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Abstract. SPONGENT is a lightweight hash function based on the sponge
construction, featuring a PRESENT-like round function. Although it is in-
cluded in the ISO standard for lightweight cryptography, no third-party
analysis of collision attacks has been conducted. This lack of analysis is
primarily due to the inherent difficulty of identifying value pairs that sat-
isfy differential characteristics in sponge-construction-based hash func-
tions. In this paper, we propose a novel method to efficiently identify
value pairs that satisfy differential characteristics for keyless permuta-
tions. To address the existing problems, we introduce a grouping method
that classifies input variables into categories such as free bits, fixed bits,
and interdependent groups. This categorization facilitates efficient com-
putation of degrees of freedom by solving for valid states within each
group independently. We apply this method to variants of SPONGENT and,
for the first time, demonstrate collision and semi-free-start collision at-
tacks on reduced variants.
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1 Introduction

1.1 Background

In recent years, lightweight cryptography for resource-constrained environments,
such as IoT devices, has gained significant attention. While research on lightweight
block ciphers is very active, the security evaluation of lightweight hash functions
remains insufficient, particularly for sponge-based schemes such as Quark [2],
PHOTON [12] and SPONGENT [7]. Although these schemes are included in the ISO
standard for lightweight cryptography [13], it is surprising that no third-party
evaluations of collision attacks, which is one of the most critical properties of a
hash function, have been conducted. Existing research has only focused on dis-
tinguishing attacks targeting the underlying permutations [1, 14,19, 27,30, 31].

SPONGENT [7] is a sponge-based lightweight hash function proposed by Bog-
danov et al. It is designed using a PRESENT-like primitive [8] and offers 13 variants
with different security levels, allowing users to select an option based on resource
constraints and specific security priorities.
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Regarding security evaluation, Abdelraheem showed differential and linear
distinguishers for the underlying permutations [1].

Zhang and Liu further performed distinguishing attacks and preimage at-
tacks through truncated differential attacks with the meet-in-the-middle tech-
nique [31]. However, no effective evaluation of collision resistance has been con-
ducted so far except designer’s evaluation [7]. This lack of evaluation arises from
the inherent difficulty of identifying value pairs that satisfy differential charac-
teristics in sponge-construction-based hash functions. The difficulty is primarily
due to the absence of key-insertion mechanisms in their underlying permuta-
tions. This imposes taking the dependency between values and differences in
S-boxes over multiple rounds into account, making obtaining enough degrees of
freedom (DoF) quite complex. Indeed, Liu et al. demonstrated that many dif-
ferential characteristics in the previous studies on sponge-based hash functions
are not valid [17].

1.2 Contribution

In this paper, to address the problem of collision attacks on sponge-based hash
function, we present a new method to efficiently identify value pairs that satisfy
a given differential characteristics for key-less permutations. Our method fo-
cuses on modeling dependencies between value and difference transitions, draw-
ing from Liu et al.’s approach [17]. A truth table representing these transitions
is constructed and then simplified using logic minimization tools like Espresso.
Our contribution is summarized as follow.

— We propose an approach to categorize input variables based on their de-
pendencies. These variables are classified into free bits, which are indepen-
dent and maximize the DoF; fixed bits, which are constrained to specific
values; and interdependent groups, which are analyzed incrementally using
SAT solvers. This categorization ensures efficient computation of DoF by
solving for valid states within each group independently. By integrating the
solutions from these groups, we determine the total DoF, which is crucial
for assessing the feasibility of collision attacks on sponge-construction-based
hash functions.

— We apply our method to several variants of SPONGENT. Table 1 shows the
summary of our results. We obtain collision and semi-free-start collision at-
tacks on reduced variants of SPONGENT for the first time. To verify our ap-
proach, we present actual collision pairs for several variants. It should be
noted that the results of our attacks do not immediately affect the security
of Spongent as there are still enough security margin.

2 Preliminaries

In this section, we explain differential cryptanalysis and automatic exploration
using SAT solvers. Finally, we outline the specifications of SPONGENT, the crypto-
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Table 1: Summary of collision attack results. Rounds marked with * indicate
actual collision pairs found. t: invalid attack as it is less efficient than generic
attack

Collision JSemi—free-start Ref Full |Collision

Rounds|Time|Rounds| Time round | security
- - 8* 217 |Ours 40
SPONGENT-88,/80/8 ST - 6] 45 2

9 242

SPONGENT-88/176/88 g+ 528 9* 232 |Ours| 135 g4
SPONGENT-128/128/8 | - | - | 8* | 2** |Ous| 70 | 2%
12 258 63 64
SPONGENT-128/256/128 | (% | 525 | 14 293 |Ours| 195 | 2
SPONGENT-160/160/16 | - - 7 2'7 |Ours| 90 | 2%
SPONGENT-160/160/80 | 11 | 2°" | 14 | 2™ |Ours| 120 | 2%
11 | 2% 79 80
SPONGENT-160/320/160 | oy | 508 | 13 27 |Ours| 240 | 2
SPONGENT-224/224/16 | - - 8 2°0 |Ours| 120 | 22

| - | | |

| 2* | | |

| - | | |
SPONGENT-224/224/112| 10 | 2°° | 11 | 2°% |Ours| 170 | 2''?

| - | | |

| 27 | | |

SPONGENT—224/448/224‘ ;2 ;;1: 11 257 ‘Ours 340 | 212
SPONGENT-256/256/16 | - - 11 | 2" |Ours| 140 | 2'*
SPONGENT-256/256/128 | 15 | 2 | 15 | 27 |Ours| 195 | 2'*
SPUNGENT—256/512/256‘ éi ;ZZ 15 273 ‘Ours 385 | 228

graphic hash function analyzed in this paper, and discuss limitations of existing
evaluations.

2.1 Specification of SPONGENT

SPONGENT is a lightweight hash function with a sponge-based structure, consisting
of 13 variants [7]. Each variant is specified by its hash size n, capacityc, and rate r,
and is denoted as SPONGENT-n,/c/r. The size of the internal state, b = r+c > n, is
called the width. The security requirement for collision attacks is min(27/2,2¢/2).
The specifications of each variant are shown in Table 2.

The sponge construction follows an iterative design with three phases. In the
initialization phase, the message is padded to a multiple of r bits. During the
absorbing phase, each r-bit message block is XORed with the first r bits of the
state. Finally, in the squeezing phase, an n-bit output is obtained. The overall
view is shown in Fig. 1.
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Fig. 1: Sponge construction based on a b-bit permutation m, with capacity c bits
and rate r bits. m; are r-bit message blocks. h; are parts of the hash value.

The round function uses an SPN (Substitution-Permutation Network) struc-
ture. The round function consists of the following three operations:

— sBoxLayer: The S-box operates on 4-bit inputs and produces 4-bit out-
puts, and it is applied in parallel /4 times. The operation of the S-box in
hexadecimal notation is shown as follows.

S[-] = {0xE, 0xD, 0xB, 0x0, 0x2, 0x1, 0x4, OxF, 0x7, 0xA, 0x8, 0x5, 0x9, 0xC, 0x3, 0x6 }

The differential characteristics and internal states are interpreted with the
leftmost bit as the least significant bit and represented in hexadecimal no-
tation in this paper.

— pLayer: This is an extension of the (inverse) presentbit-permutation. The bit
at position j of the state is moved to the bit position P(j). Bit permutation
is as shown in Fig. 2.

Po(j) = j-b/4 mod (b—1), ifje{0,...,b—2}
b—1 ifi—b—1.

7

Fig.2: The bit permutation layer of SPONGENT-88/80/8
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— lCounter: A round-dependent constant is XORed with the state. The left
end of the state is XORed with the round constant, and the right end is
XORed with the round constant’s bit-reversed value. These round constants
are generated by an LFSR (Linear Feedback Shift Register). An LFSR is
clocked once each time its state is used, ultimately reaching a final state
where all bits are set to 1.

