
Efficient Full Domain Functional Bootstrapping
from Recursive LUT Decomposition

Intak Hwang, Shinwon Lee, Seonhong Min, and Yongsoo Song

Seoul National University
{intak.hwang, chowon0708, minsh, y.song}@snu.ac.kr

Abstract. Fully Homomorphic Encryption over the Torus (TFHE) en-
ables efficient evaluation of arbitrary lookup tables (LUT) over encrypted
data, allowing complex functions to be computed without decryption.
However, in TFHE, only lookup tables with a negacyclic structure can
be homomorphically evaluated, which limits the range of functions that
can be supported. To overcome this limitation and enable the evaluation
of arbitrary functions, the notion of full-domain functional bootstrap-
ping (FDFB) was introduced. However, existing FDFB methods require
at least two consecutive bootstrapping operations to evaluate a single
function, resulting in significant latency and overhead.
In this work, we present a novel FDFB scheme that supports arbitrary
lookup tables by decomposing them into multiple small negacyclic LUTs
and one compact full-domain LUT. This structure allows most com-
putations to be handled by fast negacyclic bootstrapping, significantly
reducing the computational cost. To address the need for maintain-
ing distinct evaluation keys for each LUT length, we apply Extended
Bootstrapping (PKC 2021), which enables all operations to run within
a fixed ring dimension. Combined with Extended Bootstrapping, our
method nearly halves the bootstrapping cost compared to prior FDFB
approaches while maintaining a constant key size, negligible parameter
overhead, and strong scalability.
Finally, we implement our algorithm using the TFHE-go library and
evaluate its performance across various settings. Our method achieves
up to a 3.41× speedup over previous FDFB schemes without increas-
ing key size, and retains up to a 1.91× advantage even when Extended
Bootstrapping is applied to both.

Keywords: Homomorphic Encryption, Bootstrapping

1 Introduction

Homomorphic encryption(HE) is a cryptosystem that enables computation di-
rectly on encrypted data without requiring decryption. Since its first realization
by Gentry [12], it has emerged as a powerful tool for enabling secure computation
in various applications. In the past decade, there has been significant progress in
performance for homomorphic encryptions. The current best-performing homo-
morphic encryption schemes are BGV [5], BFV [4,11], CKKS [7], TFHE [8], and

2 Intak Hwang, Shinwon Lee, Seonhong Min, and Yongsoo Song

FHEW [10], all of which derive their security from the hardness of the Learn-
ing With Errors (LWE)[25] and its variant over the ring of cyclotomic integers
(RLWE)[23,26].

While most homomorphic encryption schemes primarily focus on support-
ing addition and multiplication over encrypted data, TFHE [8] and FHEW [10]
distinguish themselves by enabling the direct evaluation of arbitrary Boolean
gates with relatively low latency. This gate-by-gate computation model provides
a practical foundation for applications that require fine-grained control over en-
crypted bits. Building on this capability, a series of follow-up works have further
expanded the TFHE framework in meaningful directions. A particularly notable
advancement is programmable bootstrapping [6,9,14], which builds upon prior
support for multi-bit ciphertexts in TFHE by enabling the direct evaluation of
complex lookup tables (LUT) during bootstrapping. This allows for expressive
computation without introducing additional cost. Consequently, TFHE can effi-
ciently evaluate functions that are difficult to represent using only additions and
multiplications.

However, programmable bootstrapping is limited to evaluating LUTs with a
negacyclic structure, which restricts the range of computable functions. To be
specific, evaluated LUT fN : Z2N → Zq should satisfy the negacyclic condi-
tion fN (i + N) = −fN (i) for i ∈ [0, N). To circumvent this limitation, a line
of research on full-domain functional bootstrapping (FDFB) has emerged [18],
aiming to support arbitrary LUT evaluation without such structural constraints.
Various instantiations of FDFB have been proposed to improve the efficiency,
but all existing approaches fundamentally require at least two bootstrapping
operations, which makes the latency of FDFB roughly twice that of single boot-
strapping.

1.1 Our contribution

While full-domain functional bootstrapping (FDFB) significantly improves func-
tional flexibility, this comes at the cost of increased computational overhead, as
it typically requires multiple rounds of bootstrapping. In this work, we present
a new FDFB algorithm that reduces the computational cost by up to half com-
pared to the state-of-the-art FDFB, while incurring negligible parameter over-
head and no increase in key size. Moreover, our FDFB algorithm is highly par-
allelizable, making it well-suited for practical deployment in large-scale secure
computation settings.

Our algorithm is based on the key observation that any full-domain lookup
table of length N = 2m can be decomposed into the sum of a negacyclic LUT
of length 2m and a full-domain LUT of length 2m−1. More precisely, for any
function f2m defined over Z2m , we can write

f2m(i) = f̄2m−1(i) + f2m−1(i),

where each component is given by

f̄2m−1(i) =
1

2

(
f2m(i)− f2m(i+ 2m−1)

)
, f2m−1(i) =

1

2

(
f2m(i) + f2m(i+ 2m−1)

)
.

Title Suppressed Due to Excessive Length 3

Here, f̄2m−1 corresponds to a function defined over Z2m with a negacyclic con-
dition f̄2m−1(i + 2m−1) = −f̄2m−1(i) for i ∈ [0, 2m−1), and f2m−1 is a function
defined over Z2m−1 . By recursively applying the above decomposition µ times, an
arbitrary full-domain lookup table can be expressed as the sum of µ negacyclic
lookup tables of decreasing sizes and a single full-domain lookup table of length
2m−µ, which can be written as f2m(i) = f2m−µ(i) +

∑µ
k=1 f̄2m−k(i).

This decomposition is particularly useful because FDFB is significantly slower
than a single negacyclic functional bootstrapping, generally requiring at least
twice the latency. Moreover, its computational cost increases proportionally with
the LUT size. By breaking down a large full-domain LUT into several smaller
negacyclic LUTs and a single small full-domain LUT, we can perform most of
the computation using negacyclic bootstrapping, while only a small portion of
the function needs to go through the costly FDFB. As a result, the overall eval-
uation time is substantially reduced compared to applying FDFB to the full
lookup table.

For example, consider a full-domain LUT of length 2m decomposed into three
negacyclic LUTs of sizes 2m−1, 2m−2, and 2m−3, along with a single full-domain
LUT of size 2m−3. Traditional FDFB evaluates the entire full-domain LUT us-
ing 2 bootstrapping operations over size 2m. In contrast, our method evaluates
the LUT at a total relative cost of 1/2 + 1/4 + 1/8 with respect to a single
negacyclic LUT evaluation, plus an additional (1/8) · 2 for evaluating the small
full-domain LUT twice, resulting in an overall relative cost of about 9/8. Overall,
this leads to nearly a 2× improvement in bootstrapping efficiency in practice. In
addition, our new bootstrapping algorithm is algorithmically parallelizable by
evaluating each small lookup tables in parallel. Then, essentially the latency will
depend on the evaluation of the largest negacyclic lookup table, which leads to
4× improvements in bootstrapping time when fully parallelized.

