the performance im-
provements achieved by optimizing the FFT algorithm using the Cantor special
basis. While our optimization is applicable to all the aforementioned zkSNARKs,
Aurora was chosen due to its small proof size, which makes it a strong candidate
for post-quantum secure digital signature schemes. Accordingly, Aurora serves
as the foundation of Preon [18], a post-quantum digital signature scheme that
was a first-round candidate in NIST’s PQC standardization process [42].

Contributions Our main contributions are summarized as follows:

• In the Cantor FFT algorithm, we present a theoretical analysis of the vanish-
ing polynomials, providing a precise count of their terms based on Hamming
weight. To the best of our knowledge, prior works have only reported upper
bounds. We also efficiently compute the vanishing polynomials and multipli-
cation factors, improving efficiency even without precomputation.

1. INTRODUCTION 3

Table 1: Comparison of the number of finite field additions (#A) and multiplica-
tions (#M) in the Gao–Mateer (GM), LCH, and Cantor additive FFT algorithms
of length n over general and Cantor special basis.

FFT Basis Basis Conversion Evaluation

GM

General
#A: 1

4
n(log2 n)

2 − 1
4
n log2 n #A: n log2 n

(Section 4.3) #M: n log2 n− n+ 1 #M: 1
2
n log2 n

Cantor
#A: 1

4
n(log2 n)

2 − 1
4
n log2 n #A: n log2 n

(Section 4.4) #M: 0 #M: 1
2
n log2 n

LCH

General
#A: O(n(log2 n)

2) #A: n log2 n

[37] #M: O(n log2 n) #M: 1
2
n log2 n

Cantor
#A: O(n log2 n log2 log2 n) #A: n log2 n

[37] #M: 0 #M: 1
2
n log2 n

Cantor Cantor N/A
#A:

1

2
n log2 n+

1

2
n

log2(n)−1∑
r=0

2wt(r)

(Section 3.4) #M: 1
2
n log2 n

• We propose Cantor FFT building blocks and demonstrate notable perfor-
mance gains in the current Aurora implementation [9] over the Gao–Mateer
algorithm across all input sizes and the LCH algorithm for smaller circuits,
which are prevalent in many zkSNARK applications [18,29]. Table 2 shows
how our FFT optimizations using the Cantor special basis can accelerate both
prover and verifier algorithms in Aurora.
• We provide a detailed breakdown of the Gao–Mateer algorithm’s core com-

ponents, Expand and Aggregate, and enhance their computational and space
efficiency using the Cantor special basis. We also introduce precomputation
techniques that substantially reduce overhead in the Cantor algorithm, along
with two levels of precomputation for Gao–Mateer.
• We analyze the FFT call complexity in the Aurora zkSNARK, evaluating the

number and size of each FFT/IFFT call based on R1CS constraints, variables,
and the target security parameter. We also show how selecting the shift ele-
ment in Aurora’s affine subspaces reduces precomputation space complexity
significantly in the Cantor FFT by leveraging the Cantor special basis.
• We provide a C++ implementation of the Cantor algorithm, along with the

Gao–Mateer and LCH algorithms using the Cantor special basis, as well as our
precomputation techniques. A comprehensive comparison of these algorithms
is presented in Figure 1.

The paper is structured as follows. Section 2 covers mathematical preliminaries,
including the Cantor and Gao–Mateer algorithms and R1CS encoding in Au-
rora. Section 3 presents Cantor algorithm optimizations, while Section 4 details
the Gao–Mateer algorithm and its precomputations. Section 5 analyzes FFT

4 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

Table 2: Runtime (in seconds) of the Aurora [10] algorithms over F2256 on the
platform described in Section 6, based on the number of constraints N and the
size of the codeword domain |L|.

log2(N) log2(|L|)
Aurora Prover Aurora Verifier

GM* Cantor LCH GM* Cantor LCH
libiop [9] (this work) (this work)† libiop [9] (this work) (this work)†

9 16 0.44 0.33 0.35 0.04 0.04 0.04
10 17 0.90 0.67 0.71 0.05 0.05 0.05
11 18 1.87 1.36 1.44 0.07 0.06 0.07
12 19 3.99 2.91 2.93 0.10 0.09 0.10
13 20 8.53 6.02 5.95 0.17 0.15 0.16
14 21 19.47 12.01 12.44 0.29 0.26 0.28
15 22 41.05 25.27 25.41 0.54 0.48 0.52
16 23 84.26 50.83 50.63 1.02 0.93 1.00
17 24 176.67 104.26 102.95 1.98 1.79 1.93
18 25 373.83 216.00 213.61 3.88 3.51 3.78
19 26 771.42 443.88 441.51 7.78 6.91 7.44

* Gao–Mateer FFT using standard basis.
† The LCH FFT using Cantor special basis from [19] is reimplemented in C++ to become
compatible with libiop [9] and polymorphism over finite fields.

call complexity in Aurora, and Section 6 benchmarks the FFT algorithms and
Aurora. Finally, Section 7 summarizes the findings and future directions.

2 Preliminaries

This section presents key definitions and preliminaries essential to our study.

2.1 Algebraic Foundations

Finite Field Let F2k be the finite field of order 2k. We know that there exists a
vector space isomorphism from F2k to Fk2 defined by x = (x0β0 + x1β1 + · · · +
xk−1βk−1) 7→ (x0, x1, . . . , xk−1), where {β0, β1, . . . , βk−1} is a basis of F2k . The
polynomial ring over F2k in the variable x is denoted by F2k [x].

Affine Subspace Let us define the subspace Wm of F2k as the linear combinations
of {β0, β1, . . . , βm−1}. We order the elements of the subspace Wm by {η0 =

0, η1, η2, . . . , η2m−1} where ηj =
∑m−1
i=0 xiβi and j =

∑m−1
i=0 xi2

i, xi ∈ {0, 1}.
Note that for any 0 ≤ m < k, we can decompose the elements of Wm+1 into

two disjoint sets: the subspace Wm and the affine subspace βm + Wm, where
βm + Wm is the set obtained by translating (or shifting) the subspace Wm by
the vector βm.

2. PRELIMINARIES 5

Vanishing Polynomial The polynomial ZWm
(x) =

∏
a∈Wm

(x − a) which is a
linearized polynomial, is given by ZWm

(x) =
∑m
i=0 cix

2i , ci ∈ F2k . This poly-
nomial is called the vanishing polynomial for the subspace Wm. Since Wm+1 =
Wm ∪ (βm +Wm), we have ZWm+1(x) = (ZWm(x))2 − ZWm(βm) · ZWm(x).

Univariate Polynomials Vectorial Representation For any univariate polynomial
f(x) =

∑n−1
i=0 cix

i, ci ∈ F2k , where deg(f) < n = 2m, the coefficients are repre-
sented as a vector of n elements, ordered from the constant term to the highest
degree term. Namely, f = (c0, . . . , cn−1), ci ∈ F2k represents the polynomial f(x),
where deg(f) < n.

Additive Discrete Fourier Transform Now we will discuss the evaluation of a
univariate polynomial f(x) over the subspace Wm. The evaluation of f(x) at
the points η0, η1, . . . , η2m−1 is given by f̂ = (f(η0), f(η1), . . . , f(η2m−1)).

This set of evaluations is referred to as the additive discrete Fourier trans-
form (DFT) of f(x) over the subspace Wm. We sometimes refer to the vector
f̂ as the discrete Fourier transform of length n = 2m for the function f(x), de-
noted by DFT(f,Wm). The additive FFT is an efficient method for computing
DFT(f,Wm), which we will denote as FFT(f,Wm).

2.2 Cantor Algorithm

The evaluation of a polynomial f(x) of degree less than n = 2m over the subspace
Wm using Cantor’s algorithm is valid only when Wm is a subspace of the field
(or subfield) F2k , where k = 2ℓ. Cantor introduced a special basis to facilitate
the efficient evaluation of f(x).

The Cantor Special Basis Consider the function S : F2k → F2k defined by S(x) =
x2+x, and let the following sequence of functions be defined recursively: S0(x) =
x and Sm(x) = S(Sm−1(x)). A nonrecursive formula for Sm(x) is Sm(x) =∑m
i=0

(
m
i

)
x2i , where

(
m
i

)
denotes the binomial coefficient reduced modulo 2. For

m = 2t, we have S2t = x22
t

+x. The Cantor special basis {β0, β1, . . . , βm−1} for
the subspace Wm is defined as S(βi) = βi−1 for i = 1, . . . ,m − 1 with β0 = 1.
With this basis, we have Si(βi) = 1 for i = 0, 1, . . . ,m− 1. Consequently, in the
context of the Cantor special basis, the vanishing polynomial of the subspaces
simplifies to ZWi

(x) = Si(x) for i = 0, 1, . . . ,m.

Polynomial Evaluation Let f(x) ∈ F2k [x] be a polynomial of degree less than
n = 2m and we want to evaluate f(x) over the affine subspace θ + Wm = θ +
⟨β0, β1, . . . , βm−1⟩, where {β0 = 1, β1, . . . , βm−1} is a Cantor special basis. The
evaluation of f(x) using the Cantor algorithm proceeds as follows: first, compute
two polynomials f0(x) and f1(x) such that f0(x) = f(x) for all x ∈ θ +Wm−1
and f1(x) = f(x) for all x ∈ θ+βm−1+Wm−1. The polynomials f0(x) and f1(x)

6 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

can be obtained by taking the remainders of f(x) when divided by the vanishing
polynomials of the affine subspaces. Specifically, we have

f0(x) = f(x) mod Sm−1(x+θ) and f1(x) = f(x) mod Sm−1(x+θ+βm−1).

We then proceed by recursively evaluating f0(x) and f1(x) over the affine sub-
spaces θ +Wm−1 and θ + βm−1 +Wm−1, respectively. The recursion continues
until all the resulting polynomials f0(x) and f1(x) are constants. This is sum-
marized in Algorithm 6 in Appendix A.