Table 2: Parameters of SPONGENT

n | b | ¢ | r |Rounds|Collision security (bit)

SPONGENT-88,/80/8 |88 88|80 | 8 | 45 40
SPONGENT-88/176,/88 | 88 [264|176| 88| 135 44
SPONGENT-128/128/8 |128|136|128| 8 70 64
SPONGENT-128/256/128|128(384(256({128| 195 64
SPONGENT-160,/160/16 [160|176(160| 16 90 80
SPONGENT-160,/160/80 {160(240{160| 80 | 120 80
SPONGENT-160,/320/160|160(480(320{160| 240 30
SPONGENT-224/224/16 {224|240(224| 16 | 120 112
SPONGENT-224/224/112|224(336(224(112| 170 112
SPONGENT-224/448 /224|224 (672(448(224| 340 112
SPONGENT-256/256/16 [256(272|256| 16 | 140 128
SPONGENT-256/256/128|256 (384 (256(128| 195 128
SPONGENT-256/512/256|256 |768|512(256| 385 128

2.2 Variants of Collision Attacks

Let H, (m,m’), and IV be a hash function, a message pair, and an initial
vector, respectively. A collision is a pair (m, m’) satsfying H(IV,m) = H(IV,m’)
where IV is set to 0 in SPONGENT. Let v be that is equal to the output of the
previous block. A semi-free-start collision is a pair of (v, m) and (v, m’) satisfying
H(v,m) = H(v,m') where v # IV.

2.3 Differential Characteristics

Differential cryptanalysis is one of the most powerful attacks on symmetric-key
primitives proposed by Biham and Shamir [5]. In this attack, the attacker first
tries to find a pair of input and output differences in which the input differences
reach the output differences with a high probability and then mounts the key
recovery on it. The time and data complexities depend on the ability to find an
input-output pair difference with as high a probability as possible. Such search



6 Keita Toyama, Kosei Sakamoto, and Takanori Isobe

is the most important task in differential cryptanalysis. However, it is generally
a hard task to find such pairs in practical time. Hence, we often use differential
characteristics instead of calculating the probability of such pairs.

Let an r-round iterated block cipher be E(-) = f,.(-) o --- o f1(-). Differential
characteristic is defined as follows:

Definition 1 (Differential characteristic) The differential characteristic is
a sequence of differences over E defined as follows:

D=(do 2 dy 2 ... I d,) = (do,dy, - ,d,),

where d; is the difference at the output of i-th round for 0 < i <r and dg is the
difference at the input of the first round.

The Differential Characteristics Probability (DCP) is calculated by the prod-
uct of the differential probability of each round on the well-known Markov cipher
assumption [15] as follows:

DCP =[] Prob.(di—1 = dy).

i=1

For readability, we often use weight to express the probability of differential
characteristics. A weight is defined as follows:

Definition 2 (Weight) A weight w is a negated value of the binary logarithm
of the probability P defined as follows:

w = —logy P

2.4 SAT-based Automatic Search Method

SAT Problems SAT problem is to solve whether a given Boolean formula
can be made “True”. A Boolean formula consists of only AND (A), OR (V),
and NOT (%) operations based on Boolean variables, and it can be converted
into Congunctive Normal Form (CNF). A CNF is constructed by the conjunc-
tion (A) of the disjunction (V) on (possibly negated) Boolean variables, such
as Al _o(Vi%o i), where z; ; is a Boolean variable. We call each disjunction
Vit oci; in a Boolean formula a clause. SAT solvers accept a CNF Boolean
formula as their input.

Differential Characteristics Search by SAT. Recent studies demonstrated
that the SAT-based automatic search method for identifying optimal differential
characteristics can be much more efficient than the MILP- and CP-based ones
[4,29] for bit-oriented primitives. While the advantage is not clear in the case
of byte-oriented ones, we opted for SAT and utilized Nicky and Bart’s pure
SAT-based method [23]. We leave for future research to test MILP- and CP-
based techniques. Another possible research direction to improve our result is
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to integrate Sun et al.’s results into libraries like TAGADA, CASCADA, or
CLAASP [3,16,26] to search for cipher vulnerabilities. In this case, rather than
building a model directly, it is enough to represent the cipher in a specific format.

In the SAT-based search method for differential characteristics, we convert all
differential propagation over primitives and its weight into a CNF. We call such
a CNF a SAT model. Then, we give an objective function to identify the weight
of the found differential characteristics, which is also expressed in a CNF, to a
SAT model. Lastly, we give the created SAT model to a SAT solver. Hereafter,
We briefly explain how to construct CNFs for each operation and the objective
function.

Modeling for an XOR. Let (ag,a1,...,a;—1) and b be the input and output
differences of an XOR operation with 4 inputs, respectively, i.e., ag@ a1 @ --- D
a;—1 = b. Let X be the set {(zg,21,...,2;) € Féﬂ | (oD a1 B - Da;) =
1}. The following variables and clauses are sufficient to express the differential
propagation for an XOR with ¢ inputs:

Mvar — (a()»al»'“aaiflvbax()vxlv"wwi)v
Mg zor (ao 5] xO) \ (al ©® Il) VeV (ai_l @xi—l) \Y (b@xl),

where Mo and M4 20r denote the sets of Boolean variables and clauses,
respectively.

Modeling for an XOR. Let (ag, a;) and b be the input and output differences
of an XOR operation, respectively, i.e., ag @ a; = b. The following variables and
clauses are sufficient to express the differential propagation for an XOR with i
inputs:

Mvar — (a07a17b)a
M iazor < {(ag Vay Vb),(ag Vay V), (dyVar VD), (dyVdVb),}

where Mo and M4 .0r denote the sets of Boolean variables and clauses,
respectively.

Modeling for an S-box. Let a = (agp,a1,...,a;—1) and b = (b, b1,...,b;—1)
be the input and output differences of an i-bit S-box, respectively. Additionally,
we introduce additional Boolean variables p = (po,p1,...,pj—1), where j is
the maximum weight of the differential propagation through an ¢-bit S-box and
pg € {0,1} for 1 < ¢ < j—1, to count the differential probability as an S-box is a
probabilistic operation. With these Boolean variables, we construct the following
Boolean formula:

1 if Pr(a — b) = 2~ Za=oPa,

0 otherwise.

f(a,b,p) :{
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Then, we extract a set A, which contains all vectors satisfying f(x,y,z) =0 as
follows:

A={(z,y,2) e F3" | f(m,y,2) = 0},
where = (zo,%1,...,%i—1), Y = (Yo,Y1,---,¥Yi—1), and z = (20, 21, ..., 2j-1)-

Since A is a set of invalid patterns in a model of an S-box, we ban these patterns
by the following clauses:

i—1 i—1 j—1
\/(ac@mc)\/\/(bd@yd)v\/(pe@ze)zla (53721,2)614- (1)
c=0 d=0 e=0

The remaining vectors, identical to A, are a set of valid patterns. Therefore, these
clauses extract the differential propagation with corresponding weight over an
i-bit S-box. Note that the solution space of |A| clauses about (a, b, p) in Eq. (1)
is identical to that of the following Boolean function:

i—1 i—1 Jj—1
gla,b,p)= N (g(w,y,z) v\ (@oz) v\ Gaoy)) v\ (pe EBZZJ)> :

2i+7 — — =
(z,y,2)€F2 +3 c=0 d=0 e=0

This equation is called the product-of-sum of g. We know that we can reduce the
number of clauses in g by Quine-McCluskey algorithm [21,24, 25] and Espresso
algorithm [9], shown in [18,28,29]. We use Espresso logic minimizer* to reduce
clauses in g. Therefore, the following variables and clauses are sufficient to ex-
press the differential propagation with corresponding weight over an i-bit S-box:

Muar «— (a07 Aty ... 7(11‘_1,1)0, bla sy bi—17p07p17 e apj—1)7
Mcla.sboa: — min (g(a’a bvp)) ;

where M, zor denotes the set of clauses.