While this approach improves computational efficiency, it also requires eval-
uating LUTs of various lengths, which in turn necessitates maintaining distinct
evaluation keys for each LUT size. This is because, to perform bootstrapping,
the evaluator must access special public keys (referred to as evaluation keys)
that enable operations such as KeySwitch and BlindRotate. These keys are de-
signed to match the polynomial degree of the ciphertext, which is determined
by the LUT size, so each LUT length typically requires a separate set of keys
tailored to the corresponding ring dimension. To address this issue, we adopt
the extended bootstrapping (EBS) [21], which leverages a ring isomorphism to
rewrite polynomial operations in Zq[X]/(X2m + 1) as 2ν independent computa-

tions in Zq[X]/(X2m−ν

+1). This allows the evaluator to simulate higher degree
bootstrapping using polynomials of lower degree, enabling all computations to
remain within a fixed and compact ring dimension. As a result, LUTs of dif-
ferent lengths can be handled within a unified dimension, avoiding the need for
multiple bootstrapping key sets.

Finally, we implement our algorithm using the TFHE-go library [15] and eval-
uate its performance and the required key size for bootstrapping. Our method
achieves up to a 3.41× speedup over previous FDFB schemes without any in-

4 Intak Hwang, Shinwon Lee, Seonhong Min, and Yongsoo Song

crease in key size, and remains 1.91× faster even when EBS is applied to the
previous FDFB. Another key advantage of our algorithm is its high paralleliz-
ability. Since the bootstrapping operations for the decomposed lookup tables are
independent, they can be executed concurrently. As a result, our approach can
achieve even greater performance gains when leveraging parallel execution.

1.2 Related works

Several approaches for full-domain functional bootstrapping (FDFB) have been
proposed in the literature:

– WoP-PBS [9] performs FDFB by extracting the most significant bit (MSB) of
the encrypted message and using BFV multiplications to select the appropri-
ate lookup table (LUT). This method requires more than two bootstrapping
operations and incurs significant noise growth due to the BFV multiplication.

– Kluczniak and Shih [18] present an optimization that replaces BFV multi-
plications with multiple functional bootstrappings to select the LUT.

– Yang et al. [27] present an FDFB method that uses only two bootstrapping
operations, improving efficiency while maintaining compact parameters.

– Kluczniak and Schild [19] and Ma et al. [24] propose several optimized FDFB
schemes that improve efficiency over earlier approaches. For example, [24]
introduces FDFB-Compress, which compresses the LWE message via a func-
tional bootstrap and applies the target function on the compressed domain,
significantly reducing parameter overhead and making it one of the most
efficient FDFB schemes to date.

– Bon et al. [3] adopted an odd plaintext modulus to circumvent the negacyclic
constraint. However, this approach is inherently restricted to odd plaintext
settings.

– Bergerat et al. [1] and Li et al. [22] proposed FDFB schemes that support
large-precision ciphertexts, overcoming the limitations of earlier methods
whose bootstrapping could not efficiently scale to high-precision inputs.

Nevertheless, all existing approaches fundamentally require at least two boot-
strapping operations, which remain a major bottleneck. Multi-value bootstrap-
ping [6] is explored in [19,24] to evaluate multiple LUTs simultaneously in a
single bootstrapping operation. This approach aims to reduce the number of
bootstrapping steps by encoding multiple output values at once. However, this
technique incurs significant noise growth and large parameter overhead, making
it impractical for efficient implementations.

As an independent interest, Hwang et al. [16] recently proposed a new TFHE-
like homomorphic encryption scheme which allows full-domain functional boot-
strapping with only a single bootstrapping with slightly slower latency compared
to the conventional TFHE bootstrapping.

Title Suppressed Due to Excessive Length 5

2 Preliminaries

2.1 Notation

We denote the polynomial ring Z[X]/(XN + 1) by R, where N is defined as 2m

for some integer m. The quotient ring R/qR is denoted by Rq. We also denote
the set {0, 1} by B. For a distribution X , we denote sampling a random variable
x from X as x ← X . A uniform distribution over a set S is denoted by U(S),
and a Gaussian distribution with mean 0 and variance α2 is denoted by ρα. The
discrete Gaussian distribution over a lattice Λ with mean 0 and variance α2,
denoted by DΛ,α, is defined as

DΛ,α(x) =
ρα(x)∑

v∈Λ ρα(v)
.

We denote the infinity norm of polynomial p by ∥p∥∞ which is defined as the
maximum size of the coefficients. Throughout the paper, we use bold uppercase
letters (e.g., A) to denote matrices and bold lowercase letters (e.g., b) to denote
vectors. All vectors are treated as row matrices. For an integer vector b, an
integer a, and a positive integer q, we use the notation [b]q and [a]q to denote
the component-wise modular reduction of b and the modular reduction of a
modulo q, respectively.

2.2 Learning with errors

We describe the decisional learning with errors (LWE) assumption [25] and its
variant over the ring of cyclotomic integers [23,26].

Definition 1 (Decisional LWE [25]). For positive integers m,n, q, and distri-
butions χ, ψ over Z, the (decisional) LWE problem LWEm,n,q,χ,ψ is to distinguish

the following distribution from the uniform distribution U(Zm×(n+1)
q):

{(A · s+ e (mod q),A) ∈ Zm×(n+1)
q | A← U(Zm×n

q), s← χn, e← ψm}.

Definition 2 (Decisional RLWE [23,26]). For positive integers m,N, q, and
distributions χ′, ψ′ over R, the (decisional) RLWE problem RLWEm,N,q,χ′,ψ′ is
to distinguish the following distribution from the uniform distribution U(Rm×2

q):

{(a · t+ e (mod q),a) ∈ R2
q | a← U(Rmq), t← χ′, e← ψ′m}.

Based on these assumptions, LWE, RLWE cryptosystems can be defined. An
LWE encryption of some plaintext m ∈ Zq is given by (b,a) ∈ Zn+1

q , where
b + ⟨a, s⟩ = m + e (mod q) for the secret s ∈ Zn and some small noise e ∈ Z.
Similarly, an RLWE encryption of a plaintext µ ∈ Rq is given by (b, a) ∈ R2

q ,
where b+a · t = µ+ e (mod q) for the secret t ∈ R, and some small noise e ∈ R.

6 Intak Hwang, Shinwon Lee, Seonhong Min, and Yongsoo Song

2.3 Gadget Toolkit and RGSW

The gadget toolkit is a commonly used noise management technique for ho-
momorphic encryption. For some integer d > 0, we call a vector g ∈ Zd and a
function h : Zq → Zd a gadget vector and a decomposition function, respectively,
if the following conditions hold for some small δ, ϵ > 0.

1. For any a ∈ Zq, ∥h(a)∥∞ ≤ δ.
2. For any a ∈ Zq, ∥a− ⟨h(a),g⟩ (mod q)∥∞ ≤ ϵ.

A typical example of the gadget vector and decomposition function is the
digit decomposition. Assuming that the ciphertext modulus q is a multiple of
Bd for some integer B > 1, the gadget vector g is given by

(
q
Bd ,

q
Bd−1 , . . . ,

q
B

)
and the decomposition function h outputs each digit of ⌊B

d

q · a⌉ in a balanced

representation. Then, we can set δ = B
2 and ϵ = q

2Bd for the inequalities above.
It is worth noting that the gadget toolkit can be extended to the ring setting by
applying the decomposition function on each coefficient of the input polynomial,
so that it outputs a vector of ring elements over R. In this paper, we represent
the gadget vector and decomposition function with these two parameters, B and
d.

