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Abstract. The hardness of the learning with errors (LWE) problem
increases as its noise rate grows. However, all existing LWE-based public-
key encryption schemes require the noise rate to be no greater than
o(1/(y/nlogn)). Breaking through this limitation presents an intriguing
challenge.

In this paper, we construct public-key encryption (PKE) schemes based
on the sub-exponential hardness of decisional LWE with polynomial
modulus and noise rate ranging from O(1/+/n) to o(1/logn). More con-
cretely, we demonstrate the existence of CPA-secure PKE schemes as
long as one of the following three assumptions holds.

(i) (n*® n=*M)_hardness of decisional LWE with noise rate O(1/y/n).
(it) (2“’("1/61),2_w("1/cl))—hardness of decisional LWE with noise rate

O(1/+/nt=1/c1logn) for some constant c; > 1.

(iif) (2w(n/loe™n) g-w(n/log™ n)y hardness of decisional LWE with noise
rate O(1/1/log®™ n) for some constant cz > 0.

Here, (t, €)-hardness means no adversary running in time ¢ can gain ad-
vantage exceeding e.

We also construct injective trapdoor function (iTDF) families based on
similar hardness assumption as our PKE. To achieve this, we give a
generalization of Babai’s nearest plane algorithm, which finds a “common
closest lattice point” for a set of vectors.

In addition, we propose a PKE based on the (2“’("1/2), 27“<”1/2>)—hardness
of constant noise learning parity with noise (LPN) problem. Our con-
struction is simpler than the construction of Yu and Zhang [CRYPTO
2016] while achieving the same security.

Keywords: Lattice - Learning with Errors - Public-Key Encryption -

Injective Trapdoor Function- Learning Parity with Noise.

1 Introduction

1.1 Background

Recently, cryptographers have shown fervent interest in the study of the learning
with errors problem (LWE). This enthusiasm is not only due to its capability
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of constructing traditional cryptographic primitives, such as public-key encryp-
tion (PKE) schemes [Reg05], signatures [GPV08], but also for more advanced
usages like fully homomorphic encryption [BV11, GSW13], identity-based en-
cryption [GPV08], and attribute-based encryption [GVW13]. Furthermore, the
LWE problem is also conjectured to be hard against quantum computers.

Let us give a brief introduction to the LWE problem. Given a public matrix
A€ ngm, a secret s <— X7, an error e < X1, the search LWE problem asks the
adversary to recover s from (A, ATs + e). The decision LWE problem asks the
distinguisher to tell whether the LWE samples are sampled according to the real
LWE distribution or the uniform random distribution. For certain parameters,
decision LWE is proven to be as hard as the search version [Reg05, MP12]. In
this paper, we focus on a canonical variant of LWE in [Reg05], where x; is the
uniform distribution on Z,, and x. ~ ¥, 4 is the rounded Gaussian distribution
with width ag. We call this problem by LWE(n, ¢, «), and call « its noise rate.
Reductions from hard lattice problems (e.g. SIVP,GapSVP) to LWE have been
well studied [Reg05, PRS17]. We present the recent reduction by Aggarwal et
al. [ABB'23] which allows the reduction to run in subexponential time.

Lemma 1 ( [ABB"23], Theorem 5.5). Letn,q€ N*, a € (0,1), v> %

satisfy aq > 2v/n. There is a quantum reduction from GapSVP, for all lattices

to decision LWE(n,q, a) that runs in time (1 — (;f/‘)z)_”/g - poly(n).

In the lecture notes of Vaikuntanathan [Vai20], he mentioned the problem
of constructing a public-key encryption scheme from LWE with « € O(1) as
an open problem. Currently, most constructions of LWE-PKE require the noise
rate to be upper-bounded by o(1/(y/nlogn)), while some other primitives even
need the LWE noise to be sub-exponentially small. This naturally sparks the
following questions.

— What is the largest possible noise rate of LWE that enables public-key en-
cryption?
— Can we use large noise LWE to achieve other cryptographic primitives?

In this paper, we explore answers to the questions above, and the main results
are presented in the following subsection.