For the evaluation to count the number of active S-boxes, we must consider
whether an S-box is active instead of its weight. Therefore, we can implement it
by replacing variables p to a, indicating whether an S-box is active. We represent
it as Mcla.sboz* .

Objective Function. To identify the weight of the found differential charac-
teristics, we set the objective function that suppresses the sum of all variables

(Po, P15 - - -y Pn—1) €xpressing weight by a specific value k as follows:
n—1
D pish
i=0

4 https://ptolemy.berkeley.edu/projects/embedded /pubs/downloads/espresso/index.
htm
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Eq.2 is called Boolean cardinality constraints. According to Erlacher et al.’s
work [10], kmtotalizer [20] is a good choice to implement it. Therefore, the
following variables and clauses are sufficient to express the objective function:

(Meia.obj(r)s Muar) < kmtotalizer(EZ’:_Olpi <k),

where M, 0p5(k) denotes the set of clauses.

Modeling for an Entire SAT model. We construct the whole SAT model
SAT moder to identify the differential characteristics with the weight less than or
equal to k with the above clauses and Boolean variables as follows:

SAT model (Mvam Mcla.xom Mcla.sbora Mclu.obj(k))-

Then, we give SAT odger to a SAT solver and solve it. If a SAT solver returns
“SAT”, we obtain the differential characteristic with the weight less than or
equal to k. Otherwise, we increase k and repeat this procedure until a SAT
solver returns “SAT”. To count the number of active S-boxes, we can use the
same model replaced M 4. spoz 10 Mia.sbor+ With the same procedure. It should
be mentioned that this SAT model contains only CNFs for an XOR, S-box, and
objective function because our target SPONGENT has only these operations.

Modeling of Difference and Value Transitions Unlike block ciphers, the
underlying permutation in permutation-based primitives does not involve round
keys. Therefore, considering the dependence of differential transitions over mul-
tiple rounds, the risk of the actual state and differential characteristics becoming
incompatible increases. In most MILP or SAT-based models for searching dif-
ferential characteristics, only differential transitions are considered, and they
are handled independently across different rounds, which may result in finding
invalid differential characteristics for the actual state.

Liu et al [17] designed a model that considers both differential transitions
and value transitions in differential characteristics search. They independently
construct models to describe differential transitions and value transitions, and
connect them using a model that describes the differential value relationships in
nonlinear operations.

2.5 Previous Results and Obstacles

The designers have performed a collision resistance evaluation using rebound
attacks [22] on 6-round SPONGENT-88/80/8 [7]. However, the computational com-
plexity is 2°%-2, which is much larger than the claimed security of 24°, making it
an ineffective attack. Abdelraheem showed differential and linear distinguisher
for the underlying permutations [1]. Zhang and Liu [32] demonstrated that an
efficient distinguishing attack could be performed on all variations of SPONGENT
permutations using a truncated differential attack with the meet-in-the-middle
technique.
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Despite these efforts, detailed analysis papers on collision attacks by third
party are still lacking. To efficiently carry out collision attacks, bringing enough
degrees of freedom is necessary, which is the number of value pairs satisfying the
differential characteristics. For block-cipher-based hash functions, such as AES-
like hashing, this can be conducted by counting the available DoF in each S-box
independently, such as the super-S-box technique in the rebound attack [11].

In contrast, for sponge-construction-based hash functions, such as SPONGENT,
finding value pairs satisfying the differential characteristics is challenging be-
cause their underlying permutations do not have a key-inserting operations. This
imposes taking the dependency between values and differences in S-boxes over
multiple rounds into account, making obtaining enough DoF quite complex. At
CRYPTO 2020, Liu et al. showed that many differential characteristics in pre-
vious studies on sponge-based hash functions are invalid, i.e., there are no value
pairs that satisfy the differential characteristics, and they presented an automatic
search tool to find valid differential characteristics. [17].

In our method, we first compute value pairs in selected parts of the hash
function, similar to the rebound attack. However, bit dependencies in the internal
state must be considered for both active and inactive bits.

3 Evaluation of the Number of Value Pairs Satisfying
Differential Characteristics

To address this problem for collision attacks on sponge-construction-based hash
functions, we propose a new method to efficiently evaluate the available de-
grees of freedom that satisfy a given set of differential characteristics for key-less
permutations. The core idea of our method is to categorize the input bits by
leveraging the dependency model of values and differences introduced by Liu et
al. [17]. The proposed method consists of five steps, outlined as follows:

Step 1: Modeling by Liu et al.’s Method [17]. We describe the relation-
ship between value transitions and difference transitions in the product
of terms. To express these value-and-difference transitions, we adopt the
method proposed by Liu et al. [17]. Specifically, to model these transitions,
we construct a truth table that captures the value-and-difference transitions
and utilize the Espresso tool to derive a corresponding Boolean function.

Step 2: Assignning a Given Differential Characteristic. We assign a given
differential characteristic to the variables expressing the differences. Conse-
quently, the product of terms exclusively consists of variables that represent
value transitions satisfying a given differential characteristic.

Step 3: Expressing All Internal Variables by Input Variables. After cre-
ating the product of terms whose variables express a value transition with a
given differential characteristic, we convert all internal-value variables into
the input-value variables that can be easily conducted by analyzing the Al-
gebraic Normal Form (ANF) of S-boxes in the case of SPONGENT. Then, we
attempt to reduce the number of terms in the product of terms. This can
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be realized by simplify-logic tools. In this paper, we use simplify-logic() in
SymPy library for Python.

Step 4: Grouping Input Variables. We analyze all terms in the product of
terms and grouping the input variables depending on how they depend on
each other, which is a core step of Grouping method.

Step 5: Calculating Total Available DoF. We count the number of value
pairs for each group independently, which can be realized by solving the SAT
model multiple times for each group. The obtained results are equivalent
to the available DoF in each group. Therefore, the total available DoF is
calculated by the product of the available DoF in each group.

Because Step 1 can be realized as a simple application of Liu et al.’s method [17]
and Step 2 is just a processs of the allocation for variables regarding a given dif-
ferential characteristic, we will focus on elaborating on the detailed procedure
of the Grouping method in Step 3, 4, and 5 in the next section. The conceptual
diagram of the Grouping method is shown in Fig. 3.

Logical expression

1

Logical expression

S)1q 9911

Grouping

—

Logical expression

T T

sHq X14

1dnox3
zdnoig
¢dnoi3

Fig. 3: Overview diagram of Grouping method

3.1 Grouping Method to Collect Value Pairs

Expressing All Internal Variables by Input Variables. After Step 1, and
2, the product of terms only consists of the variables expressing the internal
values. Since the available DoF is brought from the message and the chaining
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Algorithm 1: Grouping of input-value variables.
Data: C
Result: G
1a=1
2 fori=1 to ado
3 for j=0tol—1do
if v; in €7 and v; is not in any group then
All literals in €’ are grouped to the a-th group
L a—a+1

else if v; in C7 and v; is already in z-th group then
L All literals in C’ are grouped to the z-th group

o N o ;s

value in semi-free-start collision setting, we need to express the product of terms
only by these states, which are called the input values in this paper. This can be
easily conducted by analyzing ANF of the S-box in the case of SPONGENT. This
procedure allows us to investigate the dependency of the input values, which is
necessary to efficiently estimate the available DoF in the later steps.