Established upon the gadget toolkit, the RGSW cryptosystem [13], which
offers a level-free ciphertext-ciphertext multiplication, can be defined. Given a
gadget vector g ∈ Zd and decomposition function h : Rq → Rd, the RGSW
encryption algorithm is described as follows.
• RGSW.Enc(t, µ) : Given the RLWE secret t ∈ R and a message µ, sample

a← U(R2d
q) and e← D2d

ZN ,β . Compute and output[
g 0
0 g

]
· µ+

[
−a · t+ e (mod q)

∣∣∣∣ a] ∈ R2d×2
q .

Now, we describe the external product, a multiplicative operation between
RLWE and RGSW ciphertexts.

Definition 3 (External Product). Let c = (b, a) ∈ R2
q be an RLWE cipher-

text and C ∈ R2d×2
q be an RGSW ciphertext associated with the gadget vector g

and decomposition function h. The external product, denoted by c⊡C is defined
as follows:

c⊡C =

[
h(b)
h(a)

]⊤
·C (mod q).

2.4 The TFHE scheme

• Setup(1λ): Given a security parameter λ, generate the following public param-
eters: LWE dimension n, RLWE dimension N = 2m, error parameters α, β > 0,
plaintext and ciphertext modulus p, q, the gadget decomposition base and dimen-
sion B, d, and the key-switching base and dimension B′, d′ with corresponding

Title Suppressed Due to Excessive Length 7

gadget vector g ∈ Zd, g′ ∈ Zd′ and decomposition function h : Zq → Zd,
h′ : Zq → Zd′ . Define scaling factor ∆ as q

p .

• KeyGen(1λ):

- Sample si ← U(B) for 0 ≤ i < n. Return the LWE secret key s = (s0, s1, . . . , sn−1).
- Sample ti ← U(B) for 0 ≤ i < N . Return the RLWE secret key t = t0 + t1X +
. . .+ tN−1X

N−1. Write t = (t0, t1, . . . , tN−1).
- Set BRKi ← RGSW.Enc(t, si) for 0 ≤ i < n. Return the blind rotation key
BRK = {BRKi}0≤i<n, which is also referred to as the bootstrapping key.

- Sample Ai,1 ← U(Zd′×nq) and ei ← Dd′Z,α for 0 ≤ i < N . Set KSKi ←
(Ai,0|Ai,1) ∈ Zd

′×(n+1)
q where Ai,0 = −Ai,1 · s+g′ · ti+ ei (mod q). Return the

key switching key KSK = {KSKi}0≤i<N

• Enc(s,m): For a given secret key s, and a message m ∈ Zp, sample a =

(a0, a1, . . . , an−1) ← U(Znq) and e ← Dα. Return c = (b,a) ∈ Zn+1
q where

b = −⟨a, s⟩+∆m+ e (mod q).

• Dec(s, c): For a given secret key s, and a LWE ciphertext c = (b,a) ∈ Zn+1
q ,

let µ = b+ ⟨a, s⟩ (mod q). Output m = ⌊ 1
∆µ⌉.

• ModSwitch(c, q′): For a given LWE ciphertext c = (b,a) ∈ Zn+1
q , and a cipher-

text modulus q′, return c̄ = (⌊ q
′

q b⌉, ⌊
q′

q a⌉) ∈ Zn+1
q′ .

• BlindRotate(c̄, f̄N ,BRK): For a given LWE ciphertext c̄ = (b̄, ā) ∈ Zn+1
2N , a

negacyclic lookup table f̄N : Z2N → Zq, and a blind rotation key BRK, run
Algorithm 1. Here, f̄N must satisfy the negacyclic condition

f̄N (x) = −f̄N (x+N) for all x ∈ [0, N).

• SampleExtract(ct): For a given RLWE ciphertext ct = (
∑N−1
i=0 biX

i,
∑N−1
i=0 aiX

i) ∈
R2
q , return (b0, a0,−aN−1, . . . ,−a1) ∈ ZN+1

q . Note that SampleExtract does not
introduce any additional noise.

• KeySwitch(c,KSK): For a given LWE ciphertext c = (b, a0, . . . , aN−1) ∈ ZN+1
q ,

return (b,0) +
∑N−1
i=0 h′(ai)

⊤ · KSKi (mod q).

• Bootstrap(c, f̄N ,BRK,KSK): For a LWE ciphertext c, a given negacyclic lookup

table f̄N : Z2N → Zq, a blind rotation key BRK, and a key-switching key KSK,
run Algorithm 2. f̄N should satisfy the negacyclic condition.

8 Intak Hwang, Shinwon Lee, Seonhong Min, and Yongsoo Song

Algorithm 1: BlindRotate

Input: A LWE ciphertext (b̄, ā) ∈ Zn+1
2N , a negacyclic lookup table

f̄N : Z2N → Zq, and the blind rotation key BRK
Output: A RLWE ciphertext ∈ R2

q

1 Let tv =
∑N−1
i=0 f̄N (i) · Xi

2 ACC← (X−b̄ · tv, 0)
3 for i← 0 to n− 1 do

4 ACC← ACC+
(
(X−āi − 1) · ACC

)
⊡ BRKi

5 end
6 return ACC

Algorithm 2: TFHE Bootstrapping

Input: A LWE ciphertext c ∈ ZN+1
q , a negacyclic lookup table

f̄N : Z2N → Zq, the blind rotation key BRK, and the
key-switching key KSK

Output: A LWE ciphertext cout ∈ ZN+1
q

1 cks ← KeySwitch(KSK, c)
2 c̄← ModSwitch(cks, 2N)

3 ACC← BlindRotate(c̄, f̄N ,BRK)
4 cout ← SampleExtract(ACC)
5 return cout

• FDBlindRotate(c̄, fN ,BRK): Given a ciphertext c̄ = (b̄, ā) ∈ Zn+1
N a full-domain

lookup table fN : ZN → Zq, and a blind rotation key BRK, homomorphically
evaluate the fN .

FDBlindRotate generalizes BlindRotate by lifting the restriction to negacyclic
lookup tables. Various instantiations of FDBlindRotate have been proposed in the
literature [18,24,16]. Since FDBlindRotate generally requires two or more blind
rotations, FDBlindRotate tends to be significantly more costly than negacyclic
BlindRotate.

3 Decomposition of Lookup Table

In this section, we introduce a method to express a large full-domain lookup
table into several smaller negacyclic lookup tables and a small full-domain lookup
table. At the core of this method is a decomposition that expresses a lookup table
f2m : Z2m → Zq as the sum of a full-domain lookup table f2m−1 : Z2m−1 → Zq
and a negacyclic lookup table f̄2m−1 : Z2m → Zq. Here, a negacyclic lookup table
f̄2m−1 refers to a function satisfying the condition

f̄2m−1(x) = −f̄2m−1(x+ 2m−1) for all x ∈ [0, 2m−1).