1.2 Main Results

Public-key encryption schemes from large noise LWE. We manage to construct
PKE schemes with chosen-plaintext attack (CPA) security on LWE with poly-
nomial modulus and noise rate ranging from O(1/+4/n) to o(1/logn).

Theorem 1. Let n be the security parameter, and q := q(n) € poly(n) be the
modulus such that ¢ > w(n). There exists a PKE scheme with CPA-security if
one of the following three conditions holds.

(i) The (n*M n=“W)_hardness of decision LWE(n, g(n),O0(1//n)).
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1 1
(i) The (2* ) 27 1)) _hardness of decision LWE(n, q(n), O(1/ n'"e logn)),
for some constant ¢; > 1.
(i11) The (2 (mefrs) 9 ~(iogfem) )-hardness of decision LWE(n, q(n), O(1/+/log® " n
for some constant co > 0.

Here, (t, ¢)-hardness means any adversary with running time ¢ has an advan-
tage bounded by e.

Combining with Lemma 1, we show that PKE exists assuming the subex-
ponential hardness of worst-case lattice problems like GapSVP,, for the approx-
imation factor 7 as small as O(\/ﬁ), improving upon the previous best result
of v € O(n). In particular, by letting o = O(1/y/log®** n) for some constant
co > 0, we can choose any v € u)(\/nlogcr|r1 n) in Lemma 1 and show PKE
exists assuming no quantum algorithm solves GapSVP_, in time 20(n),

Injective trapdoor functions from large noise LWE. Building on the results of
[MP12], we construct a family of injective trapdoor functions (injective TDFs,

iTDFs) on the same hardness of search LWE with the same noise rate as our
PKE.

Theorem 2. Let n be the security parameter and ¢ = g(n) € poly(n) be a prime
such that ¢ > w(n). There exists a TDF family if one of the following three
conditions holds.

(i) The (n*M n=W)_hardness of search LWE(n, q(n),O0(1//n)).

1 1 1
(ii) The (2¢() 2=« hardness of search LWE(n, g(n), O(1/1/n'~# logn)),
for some constant ¢; > 1.
(iii) The (2°Usfz) 275w )Y hardness of search LWE(n, q(n),0(1/y/log™ " n

for some constant co > 0.

Specifically, assuming condition (i) or condition (ii) with ¢y > 2, the TDF family
1s injective.

In the construction, we need to extend Babai’s nearest plane algorithm
[Bab86] to identify a “common closest lattice point” for a set of vectors. This is
presented in Section 4.

Public-key encryption schemes from constant noise LPN. In [YZ16], Yu and
Zhang proposed a PKE scheme based on the (2“’(”1/2),2’“("1/2))—hardness of
LPN with constant noise. Using a construction similar to our LWE scheme, we
get a PKE scheme which is simpler than that in [YZ16] while achieving the same
security.

Theorem 3. Let n be the security parameter. There exists a PKE scheme with
CPA-security assuming the (2“’("1/2), 2_w("1/2))—hardness of LPN(n, u), for some
constant 0 < p < 1/2.



4 Liheng Ji and Yilei Chen

1.3 Technique Overview

Public-key encryption schemes from large noise LWE. Our starting point is
Regev’s PKE scheme [Reg05]. Let A be the security parameter of this PKE
scheme. Let ¢ = g(\) = poly(X) be a prime such that ¢ > w(A), n = 2(Alogq) =
2(AlogA). Let ¥, 4 = [Dga,q| denote the discretized Gaussian distribution
with width ag (see Appendix A.2 for a detailed explanation). The key gen-
eration algorithm samples A < ZAX” s ZA, e < Y., computes b =
ATs + e mod ¢, and sets (pk,sk) = ((A,b),s). For any message m € {0,1},
the encryption algorithm samples r + {0,1}", and outputs the ciphertext
¢ = (c1,¢2) = (Ar, (r,b)+|g/2]-m). Finally, the decryption algorithm computes
A= cy —cFs = (r,e) + |g/2] - m, checks whether A is closer to 0 or |g/2],
and outputs 0 or 1 accordingly. Since (r,e) ~ W*O(”) (@3, denotes the distri-
bution of summing up ¢ elements sampled 1ndependent1y from ¥, ), we have
when a = o(1/(y/nlog)\)), this scheme is correct with probability 1 — negl()\)
(see Corollary 2 for the calculation). By the hardness of LWE and the leftover
hash lemma (Lemma 7), we have (A,b, Ar,(r,b)) ~. (A,b’,Ar, (r,b’)) ~
(A, b',u;H), where b’ ~ U, ~., ~; stands for computational and statistical
indistinguishability. This suffices to prove the security of the encryption scheme.
Now we modify this scheme by the following steps.