2.3 Gao–Mateer Algorithm

Note that the evaluation of f(x) over θ +Wm is equivalent to the evaluation of
the function g(x) = f(βm−1x) over

β−1m−1(θ +Wm) = β−1m−1θ + β−1m−1 ·Wm = (θ0 +G) ∪ (1 + θ0 +G),

where θ0 = β−1m−1θ and G is a m − 1 dimensional subspace given by G =

⟨γ0, . . . , γm−2⟩, where γi = βi · β−1m−1 for i = 0, 1, . . . ,m− 2.
Now, consider the Taylor expansion of g(x) at x2 + x to obtain f0(x) and

f1(x). Specifically, express g(x) as

g(x) =

ℓ−1∑
i=0

(gi0 + gi1x)(x
2 + x)i, where ℓ = 2m−1 and gij ∈ F2k

and define f0(x) =
∑ℓ−1
i=0 gi0x

i and f1(x) =
∑ℓ−1
i=0 gi1x

i. Then, the FFT of g(x)
over β−1m−1(θ +Wm) can be derived from the evaluation of f0(x) and f1(x) over
θ20 + θ0 + D, where D = ⟨δ0, δ1, . . . , δm−2⟩ is a m − 1 dimensional subspace
with δi = γ2

i + γi for i = 0, 1, . . . ,m − 2. By applying this reduction step again
to FFT(f0, θ

2
0 + θ0 + D) and FFT(f1, θ

2
0 + θ0 + D), we continue until D has a

dimension of 1. This is summarized in Algorithm 7 in Appendix A.

2.4 Aurora zkSNARK

Aurora [10] is a zkSNARK for R1CS relations. It encodes an R1CS instance
into entries of Reed–Solomon (RS) codewords and to generate an argument
regarding the R1CS instance, it employs the fast RS interactive oracle proof
(IOP) of proximity (FRI) [3] to prove that the given codewords are close to a
low-degree polynomial.

Definition 1 (Rank-1 Constraint System (R1CS)). Let d1, d2, and d3 de-
note the number of constraints, variables, and public inputs. The R1CS relation
consists of A,B,C ∈ Fd1×(d2+1)

2k
and public inputs v ∈ Fd3

2k
. w ∈ Fd2−d3

2k
, de-

noting private (auxiliary) inputs, satisfies the system if Az ◦ Bz = Cz, where
z := (1,v,w) ∈ Fd2+1

2k
and “◦” denotes the Hadamard product.

3. CANTOR ALGORITHM BUILDING BLOCKS 7

Definition 2 (Reed–Solomon (RS) Code). Let L ⊆ F2k denote the code-
word domain and ρ ∈ [0, 1] denote the rate parameter. RS[L, ρ] is the set of all
codewords f̂ : L→ F2k that are the evaluation of polynomials over L with degree
< ρ|L|.

At the beginning of the Aurora protocol, the prover and verifier establish
a finite field F2k , a security parameter λ, an RS rate ρ, an FRI localization
parameter η, an R1CS instance, and two subspaces H1, H2 ⊂ F2k , where |H1| =
d1 and |H2| = d2 + 1 such that H1 ⊆ H2 or H2 ⊆ H1. We can write H1 ∪H2 =
{h0, . . . , ht−1}, where t = |H1 ∪ H2| = max(d1, d2 + 1). Finally, the codeword
domain L is determined such that t ≤ ρ|L| and L ∩ (H1 ∪ H2) = ∅. Section 5
describes how |L| is determined. Given these parameters, the repetition counts
λi for the lincheck protocol and λ′i for the FRI low-degree testing (FRI-LDT)
protocol, Aurora’s two main sub-protocols, are determined.

The prover algorithm starts by interpolating a polynomial f(1,v)(x) of degree
d3 + 1 such that f(1,v)(h0) = 1 and f(1,v)(hi+1) = vi for i = 0, . . . , d3 − 1, where
vi denotes the i-th element in v. Then, during each round ℓ = 1, . . . , λi of the
lincheck protocol, four public-coin random numbers αℓ, s

A
ℓ , s

B
ℓ , s

C
ℓ ∈R F2k are

sampled. Then, both prover and verifier interpolate

1. A polynomial pαℓ
(x) of degree t − 1, such that pαℓ

(hi) = αℓ
i+1 for

i = 0, . . . , d1 − 1 and if t > d1, then pαℓ
(hi) = 0 for i = d1, . . . , t− 1.

2. Three polynomials pAαℓ
(x), pBαℓ

(x), and pCαℓ
(x) of degree t − 1, such that

pMαℓ
(hj) =

∑d1−1
i=0 Mi,jαℓ

i+1 for j = 0, . . . , d2 and M ∈ {A,B,C}. If
t > d2 + 1, then pMαℓ

(hj) = 0 for j = d2 + 1, . . . , t− 1.
3. A polynomial pABCαℓ

(hj) =
∑
M∈{A,B,C} s

M
ℓ pMαℓ

(hj), which is a random com-
bination of defined pAαℓ

(x), pBαℓ
(x), and pCαℓ

(x).

Table 6 in Appendix C lists the primary codewords obtained by encoding
the R1CS instance, together with the polynomials subsequently derived during
the prover’s computation. To ensure zero-knowledge against a b-query bounded
malicious verifier, every degree is raised by b; hence any b evaluations from of the
polynomials in L are independent and uniform in F2k [7]. Finally, the codewords’
low degree is proven with the FRI protocol.

3 Cantor Algorithm Building Blocks

The Cantor FFT of length n = 2m consists of m iterative rounds to eval-
uate a polynomial f(x) ∈ F2k [x] of degree < 2m over the affine subspace
θ + Wm, where θ ∈ F2k and Wm must be generated by the Cantor special
basis as described in Section 2.2. Also, for the Cantor special basis, we know
that ZWi(x) = Si(x) for i = 0, 1, . . . ,m. Thus, the coefficients of the vanishing
polynomials ZWi

(x) are in F2. Additionally, we have Si(βi) = 1.
Let 0 ≤ r ≤ m − 1 be the round number. In each round r, the algorithm

processes 2r polynomials of degree < 2m−r, resulting in 2r+1 polynomials of
degree < 2m−r−1 at the end of the round. f(x) is represented by f , a vector of

8 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

size 2m that stores the coefficients as described in Section 2. We use the same
vector to store all intermediate polynomials during each round. For example, in
round r, f stores the concatenation of the 2r+1 polynomials. Finally, in round
r = m − 1, the algorithm outputs 2m constant values stored in the vector f ,
representing the evaluations of f(x) over θ +Wm.

Before presenting the details of our Cantor algorithm implementation, we first
explain the selection process of the Cantor special basis of length m, denoted by
{β0, β1, . . . , βm−1}. From [26, Appendix], we know that Wm = ⟨β0, β1, . . . , βm−1⟩
must be a subspace of the field (or subfield) F

22ℓ
. To determine the Cantor spe-

cial basis for F
22ℓ

, we begin by defining a basis {β0, β1, . . . , β2ℓ−1} such that
TrF

22
ℓ /F2

(β2ℓ−1) = 1. Then, we recursively determine the remaining basis ele-
ments by βj−1 = β2

j + βj for 1 ≤ j ≤ 2ℓ− 1. We then select the first m elements
from this basis to construct our Cantor special basis of dimension m. In our
implementation, we randomly try different values of β2ℓ−1 and compute their
trace. With a probability of 0.5, the trace 1.

3.1 Vanishing Polynomials

In the Cantor additive FFT of length 2m, the vanishing polynomials ZW0 ,ZW1 ,
. . . ,ZWm−1 must be computed to perform the division algorithm. The coefficients
in each ZWi

(x) are derived from

ZWi(x) =

i∑
j=0

[(
i

j

)
mod 2

]
x2j .

Employing Lucas’s theorem [39], we efficiently compute
(
i
j

)
≡

∏t−1
k=0

(
ik
jk

)
mod 2,

where
i = i0 + i12 + i22

2 + . . .+ it−12
t−1 (ik ∈ {0, 1}),

j = j0 + j12 + j22
2 + . . .+ jt−12

t−1 (jk ∈ {0, 1}).

Theorem 1. [24, Theorem 2] The number of integers j not exceeding i for which(
i
j

)
̸≡ 0 (mod 2) is

∏t
k=0(ik + 1).

Thus, by the above theorem we conclude that the number of non-zero coeffi-
cients in ZWi(x) equals 2wt(i), where wt(i) denotes the Hamming weight of i, i.e.,
the number of bits equal to 1. Since the number of non-zero coefficients in most
vanishing polynomials is considerably less than its degree (i.e., 2i), we avoid us-
ing vectorial representation of univariate polynomials described in Section 2 for
these polynomials. Otherwise, the polynomial division algorithm would require
excessive addition operation on zero coefficients.

To efficiently represent the vanishing polynomials, we store the index number
of the coefficients in the reverse order. Specifically, let zi represent ZWi

(x) =∑i
j=0 cjx

2j in our implementation. We define

zi = (ζ0, ζ1, . . . , ζ2wt(i)−1) = (2i − 2j |cj = 1 in ZWi
(x)),

3. CANTOR ALGORITHM BUILDING BLOCKS 9

Algorithm 1: Vanishing Polynomial (i, θ)
Input: i ∈ N and θ ∈ F

2k

Output: zi, eval.
1 ℓ← 0
2 eval← θ
3 for j = 0 to i− 1 do
4 t← ⌈log2(j + 1)⌉
5 k ← 0
6 while (ik ∨ ¬jk) ∧ (k < t) do
7 k ← k + 1
8 end
9 if k = t then

10 ζℓ ← 2i − 2j

11 eval← eval + θ2
j

12 ℓ← ℓ+ 1

13 end
14 end

15 eval← eval + θ2
i // As the highest degree term is not in zi

16 assert ℓ = 2wt(i) − 2

17 return zi ← (ζ0, ζ1, . . . , ζ2wt(i)−2
), eval.

where Algorithm 1 describes how zi is computed.
Algorithm 1 also computes the evaluation of ZWi(θ) which is used later in

Section 3.3. Reversing the order (i.e., measuring the distance from 2i rather than
from 0) eliminates the need for degree shifting in ZWi

(x) during the division
rounds. Additionally, since

(
i
i

)
= 1, ci is always one, and ζ2wt(i)−1 is zero which

can be omitted from zi. This omission excludes this coefficient from the poly-
nomial division algorithm, saving one addition per division round while keeping
the quotient in the same vector as the dividend.