Title Suppressed Due to Excessive Length 9

By recursively applying the decomposition to the smaller full-domain lookup
tables for µ times, the original lookup table can be rewritten as the sum of µ
negacyclic lookup tables and one small full-domain lookup table. Figure 1 pro-
vides an intuitive visualization of the recursive decomposition with decomposi-
tion depth µ = 3, illustrating how the full-domain lookup table f2m : Z2m → Zq
is expressed as the sum of 3 negacyclic components and a compact full-domain
base table.

Fig. 1. Recursive decomposition of f2m with µ = 3.

Following Lemma 1 and Theorem 1 formally state the decomposition struc-
ture.

Lemma 1. Let f2m be a lookup table f2m : Z2m → Zq. Then there exists a lookup
table f2m−1 : Z2m−1 → Zq and a negacyclic lookup table f̄2m−1 : Z2m → Zq such
that for all i ∈ Z2m , the value f2m(i) can be reconstructed by the identity

f2m(i) = f̄2m−1(i) + f2m−1([i]2m−1) + ei

where ei is a small rounding error satisfying |ei| ≤ 1.

Proof. We define f2m−1 and f̄2m−1 using the values of f2m as follows.

f2m−1(i) :=
⌊1
2

(
f2m(i) + f2m(i+ 2m−1)

)⌉
(0 ≤ i < 2m−1)

f̄2m−1(i) :=


⌊1
2

(
f2m(i)− f2m(i+ 2m−1)

)⌉
(0 ≤ i < 2m−1)

−f̄2m−1(i− 2m−1) (2m−1 ≤ i < 2m)

Where f2m(i) is viewed as a real number, and the arithmetic is performed in R.
Then the identity

f̄2m−1(i) + f2m−1([i]2m−1)

=
⌊1
2

(
f2m(i)− f2m(i+ 2m−1)

)⌉
+
⌊1
2

(
f2m(i) + f2m(i+ 2m−1)

)⌉

10 Intak Hwang, Shinwon Lee, Seonhong Min, and Yongsoo Song

=
1

2

(
f2m(i)− f2m(i+ 2m−1)

)
+ e′i +

1

2

(
f2m(i) + f2m(i+ 2m−1)

)
+ e′′i

= f2m(i) + ei

holds for all i ∈ [0, 2m−1) and

f̄2m−1(i) + f2m−1([i]2m−1)

= −
⌊1
2

(
f2m(i− 2m−1)− f2m(i)

)⌉
+

⌊1
2

(
f2m(i− 2m−1) + f2m(i)

)⌉
= −1

2

(
f2m(i− 2m−1)− f2m(i)

)
+ e′i +

1

2

(
f2m(i− 2m−1) + f2m(i)

)
+ e′′i

= f2m(i) + ei

holds for all i ∈ [2m−1, 2m) for some rounding errors e′i, e
′′
i with |e′i|, |e′′i | ≤ 1

2 , so
that their sum ei = e′i + e′′i satisfies |ei| ≤ 1. □

Theorem 1. Let f2m be a lookup table f2m : Z2m → Zq. For a given decom-
position depth 1 ≤ µ < m, there exists a sequence of negacyclic lookup tables{
f̄2k : Z2k+1 → Zq

}m−1

k=m−µ and a full-domain lookup table f2m−µ : Z2m−µ → Zq
such that, for all i ∈ Z2m , the value f2m(i) can be reconstructed by the identity

f2m(i) =

m−1∑
k=m−µ

f̄2k([i]2k+1) + f2m−µ([i]2m−µ) + ei.

where ei is a small rounding error satisfying |ei| ≤ µ.

Proof. The proof follows by applying Lemma 1 recursively µ times. □

As |ei| ≤ µ and q ≫ µ in typical settings, the rounding error is negligible.
We now present an algorithm that implements the decomposition described in
Lemma 1 and Theorem 1.

• DecompLUT(f2m , µ): For a given full-domain lookup table f2m : Z2m → Zq
and decomposition depth µ, run Algorithm 3.

This algorithm recursively decomposes f2m by iteratively applying the de-
composition described in Lemma 1. At each level, it computes the sum and dif-
ference of the first and second halves of the lookup table. The difference yields
a negacyclic lookup table of size 2k, and the sum becomes a smaller full-domain
table of size 2k used in the next iteration. After µ steps, the algorithm returns
µ negacyclic lookup tables and a full-domain lookup table of size 2m−µ, which
can be used to reconstruct the original table.

4 A Faster Extended Full-Domain Bootstrapping

In this section, we present a new blind rotation algorithm for a faster full-domain
functional bootstrapping, based on the recursive lookup table decomposition

Title Suppressed Due to Excessive Length 11

Algorithm 3: DecompLUT

Input: A full-domain lookup table f2m : Z2m → Zq, and a
decomposition depth 1 ≤ µ < m

Output: A sequence of negacyclic lookup table {f̄2k}m−1
k=m−µ where each

f̄2k : Z2k+1 → Zq and a full-domain lookup table
f2m−µ : Z2m−µ → Zq

1 current← f2m

2 for k ← m− 1 down to m− µ do
3 n← 2k

4 for i← 0 to n− 1 do

5 new[i]←
⌊
1
2

(
current[i] + current[n+ i]

)⌉
6 f̄2k [i]←

⌊
1
2

(
current[i]− current[n+ i]

)⌉
7 f̄2k [n+ i]← −f̄2k [i]
8 end
9 current← new

10 end
11 f2m−µ ← current

12 return {f̄2m−1 , . . . , f̄2m−µ}, f2m−µ

introduced in the previous section. Our method can utilize any existing FDFB
method as a baseline without losing its efficiency, and is also algorithmically
parallelizable, unlike previous methods.

In prior works, arbitrary lookup tables were evaluated with two or more
consecutive negacyclic lookup table evaluations of double the size. Note that a
single negacyclic lookup table can be evaluated via TFHE bootstrapping, and
the latency of the bootstrapping is proportional to the size of the lookup ta-
ble. Therefore, when evaluating a size N lookup table, the existing full-domain
functional bootstrapping methods require the latency of at least two negacyclic
functional bootstrapping of the size 2N , ending up in roughly 4N unit time.

Instead, we propose to decompose the input size N lookup table into several
negacyclic lookup tables and a compact lookup table with size ≤ N , exploiting
our novel recursive decomposition method. As a result, we can almost halve the
latency of the full-domain functional bootstrapping without any compromise.

4.1 Bootstrapping with Recursive lookup table Decomposition

In Algorithm 4, the full-domain lookup table f2m is first decomposed using

DecompLUT into a sequence of smaller negacyclic lookup tables {f̄2k}
m−1

k=m−µ and

a base full-domain table f2m−µ . Each negacyclic lookup table f̄2k : Z2k+1 → Zq
satisfies the condition

f̄2k(x) = −f̄2k(x+ 2k) for all x ∈ [0, 2k).

12 Intak Hwang, Shinwon Lee, Seonhong Min, and Yongsoo Song

The algorithm then performs µ blind rotation on each {f̄2k}
m−1

k=m−µ, whose size
decreases with k. After each blind rotation, sample extraction and key switching
are applied to obtain an LWE ciphertext that is accumulated into the output. Af-
ter processing all negacyclic components, a full-domain blind rotation is applied
to the small-sized base lookup table f2m−µ , along with a final sample extraction
and key switching. The result is the sum of all partial ciphertexts, completing
the evaluation. We provide the full algorithm in Algorithm 4.