— Step 1: Raise the noise rate to a = O(1/4/n), while keeping the
setting of the other parameters unchanged. Now the new scheme is
correct with probability 2/3, which is still sufficient since we can improve
the correctness by applying parallel repetition.

— Step 2: Replace the distribution of r by Z["*], where k = ©(\log A/ logn),
and =" represents the uniform distribution over the set

{v € {0,1}"| the Hamming weight of v is k}.

We also let n = 2(\>!), and a = O(1/VEk) = l/w/Alog)\/logn
e Security: Since k = O(n<"), we have Hoo (Z"*]) = O(klogn) = O(Alog \)

(by Lemma 10). Using the leftover hash lemma, we have (A, b’, Ar, (r,b’)) =
(A, b’,U)*1). So the security still holds.
e Correctness: We have (r,e) ~ W3k . Since we set a = O(1/Vk), the
scheme is correct with probability 2/3.
We remark that if the scheme is not required to be efﬁcient we can let n
be subexponential in A, and then the noise rate (o = 1/\/)\log A/logn))
will become even larger. The next step applies this idea more cleverly.

— Step 3: Change the security parameter of the PKE scheme from
A to n, and let A € (w(logn),O(n<1)]. This modification makes n subex-
ponential in A, while maintaining the efficiency of the scheme. However, the
security assumption becomes tricky: we need to assume the (™), n=«M)-
hardness of LWE(A, g(A),O(1/4/Alog A/logn)) to make the scheme secure.
Actually, this hardness assumptlon aligns with the subexponential hardness
assumption in Theorem 1, and we provide a detailed explanation for this in
Lemma 2. We also note that this step works only if « is larger than O(1/v/)),
which means the previous two steps are indeed necessary.
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Using a similar method, we can also construct a PKE scheme based on the
(n*®, n=«W)-hardness of LPN(), u), where A\ = O(log”n), and 0 < p < & is a
constant. This aligns with the result in Theorem 3.

Injective trapdoor function from large noise LWE. Next, we construct an iTDF
family from LWE with a large noise rate.

We first recall the trapdoor function in [MP12]. Let A be the security param-
eter, ¢ = g(A) = poly(\) be a prime such that ¢ > w(\), kK = [logy ¢], w = Ak.
Let G be the gadget matrix. For a random matrix A « A x (n — w), an in-
vertible matrix H € Z(/I\XA, the trapdoor generation algorithm samples R <
{0,1}(»=w)xw “and outputs the public evaluation key A = (A|HG) — AR),
along with the private inversion key (trapdoor) R. On input (s,e) such that

>\ n . . .
s < Z; and e «+ g/o(1/(ﬁlog )’ the evaluation algorithm (accessible to A)

outputs b := ATs +e. The inversion algorithm (accessible to A, R), on input b,
computes [RT||[IJb = GTH”s+[R”||I)e, uses Babai’s nearest plane algorithm on
A(GT) (the g-ary lattices is defined in Eqn. (2)) to get H''s, and then recovers
s, e in the end.