3.2 Polynomial Division

In round r of the Cantor algorithm, the 2r polynomials fi,r(x), each of degree
< 2p, are divided by ZWp−1(x+θi,r) and ZWp−1(x+θi,r+βp−1), where p = m−r
and 0 ≤ i ≤ 2r − 1. The corresponding remainders of these divisions for each
fi,r(x) are outputted to be processed in the next round. Since the vanishing
polynomials are linearized polynomials, we have

ZWp−1(x+ θi,r) = ZWp−1(x) + ZWp−1(θi,r), and
ZWp−1(x+ θi,r + βp−1) = ZWp−1(x) + ZWp−1(θi,r) + ZWp−1(βp−1),

where ZWp−1(βp−1) = 1. Since deg(fi(x)) < 2 deg(ZWp−1(x)), we reduce the
two divisions required for each fi(x) to a single division by ZWp−1(x), and then
compute the remainders of the original divisions accordingly.

Since the coefficients in ZWp−1(x) are in F2, division by ZWp−1(x) requires
only additions. In the division algorithm, the dividend polynomial, denoted by
fi,r(x), is added to scaled degree-shifts of ZWp−1

(x). However, we eliminate the
need for degree shifts by using the reversed index order in zi, which represents
the distance of each non-zero coefficient from the highest degree (i.e., 2p).

10 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

Dividing fi,r(x), a polynomial of degree < 2p, by ZWp−1
(x) yields the quotient

qi,r(x) and the remainder ri,r(x), each with degree < 2p−1. Let fi,r represent the
(i+ 1)-th sub-vector of 2p elements in the vector f at the beginning of round r.
This sub-vector stores the coefficients of fi,r(x), ordered from the constant term
to the highest degree term. Our polynomial division algorithm begins with the
coefficient of the highest degree term in fi,r and subtracts that coefficient from
the lower-degree coefficients, spaced by distances determined by zi. Since zi does
not include zero, the coefficient of the highest degree term remains unaffected.
In the next round of the polynomial division, the algorithm repeats this process
with the second highest degree term. After 2p−1 rounds, the higher-degree (right)
half of fi,r stores the coefficients of qi,r(x), while the lower-degree (left) half stores
the coefficients of ri,r(x). Then, the algorithm processes inputs to the next round

f2i,r+1(x) = ri,r(x)− ZWp−1
(θi,r) qi,r(x), and

f2i+1,r+1(x) = f2i,r+1(x)− qi,r(x),

where ZWp−1
(θi,r) denotes the evaluation of the vanishing polynomial at θi,r.

Figure 2 in Appendix D illustrates the computation of the polynomials for the
next round from the quotient and remainder in each round. Our polynomial
division algorithm implementation integrates the computation of the quotient,
remainder, and the polynomials for the next round.

Algorithm 2: Polynomial Division (fin, zp−1, ZWp−1(θi,r), p, i)
Input: fin = (c0, c1, . . . , cn−1), zp−1 = (ζ0, ζ1, . . . , ζ2wt(p−1)−2

), ZWp−1
(θi,r) ∈ F

2k
,

p = m− r, and i determines the polynomial fi,r(x), of degree < 2p, in fin.
Output: fout.

1 offset← i× 2p // The offset at which the coefficients of fi,r(x) are in fin

2 for k = 2p + offset− 1 to 2p−1 + offset do
// Iterates over the higher-degree half in decreasing order

3 for ℓ = 0 to 2wt(p−1) − 2 do
4 c(k−ζℓ)

← c(k−ζℓ)
+ ck

5 end
6 c(k−2p−1) ← c(k−2p−1) + ck × ZWp−1

(θi,r) // Computes f2i,r+1(x)

7 end
8 for k = 2p−1 + offset to 2p + offset− 1 do
9 ck ← ck + c(k−2p−1) // Computes f2i+1,r+1(x)

10 end
11 return fout ← (c0, c1, . . . , cn−1).

The Canopy module, described in the next section, is responsible for provid-
ing all of the inputs of the polynomial division algorithm.

3.3 Canopy Module

The Cantor algorithm is implemented by Canopy modules of varying input sizes
2p and indices i, denoted by Canopyp,i. The index i indicates the module number

3. CANTOR ALGORITHM BUILDING BLOCKS 11

in each round and determines the offset from the start of the f vector, where the
coefficients of the input polynomial begin with offset = i2p.

The Canopyp,i determines θi,r and then evaluate ZWp−1
(θi,r), which is neces-

sary for running Algorithm 2. Let the Cantor algorithm evaluate f(x) of degree
< 2m over θ + ⟨β0 = 1, β1, . . . , βm−1⟩. Let θ0,0 = θ, and for 1 ≤ r ≤ m − 1 and
0 ≤ i ≤ 2r − 1, θi,r is determined recursively according to the following rules:

θi,r =

{
θi/2,r−1 if i mod 2 = 0,

θ(i−1)/2,r−1 + βp if i mod 2 = 1,

where p = m − r. This equation can be simplified to θi,r = θ⌊i/2⌋,r−1 + (i mod
2)βp, and can be written as

θi,r = θ +
r−1∑
j=0

(
⌊ i
2j
⌋ mod 2

)
βp+j = θ +

r−1∑
j=0

ij βp+j ,

where i = i0 + i12 + i22
2 + . . . + ir−12

r−1 (ij ∈ F2), denotes the binary repre-
sentation of i. Then, to evaluate ZWp−1

(θi,r), we employ the rule Si(βi+ℓ) = βℓ
provided earlier in this section to simplify the computation. Specifically, we write
ZWp−1(βp−1+j) = βj . Therefore, ZWp−1(θi,r) can be evaluated as

ZWp−1(θi,r) = ZWp−1(θ) +

r−1∑
j=0

ij βj+1,

where ZWp−1
(θ) is evaluated at each round while constructing zp−1 from ZWp−1

(x)
during Algorithm 1. The computation of ZWp−1

(θ) is shared across all the Canopy
modules in each row since the vanishing polynomial remains consistent.

Algorithm 3: Cantor Algorithm (fin, θ, {β0, β1, . . . , βm−1})
Input: fin is a vector of size 2m which represents the coefficients in f(x) (where

deg f < 2m), θ ∈ F
2k

is the affine shift, and {β0, β1, . . . , βm−1} is the Cantor
special basis.

Output: fout is the vector of the evaluations of f(x) over θ + ⟨β0, β1, . . . , βm−1⟩.
1 for r = 0 to m− 1 do
2 p← m− r
3 zp−1, eval← Vanishing Polynomial (p− 1 , θ) // Algorithm 1
4 for i = 0 to 2r − 1 do
5 Canopyp,i (fin, {β0, β1, . . . , βm−1}, zp−1, eval, p, i) // Algorithm 8
6 end
7 end
8 return fout.

Algorithm 8 in Appendix D details the steps within the Canopyp,i module,
and Algorithm 3 describes the implementation of the Cantor algorithm based
on those modules.

12 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

3.4 Detailed Cost Analysis

At the r-th iteration of the algorithm, we perform 2r divisions by the polynomial
ZWm−r−1(x). Moreover, as discussed in Section 3.1, each of these divisions re-
sults in the saving of one addition per division iteration. Consequently, the total
number of additions resulting from polynomial division in the Cantor additive
FFT is given by

m−1∑
r=0

2r · 2m−r−1
(
2wt(m−r−1) − 1

)
= 2m−1

m−1∑
r=0

2wt(r) −m2m−1

From Steps 6 and 9 of Algorithm 2, we know that for the input polynomial
in the r-th iteration, we require 2× 2r polynomial additions, each of degree less
than 2m−r−1. This leads to a total of

∑m−1
r=0 2 · 2r · 2m−r−1 = 2mm additions.

Therefore, the total number of additions in the Cantor additive FFT is given by

2mm+ 2m−1
m−1∑
r=0

2wt(r) −m2m−1 =
1

2
n log2 n+

1

2
n

log2(n)−1∑
r=0

2wt(r). (1)

On the other hand, from Step 6 of Algorithm 2, we know that for the input
polynomial in the r-th iteration, we require 2r×2m−r−1 = 2m−1 multiplications.
Thus, the number of multiplications in the Cantor additive FFT is given by∑m−1
r=0 2m−1 = 1

2n log2 n.
If the Cantor additive FFT is performed over a subspace Wm, due to Step 6

of the Algorithm 2, we must account for a reduction of
∑m−1
r=0 2m−r−1 = 2m −

1 = n − 1 in both additions and multiplications. Thus, the costs for additions
and multiplications are changed to 1

2n log2 n+ 1
2n

∑log2(n)−1
r=0 2wt(r) − n+ 1 and

1
2n log2 n− n+ 1, respectively.

Remark 1. Equation 1 provides an exact count of the additions required in the
Cantor additive FFT, while, to our knowledge, previous studies have only estab-
lished upper bounds, such as O(n(log2 n)

1.58) [22] or, more precisely, as shown
in [41], 1

2n(log2 n)
1.58 + n log2 n. Our exact count offers a significant improve-

ment over these bounds on the number of additions. For example, when n = 24,
the Cantor additive FFT requires only 104 additions, while [41] estimates 136
additions.

3.5 Precomputation

The multiplication factors ZWp−1
(θi,r) depend only on the input size and the

affine shift that defines the evaluation domain. Likewise, the vanishing poly-
nomials are fixed and independent of input. The storage required to store the
precomputed values for the Cantor algorithm of length n = 2m is 2m − 1 field
elements to store multiplication factors and

∑m−1
i=0

(
2wt(i) − 1

)
integers to store

vanishing polynomials which is negligible compared to the field elements. Over
F2256 this translates to 32KB, 1MB, and 32MB for m = 10, 15, 20, respectively.