Algorithm 4: Efficient Full Domain Functional Bootstrapping without
EBS

Input: A LWE ciphertext c = (b,a) ∈ Zn+1
q , a full-domain lookup table

f2m : Z2m → Zq, a decomposition depth 1 ≤ µ < m, a set of
blind rotation key{BRK2k}m−1

k=m−µ, and a set of key-switching

key {KSK2k}m−1
k=m−µ

Output: A LWE ciphertext cout = (b,a) ∈ Zn+1
q

1 {f̄2k}m−1
k=m−µ , f2m−µ ← DecompLUT(f2m , µ)

2 (b̄, ā)← ModSwitch((b,a), 2m)
3 Let cout = (0,0) ∈ Zn+1

q

4 for k ← m− µ to m− 1 do
5 ACCres ← BlindRotate(([b̄]2k+1 , [ā]2k+1), f̄2k ,BRK2k)
6 c′ ← SampleExtract(ACCres)
7 cout ← cout + KeySwitch(c′,KSK2k)

8 end
9 ACCres ← FDBlindRotate(([b̄]2m−µ , [ā]2m−µ), f2m−µ ,BRK2m−µ)

10 c′ ← SampleExtract(ACCres)
11 cout ← cout + KeySwitch(c′,KSK2m−µ)
12 return cout

Time complexity. Our decomposition-based algorithm allows us to distribute
the computation across smaller lookup tables. Since the cost of blind rotation
grows almost linearly with the size of the lookup table, this decomposition leads
to substantial savings. Our algorithm returns µ negacyclic lookup tables of size
N, . . . , N/2µ−1 and a regular lookup table of size N/2µ where µ is the de-
composition depth. Then, these lookup tables can be evaluated in a total of
N + · · · + N/2µ−1 + N/2µ · 4 = 2N + N/2µ−1 unit time without paralleliza-
tion (N unit time with parallelization). In contrast, as mentioned earlier in this
section, existing full-domain bootstrapping methods require a minimum of 4N
unit time. Therefore, our decomposition-based algorithm provides substantial
performance gains over conventional full-domain bootstrapping methods.

Key Size. Let n be the dimension of the input LWE ciphertext. Generally, to
evaluate a negacyclic lookup table of size N , we require n RGSW ciphertexts

Title Suppressed Due to Excessive Length 13

with ring dimension N , and N key-switching keys, which roughly take n·N space
complexity, up to a constant determined by the gadget parameters. Therefore,
the existing full-domain bootstrapping methods require evaluation keys of the
size 2nN unit size, as they leverage size 2N negacyclic lookup table evaluation.
In contrast, our full domain functional bootstrapping algorithm consists of blind
rotation over rings with different dimensions, namely N,N/2, . . . , N/2µ−1 for the
decomposition depth µ > 0. To facilitate all the blind rotations over these ring
degrees, we need evaluation keys of the size n(N+N/2+ · · ·+N/2µ−1) = 2nN−
nN/2µ−1 unit size. To compare with the conventional method, our algorithm
shows a slightly smaller key size overhead.

Our algorithm offers significant advantages over conventional full-domain
functional bootstrapping, which typically requires two consecutive bootstrap-
ping operations. By leveraging the negacyclic decomposition structure, our ap-
proach achieves the same functionality at a substantially reduced computational
cost, cutting the overall cost by nearly half. Another important advantage of
our method is that each blind rotation operates independently of the others,
enabling highly parallelizable and scalable computation across all components.
Furthermore, the FDBlindRotate algorithm for the base full-domain lookup table
can be used as a black-box component, allowing any existing FDFB implemen-
tation such as [18,24,16] to be directly reused without modification. In addition,
since our algorithm treats blind rotation as a black-box subroutine, it is com-
patible with a wide range of recent optimization techniques such as [2,20], all
of which can be orthogonally integrated to further improve performance.

4.2 Optimization via Extended Bootstrapping

In this section, we discuss how to optimize the key size and noise growth for
our novel functional bootstrapping method from lookup table decomposition
without compromising the computational cost. As specified in the previous sec-
tion, the evaluation key size of a vanilla TFHE scheme grows linearly to the
size of the lookup table evaluated. This makes the evaluation of large lookup
tables challenging, as the communication cost and the space complexity are in-
creased. Therefore, we discuss how to make our approach truly scalable and
practical by leveraging the extended bootstrapping (EBS) technique [21]. As a
result, we can evaluate any size lookup table using a single shared blind rota-
tion and key-switching key with a smaller unified ring dimension, by mapping
high-dimensional polynomial rings to multiple copies of a lower-dimensional ring.

Extended Bootstrapping (EBS) Let us formally introduce the extended
bootstrapping (EBS) proposed in [21]. The main idea of EBS is to rewrite poly-
nomial operations in dimension N = 2m as 2ν independent operations in dimen-
sion 2m−ν via a module isomorphism

τ : Zq[X]/(X2m + 1)→
(
Zq[X]/(X2m−ν

+ 1)
)2ν

,

14 Intak Hwang, Shinwon Lee, Seonhong Min, and Yongsoo Song

τ
(2m∑
i=0

piX
i
)
=

(2m−ν∑
i=0

p2ν iX
i, · · · ,

2m−ν∑
i=0

p2ν i+2ν−1X
i
)

where ν is referred to as the extend factor. Then,

τ
(
RLWE2m

text (pt)
)
=

(
RLWE2m−ν

t (pt0), · · · ,RLWE2m−ν

t (pt2ν−1)
)

holds for τ(pt) = (pt0, · · · , pt2ν−1). Where the subscript denotes the secret key,
the superscript specifies the RLWE ring degree, and the argument represents the
encrypted plaintext. The extended key text is constructed by copying the entries
of t into the indices divisible by 2ν and setting all other positions to zero.

Furthermore, under the assumption that z ∈ Z, we can perform RGSW-
RLWE external product in parallel by,

RGSW2m

text (z)⊡ RLWE2m

text (pt)

≃
(
RGSW2m−ν

t (z)⊡ RLWE2m−ν

t (pt0), · · · ,RGSW2m−ν

t (z)⊡ RLWE2m−ν

t (pt2ν−1)
)
.

Specifically, the decomposition enables each external product to be performed
independently across 2ν components. Because the RGSW ciphertext operates
over a reduced dimension 2m−ν , the entire procedure avoids additional key
growth even when handling lookup tables of varying lengths.

• ExtBlindRotateν(c̄, f̄2m ,BRK): For a given LWE ciphertext c̄ = (b̄, ā) ∈ Zn+1
2m+1 ,

a negacyclic lookup table f̄2m : Z2m+1 → Zq, an extend factor ν, and a blind
rotation key BRK, run Algorithm 5.

Lines 3–8 in Algorithm 5 perform blind rotation in parallel across the 2ν com-

ponents of the decomposed accumulator
−−→
ACC using the module isomorphism τ .

We now introduce an optimized version of Algorithm 4 that incorporates
the extended bootstrapping (EBS) framework. By leveraging EBS, we can en-
sure that all RGSW operations are carried out over a unified reduced dimension
N ′ = 2m−µ, thereby enabling the reuse of the same BRK across all components.