Our idea is applying a transformation resembling what we do for PKE, except
that we use the truncated Bernoulli distribution BZ /7 (see Definition 10) instead

of Z™# which has a similar min-entropy to =¥ but enables us to calculate
independent bounds for different errors. More concretely, we replace the security
parameter by n, and let £ = w(logn), i = n — bw, k = O(Alog \/logn). For
a random A Zé‘”‘ and H € ZQXA, the trapdoor generation algorithm sam-
ples Rq,..., Ry + (B’ZL/’_L)(@“), and outputs A = (A|HG) — AR4|...|HG) —
ARy) with trapdoor (Ry,...,Ry). On input (s,e) such that s < Z;‘ and e
v (V) the evaluation algorithm outputs b := AT's +e. As for the inversion
algorithm, on input b, it first parses b = (b”||bl||...|b{ )7 € Z7 x (ZY)®,
e = (eT|ef]...|el)T € Zy x (ZZ}”)W, and computes b; = RTb + b, =
GTHTs + RTe +e;. Then, it only needs to recover H's from {Bi}lgigg, which
enables the calculation of s, e.

However, the error vector R @ + e; is so large that merely applying the tra-
ditional nearest plane algorithm results in a very low probability of successfully
recovering H”'s. In other words, we need many times of parallel repetitions to
achieve strong correctness (¢ should be w(2)), which will destroy the structure
of our trapdoor function. To deal with this, we make a non-trivial modification
to Babai’s algorithm, which improves its error correction ability.

Nearest-plane algorithm for large noise vectors. Let L be any m-dimensional
lattice, v € L be a lattice vector, eV, ... e € R” be independent random
error vectors. Our goal is to recover v from {v + e(?};<;<, when the errors are
small.

Let B = (by,...,b,) be an ordered basis of L, then we can write v =
2?21 ¢jb; for some cy,...,c, € Z. The idea is to follow the process of Babai’s
nearest-plane algorithm [Bab86] , except that we do a parallel repetition (error



6 Liheng Ji and Yilei Chen

correction) when computing each ¢;. More concretely, if for most of e its
projection to every orthogonal basis vector b; is of length less than ||bj||/2,
then, by computing the projection of every v+ e(® to Bj and taking a majority,
we will recover the projection of v to Bj. Using the property of Gram-Schmidt
orthogonalization, we can recover ¢,,cy_1,...,C1 one by one.

1.4 Applications

Oblivious transfers from large noise LWE and constant noise LPN. Gertner et
al. [GKM100] demonstrated that for a PKE scheme with CPA-security, if its
public key can be sampled without the knowledge of the corresponding secret
key and remains indistinguishable from a legitimately generated public key, then
the scheme can be transformed into an oblivious transfer (OT) in a black-box
manner. It is straightforward to verify that our PKE schemes, derived from
both large noise LWE and constant noise LPN, satisfy these criteria, thereby
guaranteeing the existence of OTs based on the same hardness assumptions.

Applications of iTDF from large noise LWE. Bartusek et al. [BKP23] proved
the existence of PKE and commitment schemes with publicly-verifiable dele-
tion (PVD) under the assumption that post-quantum iTDF exists, therefore our
result directly implies that PKE and commitment with PVD exist assuming
large noise LWE is hard against quantum attackers. Furthermore, for any post-
quantum primitive X € {attribute-based encryption, quantum fully-homomorphic
encryption, witness encryption, time-revocable encryption}, they also estab-
lished the existence of X with PVD, assuming the availability of both X and
iTDFs. We can therefore plug in our iTDF construction in those constructions.

2 Preliminary

Let n be the security parameter. For a distribution or a set X', x < A denotes
sampling = according to the distribution or uniformly at random from X. For
any k € N, define x** as the distribution obtained by the sum of k& elements
sampled independently from the distribution x. For € R, let |z] be the integer
closest to x (and the smaller one if there are two closest candidates). For any
integer ¢ > 2, let U, denote the uniform distribution on Z,, and we use U to
denote Us. For any a € Z,, define |a| := min{a, g — a} to represent the absolute
difference in modular arithmetic. For any a € Z,; and b € Z, define the value of
(a+10) (resp. (a—Db), a-b) by treating a as an element of {0,...,¢—1} C Z and
then adding (resp. subtracting, multiplying) it by b. For any = > 0, we use log x
to denote log, x.