4. GAO–MATEER ALGORITHM BUILDING BLOCKS 13

In the special case where the affine shift θ lies in the Cantor special basis,
the multiplication factors are simply linear combinations of the basis vectors in
the subspace Wm = ⟨β0, . . . , βm−1⟩. So, a single lookup table that lists these
combinations therefore suffices. With a practical upper bound of m = 32 for the
FFT input size, precomputing the entire span of Wm is infeasible. Instead, the
basis is partitioned into four blocks, and the spans

⟨β0, . . . , β7⟩, ⟨β8, . . . , β15⟩, ⟨β16, . . . , β23⟩, ⟨β24, . . . , β31⟩

are precomputed. Each block contributes 28 field elements, so the complete table
contains 4× 28 = 1024 elements (compact enough to hard-code). For F2256 this
table occupies only 32 KB. Note that this special case applies in Aurora, where
the domain L is an affine subspace whose affine shift is itself a basis element.

Table 3: Runtime speedup of the Cantor FFT general (gen.) precomputation
method over F2256 for an arbitrary θ versus the special (spec.) choice θ = β31

(see Section 6 for platform details).
m 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Gen. 1.38 1.29 1.21 1.13 1.09 1.07 1.07 1.37 1.47 1.49 1.46 1.45 1.51 1.49 1.47 1.43

Spec. 1.24 1.17 1.09 1.06 1.09 1.08 1.08 1.38 1.49 1.51 1.48 1.45 1.43 1.42 1.41 1.37

4 Gao–Mateer Algorithm Building Blocks

The Gao–Mateer FFT implementation of length n = 2m consists of 2m iterative
rounds to evaluate a polynomial f(x) ∈ F2k [x] of degree < 2m over the affine
subspace θ +Wm, where θ ∈ F2k and Wm = ⟨β0, β1, . . . , βm−1⟩.

We describe the Gao–Mateer algorithm through two primary modules: the
Expand module and the Aggregate module. Expand is an r-round algorithm where
in each round 0 ≤ r ≤ m− 1, it expands 2r polynomials of degree < 2m−r into
2r+1 smaller polynomials of degree < 2m−r−1. Similar to our Cantor algorithm
implementation, only one vector of length 2m denoted by f is required to store all
the polynomials in each round. Aggregate is an r-round algorithm that takes the
output of Expand, and iteratively folds them over r rounds, ultimately producing
the evaluations of f(x) on θ +Wm.

4.1 Expand Module

The Expand module involves multiple invocations of Taylor expansion, polyno-
mial scaling (e.g., f(βmx)), and computing basis vectors and shift elements for
the Aggregate module. The Taylor expansion algorithm implemented in [9] is
described in Algorithm 9 in Appendix D. To have the vector representation of

14 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

coefficients in the Gao–Mateer algorithm, it is required to have even-odd rear-
rangement of indices after each Taylor expansion, however, Algorithm 9 lets us
omit those arrangements, instead add one bit-reversal rearrangement at the end
of the Expand module. This also keeps the coefficients of terms with the same
degree placed next to each other, thus allowing multiplying consecutive elements
by the same scaling factor.

Algorithm 4: Expand (fin, θ, {β0,0, . . . , β0,m−1})
Input: fin = (c0, c1, . . . , cn−1), which represents f(x) ∈ F[x] of degree < n = 2m, θ ∈ F

2k

is the affine shift, and β0,i ∈ F
2k

are the basis of Wm.
Output: fout, θ = (θ0, . . . , θm−1), Γ = (G0 = ∅,G1, . . . ,Gm−1), where θr and

Gr = {γr,0, . . . , γr,r−1} denote the affine shift and basis corresponding to round
r of the Aggregate module respectively.

1 for r = 0 to m− 1 do
// Scaling polynomials:

2 ψ ← 1 // ψ denotes the scaling factor of each term
3 offset← 2r

4 while offset ≤ 2m − 1 do
5 for i = 0 to 2r − 1 do
6 coffset+i ← coffset+i × ψ
7 end
8 ψ ← ψ × βr,m−r−1

9 offset← offset + 2r

10 end
11 (c0, . . . , cn−1)← Taylor Expansion ((c0, . . . , cn−1), r) // Algorithm 9
12 for i = 0 to m− r − 2 do
13 γm−r−1,i ← βr,i × β−1

r,m−r−1

14 βr+1,i ← γ2
m−r−1,i + γm−r−1,i

15 end
16 Gm−r−1 ← (γm−r−1,0, . . . , γm−r−1,m−r−2)

17 θm−r−1 ← θ × β−1
r,m−r−1

18 θ ← θ2m−r−1 + θm−r−1

19 end
20 (c0, . . . , cn−1)← Bit-reversal Rearrangement (c0, . . . , cn−1)

21 return fout ← (c0, c1, . . . , cn−1)

4.2 Aggregate Module

For 0 ≤ r ≤ m−1, let θr+Gr = ⟨γr,0, . . . , γr,r−1⟩ be provided in round m−r−1
of the Expand module, the round r of the Aggregate module spans θr +Gr and
combines 2r adjacent elements in f . Algorithm 5 describes the Aggregate module.

4.3 Detailed Cost Analysis

We now compute the number of multiplications and additions required by the
algorithm. From Algorithm 4, we know that at the r-th iteration, we need to scale
2r polynomials, each of degree 2m−r. Thus, the multiplication for the scaling is
given by

∑m−1
r=0 2r · (2m−r − 1) = 2mm−

∑m−1
r=0 2r = n log2 n− n+ 1.

4. GAO–MATEER ALGORITHM BUILDING BLOCKS 15

Algorithm 5: Aggregate (fin,Γ ,θ)

Input: fin = (c0, c1, . . . , cn−1) is a vector of length n = 2m, θ = (θ0, . . . , θm−1),
Γ = (G0 = ∅,G1, . . . ,Gm−1), where θr and Gr = {γr,0, . . . , γr,r−1} denote the
affine shift and basis corresponding to round r.

Output: fout is the vector of the evaluations of f(x) over θ +Wm

1 for r = 0 to m− 1 do
2 {η0, η1, . . . , η2r−1} ← Span(Gr, θr)

3 for j = 0 to 2m−r−1 − 1 do
4 d← j2r+1

5 for i = 0 to 2r − 1 do
6 cd+i ← cd+i + cd+2r+i × ηi
7 cd+2r+i ← cd+2r+i + cd+i

8 end
9 end

10 end
11 return fout ← (c0, c1, . . . , cn−1)

From Algorithm 5, we know that at the r-th iteration, the number of re-
quired multiplications is 2r ·2m−r−1 = 2m−1. Thus, the total multiplication cost
in Algorithm 5 is

∑m−1
r=0 2m−1 = 1

2n log2 n. Therefore, the total number of multi-
plications in the Gao–Mateer algorithm is given by n log2 n−n+1+ 1

2n log2 n =
3
2n log2 n− n+ 1.

From Algorithm 9, we know that in the r-th iteration, the number of addi-
tions due to the Taylor expansion is 2m−1(m − r − 1). Thus, the total number
of additions required for the Taylor expansions is

∑m−2
r=0 2m−1(m − r − 1) =

2m−2m(m − 1). Also, in Algorithm 5, we know that at the r-th iteration, the
number of required additions is 2·2r ·2m−r−1 = 2m. Therefore, the total addition
cost for the algorithm is given by 2m−2m(m−1)+m·2m = 1

4n(log2 n)
2+ 3

4n log2 n.
When performing the FFT over a subspace, at the r-th iteration of Algo-

rithm 5, we have η0 = 0. Thus, for Steps 6 and 7, we need no multiplications,
and only one addition is needed. Consequently, we must account for a reduction
of

∑m−1
r=0 2m−r−1 = 2m−1 = n−1 in both additions and multiplications. There-

fore, the costs for multiplications and additions are changed to 3
2n log2 n−2n+2

and 1
4n(log2 n)

2 + 3
4n log2 n− n+ 1, respectively.

4.4 Optimization for Cantor Special Basis

If we have a Cantor special basis of dimension m, we can avoid the scaling in
every iteration. We know that a Cantor special basis satisfies the following

β0 = 1 and S(βi) = β2
i + βi = βi−1 for 1 ≤ i ≤ m− 1,

where S(x) = x2+x. In addition, we know that Si(βi) = β0 = 1 for 0 ≤ i ≤ m−1
and Si+ℓ(βi+ℓ) = βℓ for any i, ℓ ≥ 0 with i+ℓ ≤ m−1. Now, consider the Cantor
special basis in the reversed order, i.e.,

Wm = ⟨βm−1, βm−2, . . . , β1, 1⟩ = ⟨βm−1, S(βm−1), . . . , Sm−2(βm−1), 1⟩.

Thus, we have G = ⟨βm−1, S(βm−1), . . . , Sm−2(βm−1)) and

D = ⟨S(βm−1), S2(βm−1), . . . , S
m−1(βm−1)) = ⟨S(βm−1), S2(βm−1), . . . , 1⟩.

16 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

Thus, we do not need the scaling for the functions f0(x) and f1(x). Also, at
the j-th iteration, G and D will be of the form

G(j) = ⟨Sj(βm−1), Sj+1(βm−1), . . . , S
m−2(βm−1)⟩ and

D(j) = ⟨Sj+1(βm−1), S
j+2(βm−1), . . . , S

m−1(βm−1) = 1⟩.

Therefore, at each iteration, there is no need for scaling. Also, due to the
chosen basis, computing the basis elements in G(j) and D(j) does not require
any multiplications or additions. This can be done simply by selecting one fewer
element from G(j−1) and D(j−1).

Detailed cost analysis of the optimized algorithm When using the Cantor spe-
cial basis in Algorithm 4, no scaling is required for the polynomials. All other
steps in Algorithms 4 and 5 remain unchanged. Thus, the number of additions
remains the same, as evaluated in Section 4.3. Consequently, the multiplication
and addition costs are 1

2n log2 n and 1
4n(log2 n)

2 + 3
4n log2 n, respectively.