Moreover, each ExtBlindRotate outputs a single accumulator
−−→
ACC0 of RLWE de-

gree N ′, allowing all results to be key switched together using a single KSK. This
unified structure not only improves computational efficiency but also eliminates
the key size overhead that arose in the original algorithm when handling lookup
tables of varying lengths. Our optimized blind rotation algorithm with EBS is
described in Algorithm 6. In the loop spanning Lines 5–8 of Algorithm 6, lookup
tables of different lengths are processed using a common BRK with dimension
N ′ by leveraging the EBS framework. To ensure that the reduced RLWE degree
2k−ν remains fixed at N ′ for each ExtBlindRotate, the extend factor ν is incre-
mented by 1 in each iteration of the loop. Among the variants of FDBlindRotate,
we adopt FDFB-Compress proposed in [21] as it introduces minimal parameter
overhead and requires the fewest number of bootstrapping operations. Note that

Title Suppressed Due to Excessive Length 15

Algorithm 5: ExtBlindRotateν

Input: A LWE ciphertext (b̄, ā) ∈ Zn+1
2m+1 , a negacyclic lookup table

f̄2m : Z2m+1 → Zq, and the blind rotation key BRK

Output: A decomposed RLWE ciphertext
−−−→
ACC0 with τ−1

(−−→
ACC

)
∈ R2

q

1 Let tv =
∑2m−1
i=0 f̄(i) ·Xi

2
−−→
ACC← τ

(
(X−b̄ · tv, 0)

)
3 for i← 0 to n− 1 do

4
−−−−−→
RotACC← τ

(
X−āi · τ−1

(−−→
ACC

))
5 for j ← 0 to 2ν − 1 do

6
−−−→
ACCj ← BRKi ⊡

(−−−−−−→
RotACCj −

−−→
ACCj

)
+
−−→
ACCj

7 end

8 end

9 return
−−−→
ACC0

the input ciphertext for the call to FDBlindRotate at line Line 10 in Algorithm 6
is modulus switched to Z2m+1 , as FDFB-Compress requires a modulus twice the
size of the full-domain lookup table.

Algorithm 6: Efficient Full Domain Functional Bootstrapping with
EBS

Input: A LWE ciphertext c = (b,a) ∈ Zn+1
q , a full-domain lookup table

f2m : Z2m → Zq, a decomposition depth 1 ≤ µ < m, the blind
rotation key BRK and the key-switching key KSK

Output: A LWE ciphertext cout = (b,a) ∈ Zn+1
q

1 {f̄2k}m−1
k=m−µ , f2m−µ ← DecompLUT(f2m , µ)

2 (b̄, ā)← ModSwitch((b,a), 2m)
3 Let ACCres = (0, 0) ∈ R2

q

4 ν ← 0
5 for k ← m− µ to m− 1 do
6 ACCres ← ACCres + ExtBlindRotateν(([b̄]2k+1 , [ā]2k+1), f̄2k ,BRK)
7 ν ← ν + 1

8 end

9 (b̃, ã)← ModSwitch((b,a), 2m+1)

10 ACCres ← ACCres + FDBlindRotate(([b̃]2m−µ+1 , [ã]2m−µ+1), f2m−µ ,BRK)
11 c′ ← SampleExtract(ACCres)
12 return cout = KeySwitch(c′,KSK)

16 Intak Hwang, Shinwon Lee, Seonhong Min, and Yongsoo Song

The exact description of our scheme is as follows. Enc and Dec, remain the
same as in the original TFHE scheme.

• Setup(1λ): Given a security parameter λ, generate the following public pa-
rameters: LWE dimension n, lookup table length N , decomposition depth µ
where RLWE dimension is N ′ = 2m−µ, error parameters α, β > 0, plaintext
and ciphertext modulus p, q, the gadget decomposition base and dimension B,
d, and the key-switching base and dimensionB′, d′. Define scaling factor ∆ as qp .

• KeyGen(1λ):

- Sample si ← U(B) for 0 ≤ i < n. Return the LWE secret key s = (s0, s1, . . . , sn−1).
- Sample ti ← U(B) for 0 ≤ i < N ′. Return the RLWE secret key t =
t0 + t1X + . . .+ tN ′−1X

N ′−1. Write t = (t0, t1, . . . , tN ′−1).
- Set BRKi ← RGSW.Enc(t, si) for 0 ≤ i < n. Return the blind rotation key
BRK = {BRKi}0≤i<N ′ .
- Set KSK← SwitchKeyGen(s, t). Return the key-switching key KSK.

• OurFullDomainBootstrap(c, fN , µ,BRK,KSK): For a LWE ciphertext c, a given
full-domain lookup table fN : ZN → Zq, a decomposition depth µ, a blind rota-
tion key BRK, and a key-switching key KSK, run Algorithm 6.

Even with the application of EBS, our method retains its performance ad-
vantage over conventional full-domain bootstrapping. Since the use of EBS is or-
thogonal to our decomposition-based optimization, the total computation time
remains nearly halved compared to traditional methods, achieving up to a 2×
speedup.

4.3 Error Analysis

In this section, we present a concrete error analysis of our new bootstrapping
algorithm. We assume that each LWE and RLWE component is uniformly dis-
tributed over Zq and Rq, respectively, under the (R)LWE assumption. As men-
tioned earlier, the gadget decomposition base and dimension are denoted by B
and d, respectively, while the key-switching base and dimension are denoted by
B′ and d′.

Lemma 2 (ModSwitch and KeySwitch). Let (b̄, ā) := ModSwitch((b,a), N),
and c′ := KeySwitch(c,KSK). Then, the error variances after each operation sat-
isfy:

Var
(
Err

(q
N
b̄,
q

N
ā
))
≤ Var(Err(b,a)) + VMS,

Var(Err(c′)) ≤ Var(Err(c)) + VKS.

where

VMS :=
n+ 1

12N2
, VKS :=

1

12B′2d′ q
2N2 +

1

12
α2d′NB′2.

Title Suppressed Due to Excessive Length 17

Proof. Follows from [17, Lemma 8,9]. □

Lemma 3 (Extended Bootstrapping). Let ACC := ExtBlindRotateν((b̄, ā), f̄N ,BRK)
with extend factor ν. Then, the error variance after ExtBlindRotate satisfy:

Var(Err(ACC)) ≤ VEBR := n
(N
2ν

+ 1
) q2

6B2d
+

1

3
dn

(N
2ν

)
β2B2.

In other words, error variance of extended blind rotation is determined by the
reduced ring degree N/2ν , and thus two instances with the same N/2ν will have
the same error variance.

Proof. From [21, Proposition 2], we get that VEBR corresponds to the error vari-
ance of a blind rotation with a reduced RLWE dimension of N/2ν where ν is

the extend factor. By substituting N/2ν into the expression n(N + 1) q2

6B2d +
1
3dnNβ

2B2 from [17, Lemma 10], which gives the error variance for a blind
rotation of RLWE dimension N, we obtain the result in lemma. □

Lemma 4 (Our Bootstrapping). Input error variance of ExtBlindRotate and
FDBlindRotate in Algorithm 6 is

VMS + (µ+ 1)VEBR + µ2 + VKS,
VMS

4
+ (µ+ 1)VEBR + µ2 + VKS

respectively. Here, µ denotes the decomposition depth, and ν used in the defini-
tion of VEBR is set equal to µ.