We use bold uppercase letters to denote matrices, bold lowercase letters to
denote column vectors, and standard lowercase letters to represent scalar values.
For any matrix A, use AT to denote its transpose. If A is invertible, use A~!
to denote its inverse, and define A=7 = (A~1)T. For any n-dimensional vector
v and any integer ¢ € [1,n], let v(¢) denote the ith component of v. For any
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t € [1, 00|, the £;-norm of vector v is denoted by ||v||+, with the ¢y-norm simply
represented as ||v||. For any two positive integers k < m, Z[™*] denotes the
uniform distribution on the set {v € {0,1}" | Ham(v) = k}, where Ham(v)
denotes the Hamming weight of the vector v.

For any p € (0,1), let B,, denote the Bernoulli distribution with parameter
w. For any finite set S, denote by |S| the number of elements in S. Denote
by poly(n) some polynomial function of n, by negl(n) some negligible func-
tion of n, and by n<! (resp. n>!) some function n¢ where ¢ is a constant in
(0,1) (resp. (1,00)). When we say some event £ happens with overwhelming
probability, it means Pr[€] = 1 — negl(n). “PPT” stands for probabilistic poly-
nomial time. The statistical distance between two random variables X and Y
is defined as SD(X,Y) := 23> |Pr[X = 2] — Pr[Y = z]|, where the sum is
over all possible outcomes x. If SD(X,Y) = negl(n), we say X,Y are statis-
tically indistinguishable, denoted by X =z Y. If for every PPT adversary A,
| PrlA(X) = 1] — Pr[A(Y) = 1]| = negl(n), we say X,Y are computationally in-
distinguishable, denoted by X ~. Y. We have X =, Y implies X =, Y. Denote
the min-entropy of X by H.(X) := —log(max, Pr[X = z]). The statistical
distance, indistinguishability, and min-entropy of probability distributions are
defined similarly.

Due to space limitations, we postpone the rest of this section to Appendix A.

3 Public-Key Encryption Scheme from LWE with Large
Noise

In this section, we construct CPA-secure PKE schemes on subexponential hard-
ness of LWE with large noise rates. Concretely, Subsection 3.1 and 3.2 are ded-
icated to proving the following theorem.

Theorem 4. Let n be the security parameter for the PKE scheme. For any \ €
(w(logn),0(n<Y)], and any prime q = q(\) € poly(\) such that ¢ > w(\), there
exists a PKE scheme wzth CPA-security assummg the (n*M n=<M)_hardness

of decision LWE(X, g(A\), O(1/4/Alog A/ logn))

The following lemma gives a better illustration of the hardness assumption
in Theorem 4.

Lemma 2. For any X € (w(logn), O(n<Y)], and any q()\) € poly()),

(i) if X = O(n) for some constant 0 < ¢y < 1, we h(we the (n*®, _‘“(1))—
hardness of decision (resp., search) LWE(A, q(A),O(1/1/Alog A/ logn is

implied by the hardness of the decision (resp search) LWE(n, ¢(n),O0(1/y/n)).
(ii) if X = O(log™ n) for some constant ¢; > 1, we have the (n*), *‘*’(1))—
hardness of decision (resp, search) LWE(A, g(A),O(1/+4/Alog A/ logn is

implied by the (2‘“(”61) 2 T ))-hardness of the decision (resp., search)
LWE(n, (), O(1/y/n'~* logn)).
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(iii) if A = O(log n(loglogn)°) for some constant co > 0, we have the (n*™) n_“(l))-
hardness of decision (resp., search) LWE(X\, g(\), O(1/+/Alog A/logn))
implied by the ( “(ogtzm) 2~ w(lvgc2 n))-hardness of the decision (resp., search)

LWE(n, ¢(n), O(1/+/log 02“

Remark 1. The PKE proposed by Regev [Reg05] is based on the (n‘”(l), n*“(l))—
hardness of decision LWE(n, g(n),0(1/(y/nlogn))). The LWE problem in (i) im-
proves the noise by an w(logn) factor, and thus has a stronger hardness. As for
the LWE problems in (ii) and (iii), we do not know how to compare their hard-
ness to that in (i). However, they can be viewed as a trade-off between the secret
length A and the noise rate, which has not appeared in Regev’s PKE [Reg05].

Proof. In the following, we do not distinguish between the search problem and
the decision problem, as their proofs are the same.