Grouping Input Variables and Enumerating Available DoF in Each
Group. To verify a given value-and-difference transition model expressed in the
product of terms, all terms must be “True”. Therefore, we categorize variables,
which express the bits of the message and chaining value, into groups depending
on which terms they are in. Then, we find all (or enough) assignments of literals
in each group independently by solving the SAT model multiple times, equivalent
to the number of valid value pairs with a given differential characteristic.

To find assignments of literals in a particular group, we first try to find
one assignment for all literals. Then, we fix all literals to the found assignment
except literals in a particular group in which we want to find all assignments of
variables. This allows us to find all assignment by solving SAT models multiple
times that can be efficiently carried out as this procedure can be viewed as an
incremental SAT problem.

In the Grouping Method, dependencies between the internal values and dif-
ferences can be categorized by “input values,” which is essential to ensure valid
differential characteristics and collect value pairs. Consequently, it is imperative
to analyze it from the initial round and analyzing numerous rounds using the
Grouping Method is challenging due to the computational cost.

Let C = {C°,C",...,C"" '} and C* = {c},c},...,c}, _1} be the Bool func-
tion describing value-and-difference transition and the term constructing C where
¢ and m; denote literals constructing C* and the number of literals in C*, respec-
tively. Algorithm 1 shows how to categorize all input-value variables. In Algo-
rithm 1, we assume to collect the value pairs satisfying a given differential char-
acteristics regarding the function with the a-bit input, i.e., cg € {v1,v9,...,0a}
where 0 < i <[,0 < j <m;.
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If a group has only one literal, we call this input-value variable as a fized bit
because it must be fixed to 0 or 1. If an input-value variable is not in any groups,
we call it as a free bit because it can be either 0 or 1 not depending on other
input-value variables.

We take the 2 rounds of SPONGENT-160/160/80 as an example. Table 3 shows
the differential characteristic in this example. We show the product of sums
describing the value-and-difference transition regarding Table 3 as follows:

vag \ ~vs2 N\ vsz \ —weo \ver \vrs \(veslves) [\ (vrslvzs) /\ (vsol—vs1)

I\ (s1]=vs0) A\ (vss|vs9) A (vso]—vss) A\ (ves|7ves) \ (v7al=vrs) \(ves|—ves)

/\(_'074|_'v76) /\(Ws @ v79 ® (v77 A vso) © (v7s A v7g A vso))
(
(

A

/\ vr7 @ (v77 A wso) @ (vrs A vr9) @ (v7s A vso) @ (V79 A vs0) @ (78 A V79 A Us0))

ve1 B (V61 A Vea) B (V2 A ve3) B (Vo2 A Vea) B (Vs A vea) B (Vo2 A V63 A Upa))

/\ —(vs3 @ (53 A\ Us6) B (V54 A v55) B (Us4 A Us6) © (Vs5 A vse) B (V54 A Us5 A Usg))
/\ —(veg @ (veo A vr2) ® (V70 A v71) B (V70 A V72) @ (V71 A v72) B (V70 A V71 A V72))
/\((U58 A vsg)|=(vs0 A vs1)|(ve1 @ (ve1 A ves) B (vez A ve3) ® (V2 A Ves)

@ (v63 A vea) © (ve2 A ves A vea))) [\ (074 ® (073 A o) © (74 A v76))

|=(vee © (ves A ves) B (ves A ves))|(vrs © vrg  (v77 A vso) @ (v7s A v79 A V0)))
/\(ves ® ves ® ves ® (ves A ves))|~(vrs & vra & vre & (v73 A vre))

|(v77 @ (v77 A wso) & (v7s A vrg) @ (V78 A vs0) B (v79 A vso) B (v7s A v79 A vsp)))

/\ =(v70 © v71 & (V69 A v72) B (V70 A V71 A U72))

where v; denotes the input-value variable from the leftmost bit.

Table 3: The differential characteristic of the 2-round SPONGENT-160/160/80.
Differences are displayed in hexadecimal.

Rounds ‘ Differences at the input of each round

1(Input) [0000000000006060b0bO0000000000000000000000000000000000000000
2 000000000000000000550000000000000050000000000000000000000000
3 (Output)|0000000000000000000000000000000000c0004000000000000000000000
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Table 4: Grouping results of the 2-round SPONGENT-160/160/80.
Category ‘Bits‘Values

Free bits | 48 |vas, v13, vag, Va6, V23, V22, V19, U7, V17, Vi1, V30, Us, Vil, Us,
V32, V43, V45, V16, V21, V47, V31, V14, V34, U36, V18, U33, V4, U3s,
V48, V29, Us, V26, U3, V20, V27, V1, V39, V15, V40, V12, V24, V44,
V42, V9, V35, V7, V2, V10

Fixed bits| 6 V49, V52, Us7, V60, V67, UT5
groupl 4 |vs3, Use, Us4, Uss
group2 4 V69, V72, V70, V71
group3 | 8 |vsg, Us0, V64, V63, Usl, Uss, Uel, V62

group4 | 10 |vso, v7s, V77, V73, Ves, Ve6, Ves, V76, U79, UT4

After applying Algorithm 1, the input-value variables are grouped as in Ta-
ble 4. Since the input-value variables in the same group depends on each other
and input-value variables in another group are independent, we can enumerate
the assignment of the input-value variables group by group.

Calculating Total Available DoF. After Grouping the input-value variables,
we attempt to find value pairs satisfying a given differential characteristic by
solving the SAT model multiple times. We first try to find one solution. If there
are no solutions, a given differential characteristic is invalid. Otherwise, we then
count the number of value pairs satisfying differential characteristic by solving
the SAT model multiple times. For the input-value variables categorized in free
bits, they can take both 0 or 1. For the input-value variables categorized in
groups, we count the number of solutions by solving the SAT models multiple
times. Let a, N¢, and N, be the number of groups, the number of free bits, and
the number of solutions in the z-th group, respectively. Since value pairs in each
group can be calculated independently, the total number of value pairs satisfying
a given differential characteristic can be calculated as follows:

2Nf><N1><N2><---><Na.

which is equivalent to the available DoF'.

3.2 Application to Collision Attacks

We apply the Grouping method to collision attacks by collecting enough number
of the value pairs satisfying a part of differential characteristics and finding a
collision pair satsfying the remaining part of differential characteristic as follows.

— Firstly, we divide a hash function H into an upper part H, and a lower
part Hy such that H = Hy o H,. Then, we search the differential charac-
teritics for H, which can occur collisions, taking only the weight in H} into
consideration.
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— Next, we model the value-and-difference transitions with SAT by Liu et al.’s
method [17] so as to confirm the validity of the differential characteristic
in Hp. If there are no valid value pairs in H,, we search the differential
characteristic for H again.

— Then, we apply the Grouping method to H, and obtain the enough number
of DoFs to satisfy the differential characteristics in Hy. Let Np,r and p be
the available DoF in H,, and the probability of the differential characteristics
found in the previous step, respectively. If Npor > p~1, we can theoretically
obtain Np,p - p pairs satisfying the differential characteristic for H, meaning
to find the colliding pairs.

Remarks. Above procedure only ensures the validity for the differential charac-
teristics in H,, and H}, independently, i.e., the validity of the entire differential
characteristic for H is not guaranteed. Therefore, we support the validity of
the entire differential characteristic by showing the existence of numerous num-
ber of the value pairs satisfying the differential characteristics in H,,. Moreover,
we show practical collision pairs for several variants of SPONGENT in Sect. 4 to
enhance our assumption.

Besides, we always apply the Grouping method from the 1st round in all
attacks because dependencies between the internal values and differences can
be categorized by “input values,” which is essential to ensure valid differential
characteristics and collect value pairs in the Grouping method. Consequently,
it is imperative to analyze it from the initial round, and analyzing numerous
rounds using the Grouping method is challenging due to the computational cost.
This is why we consistently apply the Grouping method from the first round.
Introducing the Grouping method in a middle round is intriguing and remains
as future work.