Proof. According to Lemma 3 the error variance introduced by ModSwitch is
VMS when the modulus is switched to N = 2m, and 1

4VMS when switched to
2N = 2m+1.

During Algorithm 6, ExtBlindRotate and FDBlindRotate is invoked (µ + 1)
times—specifically in lines 5–7 and line 10. As stated in Lemma 3, each in-
vocation of ExtBlindRotate and FDBlindRotate introduces an error term with
the same variance VEBR, since they all operate on the same reduced ring de-
gree N/2µ = 2m−µ with EBS. These errors accumulate over µ + 1 invocations,
resulting in a total variance of (µ+ 1)VEBR.

In addition, the rounding error introduced by the LUT decomposition in
Theorem 1 contributes an error variance of at most µ2. Since µ < logN , this
contribution is negligible compared to other dominant terms.

Finally, the key switching step contributes an additional error variance of
VKS, which completes the total input variance as stated. □

Note that our blind rotation error is log(µ+ 1) bits larger than the original
EBS. However, this increase remains moderate in the overall error budget, as
VMS and VKS are still the dominant contributors to the total variance.

18 Intak Hwang, Shinwon Lee, Seonhong Min, and Yongsoo Song

5 Experimental Results

In this section, we present experimental results for our algorithm and compare
them with previous works. The source code is available at https://github.com/SNUCP/fast-fdfb.
Our implementation is written in Go, based on the TFHE-go library [15].

5.1 Parameter Selection

We provide benchmark results for both the non-EBS and EBS variants (corre-
sponding to Algorithm 4 and Algorithm 6). The parameter sets for the non-EBS
and EBS variants are provided in Table 1 and Table 2, respectively. For each
plaintext modulus p ranging from 25 to 28, we specify distinct parameter sets.
In all parameter sets, we fix q, α, and β to 264, 236.00, and 212.65, respectively.
All parameters are chosen to ensure 128-bit security while keeping the boot-
strapping failure probability below 2−60. The value of decomposition depth µ
is chosen as large as possible to maximize performance, while ensuring that the
reduced RLWE dimension N ′ = N/2µ still achieves 128-bit security. Because
the non-EBS variant incurs slightly larger errors during blind rotation and key
switching, its gadget parameters are set to slightly larger values in certain cases.

p n N µ B d B′ d′

25

1160

212 1

222

1

27 3
26 213 2

227 214 3

28 215 4
Table 1. Parameter sets for the non-EBS variant

p n N µ B d B′ d′

25

1160

212 1

222
1

27 3
26 213 2

27 214 3
2

28 215 4
Table 2. Parameter sets for the EBS variant

5.2 Benchmark Results

Now we present the benchmark results of our full domain bootstrapping algo-
rithm. The non-EBS and EBS variants were configured according to the pa-

https://github.com/SNUCP/fast-fdfb

Title Suppressed Due to Excessive Length 19

rameter sets given in Table 1 and Table 2, respectively. All benchmarks were
conducted on a single core of a desktop equipped with an Intel Core i7-12700F
CPU and 32GB of RAM. Each benchmark was repeated 50 times, and the av-
erage runtime was reported. For comparison, we additionally implemented the
FDFB-Compress scheme presented in [24], as it offers minimal parameter over-
head and requires only two bootstrapping operations, which is the fewest among
previously known full-domain bootstrapping schemes.

The resulting benchmark times are summarized in Table 3. We also provide
the size of the public keys required for bootstrapping in Table 4.

p = 25 p = 26 p = 27 p = 28

Non-EBS
FDFB-Compress 79 ms 297 ms 655 ms 1470 ms

Ours 59 ms 146 ms 300 ms 648 ms

EBS
FDFB-Compress 70 ms 134 ms 393 ms 823 ms

Ours 57 ms 91 ms 234 ms 431 ms

Table 3. FDFB performance for each plaintext modulus p.

p = 25 p = 26 p = 27 p = 28

Non-EBS
FDFB-Compress 254 MB 798 MB 1.56 GB 3.12 GB

Ours 127 MB 598 MB 1.36 GB 2.98 GB

EBS
FDFB-Compress

127 MB 199 MB
Ours

Table 4. Bootstrapping key size for each plaintext modulus.

As shown in Table 3 and Table 4, applying EBS to our new bootstrapping
algorithm yields up to 1.50× speedup compared to the non-EBS version, while
significantly reducing the key size. In particular, without EBS, the key size can
grow up to 25.1× larger, which is effectively mitigated by our EBS-based ap-
proach.

Moreover, our full-domain bootstrapping algorithm achieves substantially
better performance than previous approaches without incurring any additional
key size growth. For example, when the plaintext modulus is p = 28, our method
is approximately 3.41× faster than FDFB-Compress without EBS, and 1.91×
faster even when EBS is applied. Remarkably, our method is only 4.7% slower
than a single instance of negacyclic bootstrapping, suggesting that it is nearly
the most optimal full-domain bootstrapping algorithm.

20 Intak Hwang, Shinwon Lee, Seonhong Min, and Yongsoo Song

Also, our algorithm can achieve even better performance thanks to its par-
allelizability. Unlike conventional blind rotation, which is inherently difficult to
parallelize due to sequential dependencies, our method allows each blind rotation
over decomposed LUTs to operate independently, enabling highly parallel and
scalable computation across all components.

Acknowledgements

This work was partly supported by the National Research Foundation of Ko-
rea(NRF) grant funded by the Korea government(MSIT) (No. RS-2023-00211649)
and Institute of Information & Communications Technology Planning & Eval-
uation (IITP) grant funded by the Korea government(MSIT) (No. RS-2024-
00399491, Development of Privacy-Preserving Multiparty Computation Tech-
niques for Secure Multiparty Data Integration).

References

1. Bergerat, L., Boudi, A., Bourgerie, Q., Chillotti, I., Ligier, D., Orfila, J., Tap,
S.: Parameter optimization and larger precision for (T)FHE. J. Cryptol. 36(3),
28 (2023). https://doi.org/10.1007/S00145-023-09463-5, https://doi.org/

10.1007/s00145-023-09463-5

2. Bergerat, L., Chillotti, I., Ligier, D., Orfila, J.B., Roux-Langlois, A., Tap, S.: New
secret keys for enhanced performance in (T)FHE. In: Luo, B., Liao, X., Xu, J.,
Kirda, E., Lie, D. (eds.) ACM CCS 2024: 31st Conference on Computer and Com-
munications Security. pp. 2547–2561. ACM Press, Salt Lake City, UT, USA (Oc-
tober 14–18, 2024). https://doi.org/10.1145/3658644.3670376

3. Bon, N., Pointcheval, D., Rivain, M.: Optimized homomorphic evaluation of
boolean functions. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2024(3), 302–
341 (2024). https://doi.org/10.46586/TCHES.V2024.I3.302-341, https://doi.
org/10.46586/tches.v2024.i3.302-341

4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: Annual cryptology conference. pp. 868–886. Springer (2012)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 1–36 (2014)