(i) When A = O(n%), we have n*1) = XM and O(1/\/Alog\/logn) =
O(1//Nog \/ log()\l/CO)) =0(1/VN).
The (M), n=*())-hardness of LWE(n, g(n), O(1/y/n)) implies the (A2 \=«(1))-
hardness of LWE(\, q( ) O(1/V/))), which is exactly the (n<() n=«M)-
hardness of LWE(A, g(A), O(1/+4/Alog A/ logn)).

(ii) When A = O(log® n), we have ne() = 2@()‘1/”), and O(1/4/Alog A/logn) =

O(1//(NIog /A1) = O(1// N1 Tog ).

The (ZW(”CI) 2- “’("Cl)) hardness of LWE(n,q(n),O(1/ =g logn)) im-
plies the (2‘*’()‘cl ),2"*’0‘61 ))-hardness of LWE(X, g(\), (1/ =% log A),
which is exactly the (n*), n=«())-hardness of LWE(X, g(A 1/\/)\10g A/ logn)).

(iii) When A = O(log n(log log n)c2) we have log A = 9(log log n—l—cz logloglogn) =
O(loglogn). Substituting back, we find A = O(lognlog® \), leading to

logn = O(25 g%)\) Then nv() = w(logé“) and O(1/4/AlogA/logn) =
(1/\/ Alog >‘/(1og62 by 1/ V1 CQ—H

The (2 2*(gfzm) 9~ w(log” =’)-hardness of LWE(n, g(n 1/\/ g2t n)) im-

plies the (2 w(log” ) 27 «(iogPr )) hardness of LWE( )\ ,q(A 1/\/ log°2+1

which is exactly the (n“®), n=“(1))-hardness of LWE A q O(1/+/Alog )\/ logn .
O

By combining Theorem 4 and Lemma 2, we have the following corollary.

Corollary 1 (Theorem 1). Let n be the security parameter, and q = q(n) €
poly(n) be a prime such that ¢ > w(n). There exists a construction of PKE
scheme with CPA-security assuming one of the following three conditions.

(i) The (n*™) n“"(l))-hardness of decision LWE(n,q(n),O0(1/4/n)).

(11) The (2“’(”61) 2- T ))-hardness of decision LWE(n, q(n), O(1/1/n' ~ log n)),
for some constant ¢; > 1.

(iii) The (2* sz 27 57)) hardness of decision LWE(n, g(n), 0(1/+/log®* T n
for some constant co > 0.
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3.1 Single-Bit LWE-PKE Scheme with Weak Correctness

In this subsection, we transform Regev’s LWE-PKE [Reg05] into a single-bit
public-key encryption scheme HfWE = (KeyGen, Enc, Dec) with 2/3-correctness.

Construction Let n be the security parameter of the PKE scheme, A € (w(logn), O(n<!)]
be the dimension of the LWE secret, ¢ = g(\) € poly(\) be a prime such that
q > w()\). Let k = O(Alog\/logn) s.t. Hoo(ZM*) > 2(X + 1)logq. (For the

existence of such a k, please refer to Lemma 10.) Let x, ~ Elkl o < 10i/E'

— The message space is M = {0, 1}.

— KeyGen(1™) : Given the security parameter 17, it samples A «+ Zq/\xn, as
well as s < Zy, € < (Wo,q)". Then it computes b := (A”'s + e) mod ¢, and
sets (pk, sk) := ((A,b),s).

— Enc(pk, m) : Given the public key pk = (A, b) and the message m € M, it
samples r < X, and output ¢ := (c1, c2) as ciphertext, where ¢; := Ar and
c2 = (rTb + [¢/2] -m) mod q.

— Dec(sk,c) : Given the secret key sk = s and the ciphertext ¢, parse ¢ into
(c1,c2), calculate A := (cy — ¢f's) mod ¢. If |A| < |¢/2]/2, output 0. Oth-
erwise, output 1.

Theorem 5 (Weak correctness). Let A € (w(logn),O(n<)], ¢ = q(\) €
poly(\) be a prime such that ¢ > w()\), k = O(Alog\/logn) s.t. Hoo (S >

20+ 1)logq, a < ﬁ. Then ITEWE has %—correctness.