4 Applications to SPONGENT

In this section, we apply the grouping method to SPONGENT to construct a col-
lision attack. First, we describe the method for searching differential character-
istics suitable for the collision attack. Then, we apply the Grouping method to
the identified differential characteristics to conduct the collision attacks to each
variant of SPONGENT.

Overview. We first evaluate the optimal differential characteristics that can be
used to find collisions. Then, we try to carry out the collision attacks with the
procedure described in Sect. 3.2. For the number of rounds in H,, we set it
to at most 5 rounds because it can be too complex to carry out the Grouping
method to more than 5 rounds regarding SPONGENT. Besides, we always apply
the Grouping method from the first round since the distribution of differences
at the middle rounds is complex, making the Grouping method quite expensive.
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4.1 Searching Differential Characteristics for Collisions
For the variants with the parameters of (r = n), we consider two cases:

1. Differences in the rate part after one block call is zero
2. Differences in the capacity part after one block call is zero and the difference
in the second message will cancel out the differences in the internal state.

For the variants with the parameters (r # n), we consider the case where
differences in the capacity part after one block call is zero and the difference
in the second message will cancel out the differences in the internal state. The
results of the DCP evaluation for the collision attack are shown in Table 5.

Table 5: Summary of DCP for collision attacks on each variant, where - means
that it was computationally infeasible.

Rounds |1]2]3]4|5]6]7|8]9 |10]11|12|13]14|15]|16]17

SPONGENT-88/80/8 |2 7| - | - |54/58|60[61| 68 | 72 | 85 | 89 [97|107|107|118[119
SPONGENT-88/176/88 |2[4 | 8 |12]20(29]43(54] 63 |67 |73 |86 |- | - | - | - | -
SPONGENT-128/128/8 [2[ - | - | - | - [93[86[88[90 [92 96 [107[- | - | - | - | -
SPONGENT-128/256/128(2 4 | 8 [12]20(28]40[48] 52 | 56 | 62 | 66 76| 82 | 92 [103] -
SPONGENT-160,/160/16 [2] 6 | - | - | - [69]51|75| 85 |84 [80 |88 |- | - | - | - | -
SPONGENT-160,/160/80 |2[48[12(20(28[34[39[45[ 50 | 56 | 61 | 67 |72[ 78 [83[89 | -
SPONGENT-160/320/160[2] 4 | 8 [12[20[28[41[52[ 61 [ 71| - | - |- | - | - | - | -
SPONGENT-224/224/16 |2[ 6 | - | - | - | - | - [96]100[106] - | - |- | - | - | - | -
SPONGENT-224,/224/112[2[ 4 | 8 [12[20(30(45[56( 66 | 76 | - | - |- | - | - | - | -
SPONGENT-224,/448/224[2[ 4 | 8 [12[20(28[44[54[ 73 | - | - | - |- | - | - | - | -
SPONGENT-256/256/16 |2 6 | - | - | - | - | - |81| 85 | 87 [102[120] - | - | - | - | -
SPONGENT-256/256/128(2 4 | 8 [12(20(28[41[49] 56 | 60 | 64 | 70 |78| 87 | 97 [104[110
SPONGENT-256/512/256(2 4 | 8 [12]20(28]40[48] 52 | 56 | 62 | 68 [76] 86 | 94| - | -

4.2 Collision Attacks on the SPONGENT

We show the detailed procedure of collision attacks on several variants of SPONGENT.
In addition, the procedure to find semi-free-start collisions on SPONGENT-128/256/128
and SPONGENT-160/160/80 are shown in the Appendix B. Due to the page lim-
itation, the remaining results of (semi-free-start) collisions on other variants of
SPONGENT are summarized in Appendix A. The implementation codes for the col-
lision attacks on SPONGENT are available on https://anonymous.4open.science/
r/SPONGENT-Collision-83F7/README.md.

Attacks on 11-round SPONGENT-160/160/80


https://anonymous.4open.science/r/SPONGENT-Collision-83F7/README.md
https://anonymous.4open.science/r/SPONGENT-Collision-83F7/README.md
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Step 1. Divide the round function into the first 2 rounds and the remaining
9 rounds such that H = H3_,11) o H(1_,2). Evaluate the differential char-
acteristic for H taking the weight in H(3_,;1), which must be less than the
weight of the claimed security, into consideration. As a result, we obtain the
differential characteristics shown in Table 6 whose probability in H3_,11) is
2761,

Step 2. Construct the model for the value-and-difference transitions for H(z_,11)
by Liu et al.’s method [17], and verify that the differential characteristic is
valid.

Step 3. Apply the Grouping method to H;_,2). Table 7 shows the results after
applying the Grouping method. There are 48 free bits and 6 fixed bits. The
other input bits are categorized into 4 groups.

Step 4. Since the differential probability of H(3_,11) is 2761 at least 261 DoF in
H(1_,2) is needed to obtain one collision pair on average. As we can obtain
248 DoF by free bits, we need to get 2'3 DoF by 4 groups. To this end, we
construct the value-and-difference transition model by SAT and solve the
constructed SAT models multiple times. As a result, we found 23, 22, 25,
and 2% in groups 1, 2, 3, and 4, respectively. Therefore, we obtain 248 x 23 x
22 x 25 x 23 = 261 DoF that is enough to find one collision pair.

Step 5. Finding the colliding pairs with 261 in H(;_,), which satisfy the differ-
ential characteristic in H3_;11).

Complexity Analysis. The cost of Grouping input variables is negligible com-
pared to those of enumerating the available DoF and finding a pair satisfying the
differential characteristic in H3_,11) Time complexities of enumerating the avail-
able Dol and finding a pair satisfying the differential characteristic in H(3_11)
are & x 260 and 2 x 261, respectively. Since these procedures can be indepen-
dently conducted, the total time complexity is 2 x 261 + 2 x 201 = 261 < 280,

Table 6: The differential characteristic of SPONGENT-160/160/80. Differences are
displayed in hexadecimal.

Rounds ‘ Differences at the input of each round ‘Prob.‘ Phase

1(Input)|0000000000006060b0bLO0000000000000000000000000000000000000000
2 000000000000000000550000000000000050000000000000000000000000
0000000000000000000000000000000000c0004000000000000000000000
000000000000000000000000000000000000004400000000000004400000
000000000000000000000000000000000000000c00060000000000c00060
000000000880044000000000000000000000000000000000000000000000
006600000000000006600000000000000000000000000000000000000000| 27 6* Hz 11y
c00060000000000000000000000000000000000000000000000000000000
9 110000000000000000000000000000000000000000000000000000000000
10 300000000000000300000000000000000000000000000000000000000000
11 000000000000000100800000000000000000000000000000000000000000
Output |{000840000000000000840000000000000000000000000000000000000000

H(l*)?)

0~ O U W
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Table 7: Grouping results of SPONGENT-160/160/80. The leftmost bit is denoted
as v1. Time of H(;_9) represents the lower bound of the computational com-
plexity required for collecting DoF in H(;_,).