Furthermore, as discussed in Section 4.3, when performing the FFT over
a subspace, the total multiplication and addition costs for the algorithm are
1
2n log2 n−n+1 and 1

4n(log2 n)
2+ 3

4n log2 n−n+1, respectively. Thus, by using
Cantor special basis in the Gao–Mateer algorithm, we can efficiently compute
the additive FFT of f(x) ∈ F2k [x] over θ + Wm where F2k contains a subfield
F
22ℓ

with m ≤ 2ℓ.

Note that the basis conversion (Expand Module) in the Gao–Mateer FFT involves
scaling followed by a Taylor expansion with respect to x2+x. In the Cantor spe-
cial basis, scaling is eliminated, reducing the multiplication cost; but the Taylor
expansion remains. More efficient methods, such as that of Lin et al. [37], could
improve this step, but would diverge from the original Gao–Mateer framework
and yield a different FFT. We retain the original structure to allow fair com-
parison with the Cantor and LCH FFTs. Optimized conversions in this broader
context are left for future work.

4.5 Precomputation

In this section, we introduce two levels of precomputation. The first level pre-
computes the scaling factors β = {β0,m−1, β1,m−2 . . . , βm−1,0}, basis vectors
Γ = (G0 = ∅,G1, . . . ,Gm−1) and shift elements θ = (θ0, . . . , θm−1). Each of β
and θ requires m finite field elements and Γ needs

∑m−1
i=0 i = m(m− 1)/2. Con-

sequently, this algorithm stores a total of (m2+3m)/2 finite field elements. Over
F2256 this translates to 2KB, 4.2KB, and 7.2KB for m = 10, 15, 20, respectively.
This precomputation is inapplicable for the optimized Gao–Mateer algorithm
for the Cantor special basis (see Section 4.4), because the scaling step is omitted
and each basis vector reduces to Gr is simply {β0, β1, . . . , βr−1}, where the βi
are the Cantor special basis elements.

The second level precomputes all required powers of the scaling factors and all
elements in each affine subspace θr+Gr. This requires storing

∑m−1
r=0 (2m−r−1) =

5. AURORA FFT COMPLEXITY ANALYSIS 17

2m+1 − m − 2 finite field elements for the powers of the scaling factors, and∑m−1
r=0 2r = 2m−1 finite field elements for θr+Gr. Consequently, this algorithm

stores a total of 3 · 2m −m − 3 finite field elements. Over F2256 this translates
to 95.6KB, 3MB, and 96MB for m = 10, 15, 20, respectively. For the optimized
Gao–Mateer algorithm for the Cantor special basis, the powers of the scaling
factor are not required and the elements in θ+ ⟨β0, β1, . . . , βm−1⟩ are computed,
which equals 2m finite field elements.

Table 4: Runtime speedup of the Gao–Mateer additive FFT level 1 (L1) ver-
sus level 2 (L2) precomputation methods over F2256 (see Section 6 for platform
details).
m 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

L1 11.5 6.41 3.81 2.48 1.80 1.46 1.29 1.20 1.12 1.07 1.06 1.05 1.05 1.06 1.06 1.05

L2 15.8 8.33 4.70 2.94 2.09 1.58 1.38 1.27 1.17 1.11 1.09 1.08 1.08 1.07 1.06 1.09

5 Aurora FFT Complexity Analysis

The FFT complexity of Aurora depends on the R1CS dimensions (d1, d2, d3), the
codeword domain size |L|, and the repetition parameters λi and λ′i introduced
in Section 2.4. While (d1, d2, d3), λi, and λ′i are fixed at setup, determining |L|
requires an iterative procedure since several constraints are mutually dependent.

Initialization. Set |L| = 4t/ρ.

Iterative check. Repeat the following steps until no parameter changes:

1. For the target security level λ, the RS rate ρ, and the FRI localization pa-
rameter η, the required number of codeword queries is b (see Appendix B).

2. Given b, the maximum lincheck degree is d′ = 2t+ b− 1 (see Table 6).
3. The number of FRI reductions (rounds) is r := ⌊log(ρ|L|)/η⌋. Consequently,

d′ ≡ 0 (mod 2rη). If not, replace d′ with the next multiple of 2rη.
4. If d′ > ρ|L|, enlarge the domain by one dimension (i.e. set |L| ← 2|L|)

The loop terminates when b and |L| stabilize; at that point, |L| satisfies all
constraints.

Now, we construct the evaluation domains H1, H2, and L. Let
{β0, β1, . . . , βk−1} be the basis of F2k ,

H1 = ⟨β0, β1, · · ·β⌈log d1⌉⟩, H2 = ⟨β0, β1, · · ·β⌈log(d2+1)⌉⟩,
L = β⌈log(|L|)⌉+1 + ⟨β0, β1, · · ·β⌈log(|L|)⌉⟩,

where L is an affine subspace that is disjoint from the linear subspaces H1 and
H2; specifically, L∩ (H1 ∪H2) = ∅. If the basis elements are the Cantor special

18 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

basis, all three domains admit the Cantor additive FFT. Moreover, because the
affine shift in L is a basis element, the special precomputation in Section 3.5
applies. Table 5 shows the FFT and IFFT calls in the Aurora prover algorithm.

Table 5: The FFT and IFFT calls in the Aurora zkSNARK protocol.
FFT Calls Description

λi×FFT of len. |L| r̂ℓ: Evaluate rℓ(X) of degree < 2t+b−1 over L (ℓ = 1, . . . , λi).

1) IFFT of len. d3+1
2) FFT of len. d2+1
3) IFFT of len. d2+1
4) FFT of len |L|

1) Interpolate f(1,v)(X) of degree < d3 + 1.
2) Evaluate f(1,v)(X) over H2 to compute f(1,v).
Then, compute f ′w = w[0 : d2 − d3 − 1]− f(1,v)[d3 + 1 : d2]
3) Interpolate f ′w over H2 to get f ′

w(X) of degree < d2 + 1.
Then, divide f ′

w(X) by Z{h0,...,hd3
}(X) to compute f∗

w(X).
4) Evaluate f∗

w(X) over L to compute f̂w.

1) 3×IFFT of len. d1
2) 3×FFT of len. |L|

For M ∈ {A,B,C}:
1) Interpolate Mz to get f∗

Mz(X) of degree < d1.
2) Evaluate f∗

Mz(X), over L to compute f̂Mz.

λ′
i×FFT of len. |L| r̂′ℓ: Evaluate r′ℓ(X) of degree < 2t+2b over L (ℓ = 1, . . . , λ′

i).

2λi×IFFT of len. t Interpolate pαℓ(X) and pABC
αℓ

(X) (ℓ = 1, . . . , λi).

FFT of len. |L| Evaluate f(1,v)(X) over L to compute
f̂z = f̂w · (Z{h0,...,hκ}(X)|L) + f̂(1,v).

2λi×FFT of len. |L| Evaluate pαℓ(X) and pABC
αℓ

(X) over L to compute q̂M
ℓ :=

f̂Mz · p̂αℓ − f̂z · p̂ABC
αℓ

(ℓ = 1, . . . λi and M ∈ {A,B,C}).

1) λi×IFFT of len. d
where d = 2⌈log(t+b)⌉

2)λi×FFT of len. |L|

1) Interpolate
∑

M∈{A,B,C} s
M
ℓ q̂M

ℓ to get a polynomial of de-
gree < 2⌈log(t+b)⌉. Then, compute h(X) (see Table 6).
2) Evaluate h(X) over L to compute ĥℓ.

6 Implementation and Benchmarking

With the goal of accelerating Aurora, we implemented the Cantor FFT in C++,
making it compatible with the libiop library [9], which implements Aurora.
We also converted the C implementation of the LCH FFT for subspaces over
the Cantor special basis provided by [19] to C++ , and extended it to support
affine subspaces, when the affine shift is one of the basis elements and made
it compatible with libiop. Additionally, we optimized the Gao–Mateer imple-
mentation by using the Cantor special basis. The libff library [11] is used for
finite field operations in libiop as well as in our FFT implementations, enabling
polymorphism over finite fields. Notably, the Cantor special basis must exist in
a finite field in order to enable the use of FFT algorithms over that basis. We

6. IMPLEMENTATION AND BENCHMARKING 19

computed and hardcoded the Cantor special basis for F2128 , F2192 , and F2256 .
Our implementation of additive FFT algorithms is available on GitHub1.

Using our FFT implementations, we extended the libiop library to support
switching between the standard basis, which was originally used, and the Cantor
special basis, which we hardcoded for F2128 , F2192 , and F2256 and the dimensions
less than 32. Consequently, the Gao–Mateer algorithm is used for the standard
basis, while either our Cantor or LCH implementation is employed for the Can-
tor special basis. Our implementation of the accelerated libiop is available on
GitHub2.

Benchmark setup All measurements were taken with Google Benchmark [28],
with a minimum 10-second warm-up period, on an AMD Ryzen 9 9950X @ 5.7
GHz, with 64 GB of DDR5 RAM and running Debian 12 with kernel 6.12.12.

Standalone FFT benchmark For each input size n = 2m, the reported runtime of
every additive FFT implementation is the mean of 1,000 independent evaluations
when m ≤ 20 and over 300 evaluations when m > 20. In each trial a polynomial
f(x) ∈ F2256 [x] of degree < 2m is sampled uniformly at random and evaluated on
the affine subspace Wm = ⟨β0, . . . , βm−1⟩ + θ ⊂ F2256 where the shift θ ∈ F2256

is chosen uniformly at random for that trial. For the special case discussed in
Section 3.5, the shift is fixed to θ = β31. The 99.9% confidence interval of the
measurements is no greater than 1%.

Aurora benchmark We benchmark the Aurora protocol using three FFT imple-
mentations: Gao–Mateer, our Cantor implementation, and our C++ version of
the LCH algorithm implemented in [37]. In this benchmarking, the multiplication
factors in both Cantor and LCH are precomputed based on the method described
in Section 3.5, and the coefficients of the vanishing polynomials in the Cantor
algorithm are also precomputed. For each input size N , the reported runtime is
the average proving and verifying time measured over 100 randomly generated
satisfiable R1CS instances. Each R1CS instance uses d1 = N , d2 = N − 1, and
d3 = 31 (Definition 1). The codeword length is |L| = 27N by adopting Preon’s
choice of ρ = 2−5 (Definition 2), to tighten the FRI soundness error [18], and
two extra dimensions are added as described in Section 5. The 99.9% confidence
interval of the measurements is no greater than 1%.