Proof. A = (cg — cFs) mod ¢ = (rTe + |g/2] - m) mod ¢. Let ¢’ := rTe, then
¢’ ~ (¥, 4)**. By Corollary 2, Pr[|e’| < |g/2]/2] > 1 —exp(—(lgo%)”) >2/3. O
The CPA security of IT fWE follows straightforwardly from the hardness

of decision LWE(}, ¢, ) and an application of LHL (the leftover hash lemma,
Lemma 7), and we postpone the formal proof to Appendix B.

Theorem 6 (CPA security). Let A € (w(logn),O(n<1)], ¢ = q()\) € poly())
such that ¢ > w(\), k = O(Alog A/ logn) s.t. Hoo(Z™F) > 2(X 4+ 1)logq, o <
ﬁ. Assume decision LWE(X, ¢, ) is hard, then ITEW'F s IND-CPA secure.

3.2 Multi-Bit LWE-PKE Scheme with Strong Correctness

In this subsection, we transform the scheme IT fWE in subsection 3.1 into a

strongly correct one, denoted by ﬁfWE = (KeyGen,Envc7 Bevc) The idea is to
use a similar transformation as in [PVW08, Subsection 7.2], along with an error-
correcting code.

Construction Let A € (w(logn),O(n<Y)], ¢ = q(\) € (w()\),poly(N)) be a
prime, £ = O()\), k = O((\ + £)log \/logn) s.t. Ho(ZMF) > 2(\ + £)logq.
Let x, ~ Skl o < 101\/E' Let C € {0,1}*™ be a binary error correcting code
that corrects ¢/3 independent errors, where m = O(¥). (The construction of such

error-correcting code can be found in [Jus72].)
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— The message space is M = {0,1}™.

— sz\G/en(I") : Let A Z;‘X". Let s1,...,8; < Z s el ...,e0 — (Uy )",
and set S := [s1]]...]|s¢] € Zg‘w, E = [e1H .. led 6 7"t Compute B :=
(ATS + E) mod ¢, and set (pk, sk) := ((A,B),S).

- a/c(pk,m) : Given the public key pk = (A, B) and the message m € M, it
samples r < Y., and output ¢ := (c?, cy) as ciphertext, where c; := Ar and
co:= (r'B + [¢/2] - C-m) mod q.

- B\e/c(sk, ¢) : Parse ¢ into (ci,cz), calculate (Ag,..., AT = (co —cT -
S) mod q. Define d := (dy, . ..,d;)T, where

1 otherwise.

Output C~!-d, where C~! is the decoding function.

Theorem 7 (Strong correctness). Let /\ € (w(logn),0(n<Y)], ¢ = q(\) €

poly(A) be a prime such that ¢ > w(X), ¢ A), k=060((A+{)log A/logn) s.t.
Hoo(EH) > 2(N 4+ 0) log q. Let x, ~ :[” k], a < %f Then HfWE is correct.
Proof (sketch). Assume (u1,...,us)T = C-m Through a calculation similar to
the proof in Theorem 5, we have Pr[d; = u;] > 2/3 for every i € [1,]. Therefore,
we can successfully decode m from d with overwhelming probability. O

Theorem 8 (CPA security). Let X € (w(logn),O(n<1)], ¢ = q(\) € poly()\)
be a prime such that ¢ > w(\), £ = ON), k = O((A + £)logA/logn) s.t.

Hoo(ZMk) > 2(\ + O)logq. Let x, ~ EMH o < ﬁ Assume decision

LWE(A, g, @) is hard, then ﬁ/\LWE 1s IND-CPA secure.

Proof (sketch). The hybrid argument is similar to the proof of Theorem 6. First,
by the hardness of LWE(A, ¢, ), we can replace every column of B by a uniform
vector sequentially. Then, an application of LHL (Lemma 7) concludes the proof.