6. Carpov, S., Izabachène, M., Mollimard, V.: New techniques for multi-value input
homomorphic evaluation and applications. In: Cryptographers’ Track at the RSA
Conference. pp. 106–126. Springer (2019)

7. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Advances in cryptology–ASIACRYPT 2017:
23rd international conference on the theory and applications of cryptology and
information security, Hong kong, China, December 3-7, 2017, proceedings, part i
23. pp. 409–437. Springer (2017)

8. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

9. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrapping
with larger precision and efficient arithmetic circuits for tfhe. In: International

https://doi.org/10.1007/S00145-023-09463-5
https://doi.org/10.1007/S00145-023-09463-5
https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.1145/3658644.3670376
https://doi.org/10.1145/3658644.3670376
https://doi.org/10.46586/TCHES.V2024.I3.302-341
https://doi.org/10.46586/TCHES.V2024.I3.302-341
https://doi.org/10.46586/tches.v2024.i3.302-341
https://doi.org/10.46586/tches.v2024.i3.302-341

Title Suppressed Due to Excessive Length 21

Conference on the Theory and Application of Cryptology and Information Security.
pp. 670–699. Springer (2021)

10. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology – EU-
ROCRYPT 2015, Part I. Lecture Notes in Computer Science, vol. 9056, pp. 617–
640. Springer Berlin Heidelberg, Germany, Sofia, Bulgaria (April 26–30, 2015).
https://doi.org/10.1007/978-3-662-46800-5_24

11. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceed-
ings of the Forty-First Annual ACM Symposium on Theory of Computing.
p. 169–178. STOC ’09, Association for Computing Machinery, New York, NY,
USA (2009). https://doi.org/10.1145/1536414.1536440, https://doi.org/10.
1145/1536414.1536440

13. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances in
Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I. pp. 75–92. Springer (2013)

14. Guimarães, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in
tfhe. IACR Transactions on Cryptographic Hardware and Embedded Systems pp.
229–253 (2021)

15. Hwang, I.: TFHE-go. Online: https://github.com/sp301415/tfhe-go (2023)
16. Hwang, I., Min, S., Song, Y.: Carousel: Fully homomorphic encryption with boot-

strapping over automorphism group. Cryptology ePrint Archive, Paper 2024/2032
(2024), https://eprint.iacr.org/2024/2032

17. Hwang, I., Min, S., Song, Y.: Practical circuit privacy/sanitization for TFHE.
Cryptology ePrint Archive, Paper 2025/216 (2025), https://eprint.iacr.org/
2025/216

18. Kluczniak, K., Schild, L.: FDFB: full domain functional bootstrapping towards
practical fully homomorphic encryption. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2023(1), 501–537 (2023). https://doi.org/10.46586/TCHES.V2023.
I1.501-537, https://doi.org/10.46586/tches.v2023.i1.501-537

19. Kluczniak, K., Schild, L.: FDFB2: Functional bootstrapping via sparse polyno-
mial multiplication. Cryptology ePrint Archive, Paper 2024/1376 (2024), https:
//eprint.iacr.org/2024/1376

20. Lee, C., Min, S., Seo, J., Song, Y.: Faster TFHE bootstrapping with block bi-
nary keys. In: Liu, J.K., Xiang, Y., Nepal, S., Tsudik, G. (eds.) Proceedings
of the 2023 ACM Asia Conference on Computer and Communications Secu-
rity, ASIA CCS 2023, Melbourne, VIC, Australia, July 10-14, 2023. pp. 2–13.
ACM (2023). https://doi.org/10.1145/3579856.3595804, https://doi.org/

10.1145/3579856.3595804

21. Lee, K., Yoon, J.W.: Discretization error reduction for high precision torus fully
homomorphic encryption. In: Boldyreva, A., Kolesnikov, V. (eds.) Public-Key
Cryptography - PKC 2023 - 26th IACR International Conference on Practice
and Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7-10, 2023,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 13941, pp. 33–
62. Springer (2023). https://doi.org/10.1007/978-3-031-31371-4_2, https:

//doi.org/10.1007/978-3-031-31371-4_2

22. Liu, Z., Micciancio, D., Polyakov, Y.: Large-precision homomorphic sign evaluation
using FHEW/TFHE bootstrapping. In: Agrawal, S., Lin, D. (eds.) Advances in

https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://github.com/sp301415/tfhe-go
https://eprint.iacr.org/2024/2032
https://eprint.iacr.org/2025/216
https://eprint.iacr.org/2025/216
https://doi.org/10.46586/TCHES.V2023.I1.501-537
https://doi.org/10.46586/TCHES.V2023.I1.501-537
https://doi.org/10.46586/TCHES.V2023.I1.501-537
https://doi.org/10.46586/TCHES.V2023.I1.501-537
https://doi.org/10.46586/tches.v2023.i1.501-537
https://eprint.iacr.org/2024/1376
https://eprint.iacr.org/2024/1376
https://doi.org/10.1145/3579856.3595804
https://doi.org/10.1145/3579856.3595804
https://doi.org/10.1145/3579856.3595804
https://doi.org/10.1145/3579856.3595804
https://doi.org/10.1007/978-3-031-31371-4_2
https://doi.org/10.1007/978-3-031-31371-4_2
https://doi.org/10.1007/978-3-031-31371-4_2
https://doi.org/10.1007/978-3-031-31371-4_2

22 Intak Hwang, Shinwon Lee, Seonhong Min, and Yongsoo Song

Cryptology - ASIACRYPT 2022 - 28th International Conference on the Theory and
Application of Cryptology and Information Security, Taipei, Taiwan, December 5-
9, 2022, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13792,
pp. 130–160. Springer (2022). https://doi.org/10.1007/978-3-031-22966-4_5,
https://doi.org/10.1007/978-3-031-22966-4_5

23. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Advances in Cryptology–EUROCRYPT 2010: 29th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30–June 3, 2010. Proceedings 29. pp. 1–23. Springer (2010)

24. Ma, S., Huang, T., Wang, A., Zhou, Q., Wang, X.: Fast and accurate: Effi-
cient full-domain functional bootstrap and digit decomposition for homomor-
phic computation. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2024(1), 592–
616 (2024). https://doi.org/10.46586/TCHES.V2024.I1.592-616, https://doi.
org/10.46586/tches.v2024.i1.592-616

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)

26. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 617–635. Springer (2009)

27. Yang, Z., Xie, X., Shen, H., Chen, S., Zhou, J.: TOTA: Fully homomorphic en-
cryption with smaller parameters and stronger security. Cryptology ePrint Archive,
Paper 2021/1347 (2021), https://eprint.iacr.org/2021/1347

https://doi.org/10.1007/978-3-031-22966-4_5
https://doi.org/10.1007/978-3-031-22966-4_5
https://doi.org/10.1007/978-3-031-22966-4_5
https://doi.org/10.46586/TCHES.V2024.I1.592-616
https://doi.org/10.46586/TCHES.V2024.I1.592-616
https://doi.org/10.46586/tches.v2024.i1.592-616
https://doi.org/10.46586/tches.v2024.i1.592-616
https://eprint.iacr.org/2021/1347

	Efficient Full Domain Functional Bootstrapping from Recursive LUT Decomposition