Comparisons Figure 1 compares the runtime of the FFT algorithms. It shows
that the savings in Cantor PC are consistent across different input lengths. Ta-
ble 3 presents the runtime improvements achieved through precomputations in
the Cantor FFT. Table 4 shows the runtime gains from L1 and L2 precompu-
tations in Gao–Mateer. However, these improvements become insignificant for
larger m since Gao–Mateer requires extensive memory access for Taylor expan-
sion, which suppresses the savings gained from the precomputations. Figure 3 in
Appendix D depicts the fraction of each sub-algorithm in Gao–Mateer.
1 https://github.com/mtbadakhshan/additive-fft
2 https://github.com/mtbadakhshan/cantor-libiop

https://github.com/mtbadakhshan/additive-fft
https://github.com/mtbadakhshan/cantor-libiop

20 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

4 5 6 7

100

101

m
8 9 10 11

101

102

m
12 13 14 15

103

104

m

16 17 18 19

104

105

m
20 21 22 23

105

106

m
24 25 26 27

107

108

m

GM [9] GM PCL2 GM CO PCL2 Cantor PC LCH PC

T
im

e
(m

ic
ro

se
co

nd
s)

Fig. 1: Log-scale runtime of additive FFTs of length 2m over F2256 for Gao–Mateer
(GM), GM with level-2 precomputation (GM PCL2), Cantor optimized GM
with level-2 precomputation (GM CO PCL2), and Cantor with precomputation
(Cantor PC), and LCH with special-case precomputation (LCH PC)

Note that the Gao–Mateer FFT with Cantor special basis, the LCH FFT
with Cantor special basis, and the Cantor FFT require the same number of
multiplications (see Table 1), but differ in their addition counts. The Gao–
Mateer FFT uses 1

4n(log2 n)
2 + 3

4n log2 n additions, while the Cantor FFT uses
1
2n log2 n + 1

2n
∑log2(n)−1
r=0 2wt(r), with wt(r) denoting the Hamming weight. No

closed-form expression is known for the LCH FFT. Numerical evaluation shows
that the Cantor FFT consistently requires fewer additions than the Gao–Mateer
FFT for the m values in Figure 1; this, along with the basis conversion overhead
in the Gao–Mateer algorithm, accounts for its slower performance. Furthermore,
Figure 1 shows that, when used as standalone FFT algorithms, Cantor outper-
forms LCH for smaller dimensions (specifically, m ≤ 7), while LCH exhibits
better performance for 8 ≤ m ≤ 27, though the performance difference remains
marginal even at higher dimensions. It should also be noted that, similar to the
Gao–Mateer FFT, the LCH FFT incurs a basis conversion overhead [37], while

7. CONCLUSIONS AND FUTURE WORKS 21

the Cantor FFT completely avoids this by employing a pure divide-and-conquer
structure.

Table 2 shows that integrating our optimized Cantor algorithm into the Au-
rora prover results in nearly twice the speed compared to using the Gao–Mateer
FFT for large input sizes. It also outperforms our C++ integration of the LCH
algorithm [19] into Aurora for smaller inputs. This performance differential high-
lights how the interaction between FFT algorithms and the underlying protocol
structure significantly influences overall system efficiency, beyond what is cap-
tured in the standalone benchmarks. The observed slowdown in the LCH-based
Aurora implementation for smaller input sizes is likely attributable to the mem-
ory overhead incurred by basis conversion. As a result, the Cantor FFT is more
suitable for the circuit sizes commonly found in practical zkSNARK applica-
tions. For example, the Preon [18] proposes multiple security levels, where the
number of constraints ranges from 212 to 214. Additionally, constructing a circuit
that proves knowledge of a Merkle tree leaf in a tree of 230 elements using the
POSEIDON-128 [29] hash function typically requires 212 ≤ N ≤ 213 constraints,
depending on the arity of the Merkle tree.

7 Conclusions and Future Works

This work demonstrates how leveraging the Cantor special basis enables the
integration of the Cantor and LCH additive FFTs into post-quantum secure zk-
SNARKs, focusing on Aurora [10]. We show that replacing the Gao–Mateer FFT
with the Cantor and LCH additive FFTs significantly reduces computation time
and Cantor is generally the best choice in typical zkSNARK applications. Our
implementation is supported by a detailed cost analysis, including exact counts
of additions and multiplications for both FFTs, and a complexity evaluation of
FFT calls in Aurora’s R1CS encoding, parameterized by constraints, variables,
and the security level. We also propose optimized building blocks for the Cantor
FFT and precomputation techniques that reduce overhead for both Cantor and
Gao–Mateer FFTs when the affine subspace basis is fixed.

Building on the presented optimizations, several promising directions can
be explored for future research. One possibility is optimizing other components
of Aurora, such as the FRI protocol, or applying tower field constructions to
accelerate field multiplications. Additionally, the proposed optimizations may
extend to other post-quantum secure zkSNARKs over binary extension fields,
such as STARK [4], which is used by zk-rollups and requires heavy CPU/GPU
computation for proof generation [16].

Another direction is improving additive FFT throughput through paralleliza-
tion. The Cantor FFT supports pure divide-and-conquer parallelism [45] as it
does not require basis conversion. Thus, in hierarchical memory architectures,
radix-4 or radix-8 variations could reduce rounds. Additive FFTs could also ben-
efit from processing-in-memory (PIM) architectures, improving data locality like
in multiplicative FFT [34].

22 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

Additionally, exploring more efficient basis conversion methods, such as re-
placing the Taylor expansion in Gao–Mateer FFT with the approach by Lin et
al. [37], could reduce addition complexity, offering new FFT variants with better
trade-offs. Comparing these with Cantor and LCH FFTs remains a valuable av-
enue. Finally, thorough side-channel analysis of additive FFT implementations
is essential for security-critical applications such as post-quantum zkSNARKs
and code-based cryptosystems, as demonstrated leakages in Gao–Mateer imple-
mentations reveal critical vulnerabilities [30,33].

Acknowledgments:

This work was supported by a MITACS–BTQ research grant. We sincerely ap-
preciate the constructive feedback from the anonymous reviewers, which signif-
icantly enhanced the clarity and precision of this manuscript.

References

1. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight Sublinear Arguments Without a Trusted Setup. Designs,
Codes and Cryptography, 91(11):3379–3424, Nov 2023.

2. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Emmanuela Orsini, Lawrence Roy, and Peter Scholl. Publicly Verifiable Zero-
Knowledge and Post-Quantum Signatures from VOLE-in-the-Head. In Helena
Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO
2023, pages 581–615, Cham, 2023. Springer Nature Switzerland.

3. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-
Solomon Interactive Oracle Proofs of Proximity. In Ioannis Chatzigiannakis, Chris-
tos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International
Colloquium on Automata, Languages, and Programming (ICALP 2018), volume
107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1–14:17,
Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

4. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Paper 2018/046, 2018.

5. Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Scalable and
Transparent Proofs over All Large Fields, via Elliptic Curves. In Eike Kiltz and
Vinod Vaikuntanathan, editors, Theory of Cryptography, pages 467–496, Cham,
2022. Springer Nature Switzerland.

6. Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Elliptic Curve
Fast Fourier Transform (ECFFT) Part I: Low-degree Extension in Time o(n logn)
over all finite fields. In Proceedings of the 2023 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 700–737, 2023.

7. Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Ri-
abzev, and Nicholas Spooner. Zero Knowledge Protocols from Succinct Constraint
Detection. In Theory of Cryptography: 15th International Conference, TCC 2017,
Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II, page 172–206,
Berlin, Heidelberg, 2017. Springer-Verlag.

7. CONCLUSIONS AND FUTURE WORKS 23

8. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized Anonymous Payments
from Bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474,
2014.

9. Eli Ben-Sasson, Alessandro Chiesa, Alex Kazorian, Dev Ojha, Aleksejs Popovs,
Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas Ward. libiop: A
C++ library for zero knowledge proofs. https://github.com/scipr-lab/libiop.
Accessed: 2025-01-10.

10. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P. Ward. Aurora: Transparent Succinct Arguments for R1CS.
In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2019, pages 103–128, Cham, 2019. Springer International Publishing.

11. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza, Howard Wu,
Alexander Chernyakhovsky, and Aleksejs Popovs. libff: C++ library for finite fields
and elliptic curves. https://github.com/scipr-lab/libff. Accessed: 2025-01-10.

12. Daniel J. Bernstein and Tung Chou. Faster Binary-Field Multiplication and Faster
Binary-Field MACs. In Antoine Joux and Amr Youssef, editors, Selected Areas
in Cryptography – SAC 2014, pages 92–111, Cham, 2014. Springer International
Publishing.

13. Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast Constant-
Time Code-Based Cryptography. In Guido Bertoni and Jean-Sébastien Coron,
editors, Cryptographic Hardware and Embedded Systems - CHES 2013, pages 250–
272, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

14. Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: To-
wards Privacy in a Smart Contract World. In Joseph Bonneau and Nadia Heninger,
editors, Financial Cryptography and Data Security, pages 423–443, Cham, 2020.
Springer International Publishing.

15. David G. Cantor. On arithmetical algorithms over finite fields. Journal of Combi-
natorial Theory, Series A, 50(2):285–300, 1989.

16. Stefanos Chaliasos, Itamar Reif, Adrià Torralba-Agell, Jens Ernstberger, Assimakis
Kattis, and Benjamin Livshits. Analyzing and Benchmarking ZK-Rollups. In
Rainer Böhme and Lucianna Kiffer, editors, 6th Conference on Advances in Finan-
cial Technologies (AFT 2024), volume 316 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 6:1–6:24, Dagstuhl, Germany, 2024. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-
Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2017, page 1825–1842, New York, NY, USA, 2017. Association
for Computing Machinery.