Category ‘ Bits ‘Values

Free bits 48 |vas, V13, Va8, V46, V23, V22, V19, V37, V17, V11, V30, Us, Va1, Ve, V32, V43, V45, V16,
V21, V47, V31, V14, U34, U36, V18, V33, V4, U3s, V48, V29, Us, V26, U3, V20, V27, V1,
U39, V15, V40, V12, V24, V44, V42, V9, U35, U7, U2, V10

Fixed bits 6 V49, U552, Us7, V60, V67, UT5
groupl 4 V53, Us6, Us4, Ush
group2 4 |veg, V72, V70, V71
group3 8 |vs9, Us0, V64, V63, Us1, Uss, V61, V62
group4 10 |vso, v7s, V77, V73, Ves, V66, V65, V76, U719, VT4

258.5

Time of H(1_9)

Attacks on 15-round SPONGENT-256/256/128

Step 1. Divide the round function into the first 2 rounds and the remaining
9 rounds such that H = H_,15) o H(1_4). Evaluate the differential char-
acteristic for H taking the weight in H(5_,5), which must be less than the
weight of the claimed security, into consideration. As a result, we obtain the
diﬂ;(;rential characteristics shown in Table 8 whose probability in H_,5) is
277,

Step 2. Construct the model for the value-and-difference transitions for H(s_,15)
by Liu et al.’s method [17], and verify that the differential characteristic is
valid.

Step 3. Apply the Grouping method to H(;_,4). Table 9 shows the results after
applying the Grouping method. There are 64 free bits and 12 fixed bits. The
other input bits are categorized into 2 groups.

Step 4. Since the differential probability of H(5_,5) is 277 at least 279 DoF in
H(1_4) is needed to obtain one collision pair on average. As we can obtain
264 DoF by free bits, we need to get 2'5 DoF by 4 groups. To this end, we
construct the value-and-difference transition model by SAT and solve the
constructed SAT models multiple times. As a result, we found 2'2, and 23
in groups 1 and 2 respectively. Therefore, we obtain 264 x 212 x 213 = 27
DoF that is enough to find one collision pair.

Step 5. Finding the colliding pairs with 279 in H, (1—4), Which satisfy the differ-
ential characteristic in H_,15).

Complexity Analysis.

The cost of Grouping input variables is negligible compared to those of enu-
merating the available DoF and finding a pair satisfying the differential char-
acteristic in H(s_,15) Time complexities of enumerating the available DoF and
finding a pair satisfying the differential characteristic in Hs_,15) are % % 2™ and
1L 5 927 respectively. Since these procedures can be independently conducted,

15
the total time complexity is 15 x 27 4+ 11 x 279 = 279 < 2128,
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Table 8: The differential characteristic of SPONGENT-256,/256,/128. Differences are
displayed in hexadecimal. The data is shown in a folded form, with each state

listed

sequentially from left to right.

Rounds ‘

Differences at the input of each round ‘Prob.‘ Phase

1(Input)
2

00000000000000000€€80000029500000000000000000000000000000000000000000000000000000000000000000000
0000€020000000000000000000000000000000000000000000000€00000000000000000000000000000000000000000
050000000000050000000000000000000000000000000000050000000000050000000000000000000000000000000000
000000000000000000000000000000000000000000000000200200000000200200000000000000000000000000000000

Hioay

000000000000000000000000000000000000900900000000000000000000000000000000000000000000900900000000
000000000000000000000000000000000000000000000000000000000000000000000900000000000900000000000000
000000000000000000000000000000000000000002002000000000000000000000000000000000000000000000000000
000000000021000000000000000000000000000000000000000000000021000000000000000000000000000000000000
00c00000000000c00000000000000000000000000000000000c00000000000c000000000000000000000000000000000
400400000000400400000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000900900000000000000000000900900000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000900000900000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000140
000000000000000000000006000000000000000000000006000000000000000000000000000000000000000000000000
000008000008000000000000000000000000000000000000000000000000000000000000000000000000000000000000

N
L
2

Hso15)

Output

028000000000000000000000028000000000000000000000000000000000000000000000000000000000000000000000

Table 9: Grouping results of SPONGENT-256/256/128. The leftmost bit is denoted
as v1. Time of H(;_,4) represents the lower bound of the computational complex-
ity required for collecting DoF in H;_,y4).

Category ‘ Bits ‘Values

Free bits 64 |v13, v23, V12, V43, Us3, V60, U3, U4, V37, V14, V11, V30, V19, V49, V4, V25, V59, V64,

V29, V2, V63, Us, Us7, U36, V9, V20, V41, V61

V18, V22, Us, V24, Us1, Us8, V21, V16, Us6, V17, U39, U33, V1, V15, U32, V28, Uss5, V62,
V52, V6, Us0, V42, Us4, V10, U38, V48, V45, V46, V26, U7, V47, V40, V44, V31, U35, V27,

Fixed bits 12 |veg, V73, V77, V78, V79, V101, W103, W104, TW106, V107, V110, V112
groupl 16 |vs7, Vo3, Uss, Us1, Vo6, Vs2, U89, V90, V91, V94, V95, Usd, V92, Use, Uss, Us3
group2 36 |vio0, Ves, V6T, Ves, V105, V75, V115, V123, V66, V119, V114, U4, V99, V109, V124, V71,

V70, V76, V121, V9, V126

V120, V122, V127, V108, V102, V111, V116, V128, V72, V80, V117, V97, V113, V118, V125,

Time

of Hia) Q77T

4.3

Practical Collision Pairs on Several Variants of SPONGENT

To demonstrate the validity of the proposed method, we show the actual collision
pairs for several variants. We show the detailed procedure of collision attacks
on SPONGENT-88/176/88. The collision pairs and their input pairs are shown in
Appendix C due to the page limitation.

Attacks on 8-round SPONGENT-88/176/88

Step 1. Divide the round function into the first 4 rounds and the remaining
4 rounds such that H = H(1_4) o H(5_,5). Evaluate the differential char-
acteristic for H taking the weight in H(5_,g), which must be less than the
weight of the claimed security, into consideration. As a result, we obtain the
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differential characteristics shown in Table 10 whose probability in H(s_,g) is
2728,

Step 2. Construct the model for the value-and-difference transitions for Hs_,s)
by Liu et al.’s method [17], and verify that the differential characteristic is
valid.

Step 3. Apply the Grouping method to H;_,4). Table 11 shows the results after
applying the Grouping method. There are 32 free bits and 6 fixed bits. The
other input bits are categorized into 1 group.

Step 4. Since the differential probability of Hs_.g) is 2728 at least 228 DoF in
H(1_,4) is needed to obtain one collision pair on average. As we can obtain
232 DoF by free bits. To this end, we construct the value-and-difference
transition model by SAT and solve constructed SAT models, and we found
more than one state. Therefore, we obtain 232 x 1 = 232 DoF that is enough
to find one collision pair.

Step 5. Finding the colliding pairs with 232

ential characteristic in H;_,g).

in H(1_,4), which satisfy the differ-

Complexity Analysis. The cost of Grouping input variables is negligible com-
pared to those of enumerating the available DoF and finding a pair satisfying the
differential characteristic in H(s_,g) Time complexities of enumerating the avail-
able DoF and finding a pair satisfying the differential characteristic in Hs_sg)
are 3 x22% and § x 228, respectively. Since these procedures can be independently
conducted, the total time complexity is § x 228 4 2 x 228 = 228 < 243,

Table 10: The differential characteristic of SPONGENT-88/176/88. Differences are
displayed in hexadecimal.

Rounds | Differences at the input of each round |Prob.| Phase

1(Input)|000000000d89b0000c6£2000000000000000000000000000000000000000000000
006060000000000000000000000000000000000000000000000070700000000000
000000000000050005000000000000000000000000000000000000000000000000
000000000000000000000000000000000000220000000000000000000000000000
0000000000000000000000000c00000000000000000000000000000000c0000000
000000200000000000000000000000000000000000000000000000000000000010
000000000000000010100000000000000000000000000000010100000000000000

8 000050000000200000000000000000000000050000000a00000000000000000000
Output {000000000000000000000000000000000010000000200000000040000000800000

H(1a4)

Hs_g)

N O U W N
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Table 11: Grouping results of SPONGENT-88/176/88. The leftmost bit is denoted
as v1. Time of H(;_,4) represents the lower bound of the computational com-
plexity required for collecting DoF in H;_,4).