18. Ming-Shing Chen, Yu-Shian Chen, Chen-Mou Cheng, Shiuan Fu, Wei-Chih Hong,
Jen-Hsuan Hsiang, Sheng-Te Hu, Po-Chun Kuo, Wei-Bin Lee, Feng-Hao Liu, et al.
Preon: zk-SNARK based Signature Scheme. Technical report. NIST, 2023.

19. Ming-Shing Chen, Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and Bo-Yin
Yang. Faster Multiplication for Long Binary Polynomials. arXiv: 1708.09746,
2018. https://arxiv.org/abs/1708.09746.

20. Ming-Shing Chen, Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and Bo-Yin
Yang. Multiplying boolean Polynomials with Frobenius Partitions in Additive
Fast Fourier Transform. arXiv: 1803.11301, 2018. https://arxiv.org/abs/1803.
11301.

https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libff
https://arxiv.org/abs/1708.09746
https://arxiv.org/abs/1803.11301
https://arxiv.org/abs/1803.11301

24 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

21. Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and
Transparent Recursive Proofs from Holography. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology – EUROCRYPT 2020, pages 769–793, Cham, 2020.
Springer International Publishing.

22. Nicholas Coxon. Fast transforms over finite fields of characteristic two. Journal of
Symbolic Computation, 104:824–854, 2021.

23. Benjamin E. Diamond and Jim Posen. Succinct Arguments over Towers of Binary
Fields. In Serge Fehr and Pierre-Alain Fouque, editors, Advances in Cryptology –
EUROCRYPT 2025, pages 93–122, Cham, 2025. Springer Nature Switzerland.

24. N. J. Fine. Binomial Coefficients Modulo a Prime. The American Mathematical
Monthly, 54(10):589–592, 1947.

25. Shihui Fu and Guang Gong. Polaris: Transparent Succinct Zero-Knowledge Argu-
ments for R1CS with Efficient Verifier. Proceedings on Privacy Enhancing Tech-
nologies, 2022.

26. Shuhong Gao and Todd Mateer. Additive Fast Fourier Transforms Over Finite
Fields. IEEE Transactions on Information Theory, 56(12):6265–6272, 2010.

27. Joachim von zur Gathen and Jürgen Gerhard. Arithmetic and factorization of
polynomial over F2 (extended abstract). In Proceedings of the 1996 International
Symposium on Symbolic and Algebraic Computation, ISSAC 1996, page 1–9, New
York, NY, USA, 1996. Association for Computing Machinery.

28. Google Inc. and contributors. Benchmark - a microbenchmark support library.
https://github.com/google/benchmark. Accessed: 2025-01-10.

29. Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for Zero-Knowledge proof
systems. In 30th USENIX Security Symposium (USENIX Security 21), pages 519–
535. USENIX Association, August 2021.

30. Qian Guo, Andreas Johansson, and Thomas Johansson. A key-recovery side-
channel attack on classic McEliece implementations. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2022(4):800–827, Aug. 2022.

31. Tanmayi Jandhyala. Air-FRI: Acceleration of the FRI protocol on the GPU for low-
degree polynomial testing in zk-SNARK applications. Master’s thesis, University
of Waterloo, Canada, 2024.

32. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved Non-Interactive
Zero Knowledge with Applications to Post-Quantum Signatures. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, page 525–537, New York, NY, USA, 2018. Association for Computing
Machinery.

33. Norman Lahr, Ruben Niederhagen, Richard Petri, and Simona Samardjiska. Side
Channel Information Set Decoding Using Iterative Chunking: Plaintext Recovery
from the “Classic McEliece” Hardware Reference Implementation. In Advances
in Cryptology – ASIACRYPT 2020: 26th International Conference on the Theory
and Application of Cryptology and Information Security, Daejeon, South Korea,
December 7–11, 2020, Proceedings, Part I, page 881–910, Berlin, Heidelberg, 2020.
Springer-Verlag.

34. Dai Li, Akhil Pakala, and Kaiyuan Yang. MeNTT: A Compact and Efficient
Processing-in-Memory Number Theoretic Transform (NTT) Accelerator. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 30(5):579–588, 2022.

35. Wen-Ding Li, Ming-Shing Chen, Po-Chun Kuo, Chen-Mou Cheng, and Bo-Yin
Yang. Frobenius Additive Fast Fourier Transform. In Proceedings of the 2018
ACM International Symposium on Symbolic and Algebraic Computation, ISSAC
2018, page 263–270, 2018.

https://github.com/google/benchmark

A. THE CANTOR AND GAO–MATEER FFT ALGORITHM 25

36. Sian-Jheng Lin, Tareq Y. Al-Naffouri, and Yunghsiang Sam Han. FFT Algorithm
for Binary Extension Finite Fields and Its Application to Reed–Solomon Codes.
IEEE Transactions on Information Theory, 62(10):5343–5358, 2016.

37. Sian-Jheng Lin, Tareq Y. Al-Naffouri, Yunghsiang Sam Han, and Wei-Ho Chung.
Novel Polynomial Basis With Fast Fourier Transform and Its Application to
Reed–Solomon Erasure codes. IEEE Transactions on Information Theory,
62(11):6284–6299, 2016.

38. Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang Sam Han. Novel Polynomial Basis
and Its Application to Reed-Solomon Erasure Codes. 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science, pages 316–325, 2014.

39. Edouard Lucas. Théorie des fonctions numériques simplement périodiques. Amer-
ican Journal of Mathematics, 1(4):289–321, 1878.

40. Guiwen Luo, Shihui Fu, and Guang Gong. Speeding Up Multi-Scalar Multipli-
cation over Fixed Points Towards Efficient zkSNARKs. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2023(2):358–380, Mar. 2023.

41. Todd Mateer. Fast Fourier Transform Algorithms with Applications, PhD Thesis.
Clemson University, 2008. https://open.clemson.edu/all_dissertations/231/.

42. National Institute of Standards and Technology. Post-Quantum Cryptogra-
phy: Standardization Process. https://csrc.nist.gov/projects/pqc-dig-sig/
round-1-additional-signatures, 2023. Accessed: 2025-01-10.

43. Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, and Martin Vechev.
ZeeStar: Private Smart Contracts by Homomorphic Encryption and Zero-
knowledge Proofs. In 2022 IEEE Symposium on Security and Privacy (SP), pages
179–197, 2022.

44. Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid. Blockchain
Scaling Using Rollups: A Comprehensive Survey. IEEE Access, 10:93039–93054,
2022.

45. Rob V. Van Nieuwpoort, Gosia Wrzesińska, Ceriel J. H. Jacobs, and Henri E. Bal.
Satin: A high-level and efficient grid programming model. ACM Trans. Program.
Lang. Syst., 32(3), March 2010.

46. Yao Wang and Xuelong Zhu. A fast algorithm for the Fourier transform over
finite fields and its VLSI implementation. IEEE Journal on Selected Areas in
Communications, 6(3):572–577, 1988.

47. Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben Fisch, Fer-
nando Krell, and Philippe Camacho. VeriZexe: Decentralized Private Computation
with Universal Setup. In 32nd USENIX Security Symposium (USENIX Security
23), pages 4445–4462, Anaheim, CA, August 2023. USENIX Association.

A The Cantor and Gao–Mateer FFT Algorithm

In this section, we present two additive FFT algorithms central to our contri-
butions: the Cantor algorithm [15] and the algorithm by Gao and Mateer [26].
While Gao and Mateer propose two algorithms based on Taylor expansion for ad-
ditive FFT, we focus on the first one, which applies to lengths n = 2m for any m.
This algorithm is originally designed for the subspace Wm = ⟨β0, β1, . . . , βm−1⟩,
but we adapt it for use over the affine subspace θ + Wm. Algorithms 6 and 7
provide the algorithmic formulations of the Cantor and Gao–Mateer algorithms,
respectively.

https://open.clemson.edu/all_dissertations/231/
https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures

26 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

Algorithm 6: Cantor additive FFT of length n = 2m

Input: f(x) ∈ F
2k

[x] of degree < n = 2m, where k = 2ℓ and the affine subspace
θ +Wm = θ + ⟨β0, β1, . . . , βm−1⟩, where {β0 = 1, β1, . . . , βm−1} is a Cantor
special basis.

Output: FFT(f, θ +Wm).
1 if m = 0 then
2 return f(θ).
3 end
4 Compute

f0(x) = f(x) mod S
m−1

(x+ θ), and

f1(x) = f(x) mod S
m−1

(x+ θ + βm−1).

return FFT(f0, θ +Wm−1)||FFT(f1, θ + βm−1 +Wm−1).

Algorithm 7: Gao–Mateer additive FFT of length n = 2m

Input: f(x) ∈ F
2k

[x] of degree < n = 2m and the affine subspace
θ +Wm = θ + ⟨β0, β1, . . . , βm−1⟩

Output: FFT(f, θ +Wm).
1 if m = 1 then
2 return (f(θ), f(θ + β0)).
3 end
4 else
5 Compute g(x) = f(βm−1x)

6 Compute the Taylor expansion of g(x) at x2 + x to obtain f0(x) and f1(x).
Specifically, express g(x) as g(x) = f0(x

2 + x) + xf1(x
2 + x).

7 Compute γi = βi · β−1
m−1 and δi = γ2

i + γi for 0 ≤ i ≤ m− 2.
8 Let θ0 = β−1

m−1θ. Consider the affine subspaces

θ0 +G = θ0 + ⟨γ0, . . . , γm−2⟩ and θ
2
0 + θ0 +D = θ

2
0 + θ0 + ⟨δ0, . . . , δm−2⟩.

9 Let ℓ = 2m−1 and

FFT(f0, θ
2
0 + θ0 +D) = (u0, . . . , uℓ−1) and FFT(f1, θ

2
0 + θ0 +D) = (v0, . . . , vℓ−1).

10 For 0 ≤ i ≤ ℓ− 1, set ωi = ui + ηi · vi and ωℓ+i = ωi + vi.
11 return (ω0, . . . , ωn−1).
12 end

B FRI Soundness Errors: Number of Queries Analysis

The FRI of proximity parameter is defined as

δ := min

(
1− 2ρ

2
,
1− ρ

3
, 1− ρ

)
. (2)

Given λ, ϵq and ϵi represents query and interactive soundness errors such that
ϵq + ϵi < 2−λ, where 2−λ−1 is allocated to each. According to [10, Theorem 4],

ϵi =

(
d1 + 1

|F|

)λi

+

(
|L|
|F|

)λ′
i

+ ϵFRI
i , and ϵq = ϵFRI

q ,

where
(
η+1
|F|

)λi

and
(
|L|
|F|

)λ′
i

denote the lincheck and LDT soundness errors re-

spectively. ϵFRI
i and ϵFRI

q denote the interactive and query soundness errors in

C. AURORA CODEWORDS 27

FRI, respectively. Each term in ϵi gets 2−λ−3 and ϵq gets 2−λ−1 soundness
error bound. The codeword is queried during FRI. Given the target proximity
parameter in (2), the number of query repetitions in FRI is:

λFRI
q =

log(ϵFRI
q)

log

(
1−min

(
δ,

1−3ρ−2η/
√
|L|

4

)) . (3)

The number of queries to the codeword is set to b = λFRI
q · 2η to ensure zero-

knowledge.

C Aurora Codewords

Table 6: The primary codewords encoded by prover. The mechanism for ran-
domizing polynomials is omitted for the sake of simplicity.
Codeword Description

f̂w ∈ RS[L, d2−d3+b
|L|] f̂w := f∗

w|L, where f∗
w is a random polynomial of degree

< d2 − d3 + b such that for d3 < i ≤ d2,
fw(hi) = (wi−d3−1 − f(1,v)(hi))/Z{h0,...,hd3

}(hi) (wi denotes
the i-th element in w).

f̂Az ∈ RS[L, d1+b
|L|],

f̂Bz ∈ RS[L, d1+b
|L|],

f̂Cz ∈ RS[L, d1+b
|L|]

f̂Mz := f∗
Mz|L for M ∈ {A,B,C}, where f∗

Mz is a random
polynomial of degree < d1+b such that for i = 0, . . . , d1−1,
fMz(hi) = (Mz)i, where (Mz)i denotes the i-th element of
the matrix–vector product Mz.

r̂ℓ ∈R RS[L, 2t+b−1
|L|] For ℓ = 1, . . . , λi, r̂ℓ is a random lincheck masking codeword.

ĥℓ ∈ RS[L, t+b
|L|],

ĝℓ ∈ RS[L, t−1
|L|]

For ℓ = 1, . . . , λi, ĥℓ := hℓ|L, where hℓ is a polynomial of de-
gree < t+ b derived from the following polynomial division:
rℓ(X) +

∑
M∈{A,B,C} s

M
ℓ

(
fMz(X)pαℓ(X)− fz(X)pMαℓ

(X)
)

= gℓ(X) +
∑

a∈H1∪H2
rℓ(a)∑

a∈H1∪H2
at−1 ·Xt−1 +ZH1∪H2(X) · hℓ(X)

r̂′ℓ′ ∈R RS[L, 2t+2b
|L|] For ℓ′ = 1, . . . , λ′

i, r̂′ℓ′ is a random LDT masking codeword.

D Additional Algorithms

Algorithm 8 outlines the procedures within the Canopyp,i module, while Figure 2
illustrates how the polynomials for the subsequent round are derived from the
quotient and remainder at each step.

We now present the Taylor expansion algorithm, which constitutes the core of
the Expand module. Let f(x) =

∑m−1
i=0 cix

i, ci ∈ Fq, δ(x) = x2 + x. We denote
y = δ(x). Then we may write f as

f(x) = f0(y) + xf1(y). (4)

28 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

Algorithm 8: Canopyp,i (fin, {β0, β1, . . . , βm−1}, zp−1, ZWp−1
(θ), p, i)

Input: fin, {β0, β1, . . . , βm−1} is the Cantor special basis, zp−1 = (ζ0, ζ1, . . . , ζ2wt(i)−2
),

ZWp−1
(θ) ∈ F

2k
, p = m− r, and i = (i0, i1, i2, . . . , ir).

Output: fout.
1 ψi,r ← ZWp−1

(θ)

2 for j = 0 to r − 1 do
3 ψi,r ← ψi,r + ij × βj+1

4 end
5 fout ← Polynomial Division (fin, zp−1, ψi,r, p, i) // Algorithm 2, where

ZWp−1
(θi,r) = ψi,r

6 return fout.

Fig. 2: Computing the polynomials for the next round from the outputs of dividing fi,r(x) (of
degree < 8) by ZWp−1

, represented by zp−1.

Here, fi, i ∈ {0, 1}, are polynomials in F2k with degree < 2m−1. The representa-
tion of f by (4) is referred to as the Taylor expansion in [26]. The polynomials
fi can be obtained iteratively as follows. Let f = (c0, . . . , cn−1), referred to
as the coefficient vector of f(x), where n = 2m, denoted by f(x) ↔ f . Let
t = m− 2, we define a quadrant concatenation of f as f = (c0, c1, c2, c3) where
ci = (ci·2t , ci·2t+1, . . . , c(i+1)·2t−1). In the following, we model the Taylor expan-
sion of f in terms of the concept of Tn module. The Tn module operation on f is
defined as b = (c0, c1 + h,h, c3),where h = c2 + c3. From b = (b0,b1,b2,b3),
we have the following result.

Lemma 1. With the above notation, we have

f(x) = g0(x) + g1(x)y
2t ,where y = δ(x) (5)

where g0(x)↔ (b0,b1) and g1(x)↔ (b2,b3).

Now, to compute the Taylor expansion of f(x) ∈ F[x] of degree < n = 2m,
the Taylor expansion of f(x) at δ(x) = x2 + x, denoted by TE(f, n, 2) can be
computed through the Taylor expansions of two polynomials:

TE(f, n, 2) = (TE(g0,
n

2
, 2),TE(g1,

n

2
, 2)) (6)

where g0 and g1 are computed in Lemma 1 by Tn module.

D. ADDITIONAL ALGORITHMS 29

Algorithm 9: Taylor Expansion (fin, r)

Input: fin = (c0, c1, . . . , cn−1) and r denotes the number of rounds reduction.
Output: fout.

1 k ← m− 2
2 while k ≥ r do
3 j ← 0

4 while j ≤ n− 4 · 2k do
5 for i = 0 to 2k − 1 do
6 c

2·2k+i+j
← c

2·2k+i+j
+ c

3·2k+i+j

7 c
2k+i+j

← c
2k+i+j

+ c
2·2k+i+j

8 end
9 j ← j + 4 · 2k

10 end
11 k ← k − 1

12 end
13 return fout ← (c0, c1, . . . , cn−1)

Theorem 2. Let u = (u0, u1, . . . , un−1) be the output at the recursion t in (6),
then the Taylor expansion of f , defined by (4), is given by

f0 ↔ (u0, u2, . . . , u2i, . . . , u2⌊n/2⌋)
f1 ↔ (u1, u3, . . . , u2i+1, . . . , u2⌊n/2⌋+1),

where f0 and f1, are polynomials each of degree < ⌊n/2⌋ = 2m−1.

As described in the above theorem, the polynomials f0 and f1 are constructed
by performing an even-odd rearrangement on u. Subsequently, as described in
Algorithm 7, the evaluations TE(f0, n/2, 2) and TE(f1, n/2, 2) also need to be
computed and so on their outputs as well. Alternatively, as implemented in
[9], instead of performing the even-odd rearrangements, the positions of the
coefficients of these two polynomials can be retained within u. This allows us
to compute a single TE(u, n/2, 2) on the entire polynomial u(x), represented by
u, in t− 1 recursive steps (one fewer recursion than required for f). Finally, to
account for the skipped even-odd rearrangements, in the last round the resulting
vector is rearranged in bit-reversal order as discussed below:

Define a recursive process that partitions the index set {0, 1, . . . , 2n − 1} by
the least significant bit (LSB): indices with LSB 0 form the even group, and those
with LSB 1 form the odd group. This splitting is applied recursively to each
group using the next least significant bit, continuing until each group contains
exactly two indices. The resulting arrangement corresponds to the bit-reversal
permutation of the original sequence.

Figure 3 illustrates the contribution of each sub-algorithm in the Gao–Mateer
FFT implementation from [9]. The basis computations, which are precomputed
in GM PCL1, require fewer resources as m increases. In contrast, the compu-
tational cost of bit-reversal rearrangement and Taylor expansion grows more
rapidly for larger m, significantly impacting the overall FFT runtime.

30 Mohammadtaghi Badakhshan, Susanta Samanta, and Guang Gong

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

0.8

1

m

Fr
ac

ti
on

of
T
ot

al
E

xe
cu

ti
on

in
G

M
[9

]

Initialization Scaling Taylor Expansion Basis Computation
Bit reverse Span Merging

Fig. 3: The fraction of execution time for sub-algorithms in Gao–Mateer over F2256 in [9]. The
execution times of the Taylor expansion and bit-reversal sub-algorithms increase more rapidly with
m. Initialization is a one-time computing for copying the input polynomial to a new vector. Span
and Merging are the Span function and the nested for loop in the Aggregate Module.

(a) Original Approach: Groups even and odd indices after each Taylor expansion

(b) Alternative Approach: Bit-reversal rearrangement in the final round

Fig. 4: The Expand module in Gao–Mateer of length n = 23, which evaluates a polynomial f(x) ∈
F[x] of degree < 8 over θ +W3, where W3 = ⟨β0, β1, β2⟩. In Figure (a), the Expand module groups
even and odd indices after each Taylor expansion. In contrast, Figure (b) skips these rearrangements
by using one T8 module instead of two T4 modules in round r = 1 then performs the bit-reversal in
the final round.

	Accelerating Post-quantum Secure zkSNARKs by Optimizing Additive FFT