Category ‘ Bits ‘ Values

Free bits 32 |v19, v26, V1, Us, V15, V12, V23, U3, V20, V17, U8, V18, U30, V31, U7,
V16, V13, V25, V4, V29, V2, Vs, V22, V11, V24, V9, V14, V10, V21,
V27, V28, V32
Fixed bitS 6 V38, Us1, V69, W70, V81, TUK3

groupl 50 U82, Us7, Uss5, Uss, U78, U74, Us0, Uss, V52, V39, Us3, V67, V79, V63,
V60, V8T, U84, V75, U73, U76, U37, V47, V40, V48, U56, V34, V42, Us4,
V62, V49, Us8, V65, V64, V41, Us6, U35, V45, Uel, U59, UTl, V44, V66,

V46, V80, V36, V33, Ur7, V43, U72, U6
27.0
2

Time of H(;_4)

5 Conclusion

In this paper, we proposed a novel method to efficiently identify value pairs that
satisfy differential characteristics for keyless permutations. To address the ex-
isting problem, we introduced a grouping method that classifies input variables
into categories such as free bits, fixed bits, and interdependent groups. We ap-
plied this method to variants of SPONGENT and, for the first time, demonstrated
collision and semi-free-start collision attacks on reduced variants. It should be
noted that the results of our attacks do not immediately affect the security of
Spongent as there are still enough security margin.
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A Summary of Attacks on Other Variants of SPONGENT

In this section, we show the results of (semi-free start) collision attacks on the
other variants of SPONGENT. Table 12 shows the summary of the results of our
attacks. Due to the page limitations, we omit the detailed procedures of several
our attacks. The procedures of all attacks are the same as described in Sect. 4.

Table 12: Summary of collision attack results. Rounds marked with * indicate
actual collision pairs found. }: invalid attack as it is less efficient than generic

attack
Collision [Semi—free-start Full |Collision
Rounds|Time|Rounds| Time |round| security
SPONGENT-88/80/8 | - | - | 8% | 27 | 45 | 2%
9 242 3
SPONGENT-88/176/88 g+ ‘ 528 ‘ o* ‘ 238 | 135 44
SPONGENT-128/128/8 | - | - | 8* | 2** | 70 | 2%
12 | 2%
SPONGENT-128,/256,/128 g ‘ 528 ‘ 14 ‘ 263 | 195 264
SPONGENT-160/160/16 | - | - | 7 | 2*7 | 90 | 2%
SPONGENT-160/160/80 | 11 | 2°" | 14 | 2™ | 120 | 2%
1 256 79 80
SPONGENT-160/320/160 | | Gos | 13 2 240 | 2
SPONGENT-224/224/16 | - | - | 8 | 2°% | 120 | 2!
SPONGENT-224/224/112| 10 | 2% | 11 | 2% | 170 | 2'*?
10 | 2% N
SPONGENT—224/448/224‘ g ‘ 521 ‘ 11 ‘ 257 ‘ 340 ‘ 2!
SPONGENT-256/256/16 | - | - | 11 | 2"° | 140 | 2'*
SPONGENT-256,/256/128| 15 | 27 | 15 | 27 | 195 | 2'*
15 | 2™
SPUNGENT—256/512/256| o* | 528 | 15 | 273 | 385 | 2128

B Applications of Semi-free-start Collisions

B.1 Attacks on 14-round SPONGENT-128/256 /128

Attack Procedure

Step 1. Divide the round function into the first 2 rounds and the remaining
9 rounds such that H = H_,14) © H(1_4). Evaluate the differential char-
acteristic for H taking the weight in H(5_,14), which must be less than the
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weight of the claimed security, into consideration. As a result, we obtain the
differential characteristics shown in Table 13 whose probability in Hs_,14)
is 2763,

Step 2. Construct the model for the value-and-difference transitions for H5_,14)
by Liu et al.’s method [17], and verify that the differential characteristic is
valid.

Step 3. Apply the Grouping method to H;_,4). Table 14 shows the results after
applying the Grouping method. There are 4 free bits and 33 fixed bits. The
other input bits are categorized into 3 groups.

Step 4. Since the differential probability of H(5_,14) is 2763 at least 263 DoF in
H(1_,4) is needed to obtain one collision pair on average. As we can obtain
24 DoF by free bits, we need to get 2°9 DoF by 4 groups. To this end, we
construct the value-and-difference transition model by SAT and solve the
constructed SAT models multiple times. As a result, we found 220, 220, 229 ip
groups 1, 2, and 3 respectively. Therefore, we obtain 24 x 220 x 220 x 219 = 263
DoF that is enough to find one collision pair.

Step 5. Finding the colliding pairs with 2% in H (1,4, which satisfy the differ-
ential characteristic in Hs_;14).

Complexity Analysis. The cost of grouping input variables is negligible com-
pared to those of enumerating the available DoF and finding a pair satisfying the
differential characteristic in Hs_,14) Time complexities of enumerating the avail-
able DoF' and finding a pair satisfying the differential characteristic in H5_,14)
are ﬁ x 263 and % x 263 respectively. Since these procedures can be indepen-
dently conducted, the total time complexity is 15 x 203 + 19 x 203 = 203 < 2128,

Table 13: The differential characteristic of SPONGENT-128/256/128 for semi-free-
start collisions.
Rounds ‘ Differences at the input of each round ‘Pmb.‘ Phase

1(Input)|9dba9526599000003990e330037000000000000000000000000000000000000000000000000000000000000000000000

2 ©c0000000000000000000000000077600000000000000000777000000000000000000000000000000000000000000000
300000070000700000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000180100000000000000000000000000000000000000000000000000000000000000000000
000000b00000000000000000000000000000000000000000000000b00000000000000000000000000000000000000000

3 H(isa)
4
5
6 040000000000040000000000000000000000000000000000000000000000000000000000000000000000000000000000
7
8

000000000000000000000000000000000000000000000000200200000000000000000000200200000000000000000000
000000000000000000000000000000000000900000900000000000000000000000000000000000000000900000900000
9 000000000000000000000000000000000000000000000000000000000000000000000000000000000140000000000140 063 |1
10 000000000000000000006006000000000000000000006006000000000000000000000000000000000000000000000000 (5=14)
11 000009000009000000000000000000000000000000000000000000000000000000000000000000000000000000000000
12 000000000000000000000000000000000000000000000000000000000000000000000000028000000000000000000000
13 000000000000000000600000000000000000000000000000000000000000000000600000000000000000000000000000
14 000040000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000
Output [000000000000000000000000000000000000000000000000010000000000000010000000010000000000000010000000
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Table 14: Grouping results of SPONGENT-128/256/128 (semi-free-start). The left-
most bit is denoted as vi. Time of H(;_,4) represents the lower bound of the
computational complexity required for collecting DoF in H;_,4).

Category

‘ Bits ‘ Values

Free bits

4

U85, U89, V65, U101

Fix bits

33

v2, U3, Ve, V11, V15, V13, V18, V19, V22, V24, V25, V27,
W28, V34, W36, V38, U39, W42, V43, Ves, V67, V70, V71,
V74, V75, 7U81, U8s, U87, V92, V91, V104, V103, V108

groupl

64

V172, V132, V163, V140, V187, V162, V159, V155, V179, V185, V157,
V176, V165, V149, V186, V150, V183, V169, V166, V152, V175, V133,
V168, V171, V147, V144, V154, V181, V164, V170, V135, V138, V174,
v178, V190, V151, V161, V158, V130, V184, V156, V131, V191, V173,
V137, V142, V180, V134, V192, V182, V160, V177, V167, V136, V188,
V139, V146, V148, V143, V145, V153, V141, V189, V129

group2

64

V199, V252, V197, V204, V236, V249, V194, V256, V217, V193, V241,
V216, U220, V205, U244, V198, VU206, V245, VU214, V221, V196, U225,
V247, V232, V218, VU211, V237, V235, V212, V255, VU223, U208, U200,
V203, V201, U250, U246, U229, U251, VU233, U254, V243, V195, U222,
V215, V202, V207, U248, U228, U210, VU253, VU238, V234, U242, U213,
V240, V230, V227, V209, U226, U231, V239, U219, U224

group3

219

V279, V260, V60, V31, V10, V370, V78, V100, V119, V295, V267, V53,
U300, V96, V61, V304, V272, V265, Us, V90, V259, V283, V297, V326,
Us1, V312, V26, V356, U35, U372, U1, V41, V76, U348, U357, U340, V328,
V266, V371, V57, V378, V375, Us5, U365, U368, V287, U257, V123, V301,
Vg4, V284, U341, U360, V20, U319, V44, V63, V107, V369, V285, V327,
V110, V308, V269, V21, V268, U350, U324, U331, U353, V99, V258, V344,
V111, V9, V296, Vg0, V128, VU7r7, V307, U336, V298, VU325, U321, Us50,
V73, U349, U310, U333, V12, V105, V17, U359, V280, V282, V37, VU367,
V126, V30, VU289, U347, V292, V95, U7, V122, V98, VU261, V47, V276,
V278, V45, V115, V106, V262, V293, V313, V62, V97, V270, U315, V291,
V116, U381, U361, U317, U314, V127, U329, U380, V383, U355, V37T,
V29, U338, U311, V303, V306, V16, U286, V121, V273, U332, V274, V364,
U352, U343, V376, U305, V345, Us3, U8, U363, U366, V263, V125, V281,
V290, V112, V46, V49, V66, V120, U316, V48, U358, V384, V79, V373,
V117, V102, U342, Us8, V323, V64, U351, V322, U362, V109, U288, U379,
V339, Us6, V124, V118, V69, V275, V23, VU354, V72, V277, Us56, U33,
V309, V318, V4, V271, V302, U334, V113, Us4, V114, V93, V59, VU264,
U330, V94, V14, U320, U346, U337, U382, U335, V32, Vg2, U374, V294,
V52, U299, V40

Time of H(1_,4)

261.2

B.2 Attacks on 14-round SPONGENT-160/160/80

Attack Procedure
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Step 1. Divide the round function into the first 2 rounds and the remaining
9 rounds such that H = H_,14) © H(1_,3). Evaluate the differential char-
acteristic for H taking the weight in H4_,4), which must be less than the
weight of the claimed security, into consideration. As a result, we obtain the
differential characteristics shown in Table 15 whose probability in H_,14)
is 2778,

Step 2. Construct the model for the value-and-difference transitions for H4_,14)
by Liu et al.’s method [17], and verify that the differential characteristic is
valid.

Step 3. Apply the Grouping method to H;_,3). Table 16 shows the results after
applying the Grouping method. There are 160 free bits and 12 fixed bits.
The other input bits are categorized into 3 groups.

Step 4. Since the differential probability of H4_,14) is 2778 at least 27® DoF in
H(;_,3) is needed to obtain one collision pair on average. As we can obtain
2160 DoF by free bits if one or more states can be discovered from group 1.
To this end, we construct the value-and-difference transition model by SAT
and solve the constructed SAT model, and we found more than one state.
Therefore, we obtain 278 x 1 = 27® DoF that is enough to find one collision
pair.

Step 5. Finding the colliding pairs with 278 in H (1,3, which satisfy the differ-
ential characteristic in H_,14)-

Computational cost evaluation Ignoring the cost of Grouping, the compu-
tational cost required to find one collision pair is 1—54 x 278 4 }711 x 278 = 278
280(claimed security). Therefore, the attack is successful.

The cost of grouping input variables is negligible compared to those of enu-
merating the available DoF and finding a pair satisfying the differential char-
acteristic in H(4_,14) Time complexities of enumerating the available DoF and
finding a pair satisfying the differential characteristic in H4_,14) are % x 278 and
L5 978 respectively. Since these procedures can be independently conducted,

14 .
the total time complexity is & x 278 4 1 x 278 = 278 < 2128,
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Table 15: The differential characteristic of SPONGENT-160/160/80 (semi-free-
start). Differences are displayed in hexadecimal.

Rounds ‘ Differences at the input of each round ‘Prob.‘ Phase

1(Input)|a0ac6660£££0000000000000000000000000000000000000000000000000
000000000000000000000000000000470000000000000d407000000000000 H3)
3 0000000000000000000000c0002000000000000000000000000000000000
4 000004400000000000000000000000000000000000000000000000000000
5 000000000000000000000000000000060000000000000060000000000000
6 000000000000000000000080004000000000000000000000000000000000
7
8
9

VI V]

000004400000000000004400000000000000000000000000000000000000
000000000000000000000000000000060003000000000060003000000000
000000000000000000000088004400000000000000000000000000000000 | 278 Hag
10 00000cc0000000000000cc00000000000000000000000000000000000000
11 000000000000000000000000000000000000000000000060003000000000
12 000000000000000000000000004400000000000000000000000000000000
13 000000000000000000000000000000000000c00000000000000c00000000
14 000000000100800000000000000000000000000000000000000000000000
Output {002100000000000002100000000000000000000000000000000000000000
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Table 16: Grouping results of SPONGENT-160/160/80 (semi-free-start). The left-
most bit is denoted as v;. Time of H(;_,3y represents the lower bound of the
computational complexity required for collecting DoF in H;_,4).

Category ‘ Bits ‘ Values

Free bits 160 |vss, V176, V165, V162, V204, V120, V150, V180, V98, V170, U201, V126,
V164, U85, V117, V82, V163, V113, V166, V65, V129, V141, V151, V208,
V172, V149, V185, V207, U71, V114, V206, V146, V81, V173, V136, V70,
V68, V205, V112, V192, U89, V96, V122, V178, V134, Usl, V118, V143,
V101, V155, V188, V131, V191, V119, V177, V156, V110, U52, V91, V63,
v87, V174, V107, V202, V196, Us6, U77, V145, V94, V116, V102, V121,
U171, V108, Us4, V194, V106, V49, U78, V139, V153, V111, V104, V142,
V100, V115, V199, Us50, V95, V197, V183, V186, Us4, V200, V147, V133,
V92, V123, V161, V189, V124, V184, Us3, Uss5, V103, V64, Us1, Us7,
V159, V128, V67, V73, V93, V144, V125, V138, V80, V137, V152, V182,
V193, V109, V158, V198, V190, V169, V132, Us6, V187, V72, V99, V157,
V175, V203, V130, V160, V168, V154, V74, V97, V105, V59, V62, V148,
V181, V90, V135, V179, V60, Uss, V83, V76, V167, V195, V69, U5, V66,
V79, V127, V140

Fix bitS 12 Vi, TU3, W11, W9, V14, V13, V20, W17, V24, V21, V28, V25
groupl 68 |vs, V33, Va4, V23, Vas, V29, V213, V227, V234, V4, U210, V36, V16,
V222, U7, V215, V10, V18, V233, U31, V37, V19, V22, VU239, Vs, VU236,

V219, V34, V217, U229, V45, V226, Us, V220, V214, V46, U35, V38, V30,
V216, V238, U231, V15, V42, V209, U218, VU228, V12, V26, V47, V43,
V232, V2, U230, V32, V224, V235, U225, VU240, U211, V237, V27, V39,
V223, U212, V41, V40, U221

275.8

Time of H(1_,3)

C Values of Practical Collision Pairs

Collision pairs for several variants of SPONGENT are shown in Table 17.
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