O

4 Nearest-Plane Algorithm for Large Noise Vectors

In this section, we give a generalization of Babai’s nearest-plane algorithm [Bab86],
which finds a “common closest lattice point” for a set of real vectors. More con-
cretely, let B = (61, ce, BR) be an orthogonal basis of some lattice L. For any
vector v € L, consider a set of independent error vectors {e(i) € R} <;<p. For
each 4, define z(") := v +e(?). We show in the following theorem that, if for every
i and 7, the length of the projection of e(? onto by is less than ||b;||2/2 with
a probability greater than 2/3, then v and {e(¥},<;<, can be recovered with
overwhelming probability.

Theorem 9. Let k = k(n) € poly(n), B = (b1,...,b,) be an ordered basis of
any k-dimensional lattice L, and let its orthogonal basis be B = (bl7 e ,b,g).
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Let £ = w(logn). For random vectors e® ... e® sampled independently from
some distribution over R", if

)< Byl
visisbl<js<w I [|<e<z>,bj>| <”J”] >

2
2 3’

then there is a PPT algorithm, which takes B and {V+e(i)}1§i§g for somev € L
as input, outputs v and {eW}1<,<o correctly with 1 — negl(n) probability.

Algorithm 1 Nearest-Plane Algorithm for Larger Noise Vectors

1: function FINDCLOSESTVECTOR™(L, B, {2V }1<i</)
2: Orthogonalize B = (b1,...,b,) in the forward order and get B = (b1, ..., b,).
for i =1to ¢ do
Initialize x¥ := z(*)
end for
for j =k to 1 do
(x(i),f,j)
(bj,bj)

Find majority in {|
for i =1to ¢ do
9: x(® ¢ x(® c;jb;.

10: end for

11: end for

12: Let v := z(M) — x<1), and e® := x for each 1 <i < 4.
13: return v, {eV}; <.

14: end function

1}i<i<e, and denote it by c;.

Proof. The detailed steps of the algorithm are given in Algorithm 1, and we
show its correctness in the following. Assume the hidden lattice vector is v =

> i—1 ¢y, where ¢j € Z. We abuse the notation that as j goes from  to
)

1, we denote by xy the value of x(¥ at the beginning of each corresponding

iteration. Denote by xéi) the value of x() after all & iterations. If we have with
overwhelming probability that

x((f) =el A (V1 <)<k, xgl) = Zc%bh +el),
h=1

then we can get the correct v by subtracting e®) from z). To show this, we
only need to prove c;. = ¢; with overwhelming probability for all 1 < j < k.

We prove this by induction on j downward from & to 1. For every j = k —
1,...,1,assume for all h = j+1,..., K, we have ¢, = ¢}, holds with overwhelming

probability. (In the base case where j = k, we do not make any assumption.)

Then we have for i = 1,...,¥, X;-i) = > _,¢,bp + e, By the property of
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Gram-Schmidt orthogonalization, it holds that

(x\" b;) = Zchbh—i—e() b;) = (¢b; + e by).
h=1
Let 8 := {£7Ba) |- e the projection of €@ to by f hj=1 It
et &;" 1= ‘54 - b be the projection o obj; foreach j =1,...,k.
(i) =0 T o by, 18
follows that (x; ,b;) = (¢/b; + &' b;), which gives | 222 = ¢/ 4 [~2-2].
J J (bj,b;) J b5 [l
Additionally, we have by our assumption that
- b.l12 - b:l2. 2
Prilel”, by < I222) = pryie0 ) < 1Pl 2

185”12
||b ll2

185”12

event that | |\B T 1 = 0. Then we have Pr[fj(‘Z =1] >2/3. Let §; = Zi‘:l gj(,l),
2
we have E[¢;] > 2¢/3. By Chernoff bound, we have

therefore, Pr| < 1/2] > 2/3. Define f () as the indicator function for the

Pr§; > £/2] > 1 — e F (D) =1 - e,

Therefore, with overwhelming probability, for more than a half of ¢ € [1, ], the

event \_H‘é ””2] = 0 happens. And then we can get c¢; = ¢} by taking a majority
b,)

|
. i)
m {L<<g ];'7 ]}1<1<g O

5 Injective Trapdoor Functions from Large Noise LWE

This section focuses on proving the following theorem.

Theorem 10 (Theorem 2). Let n be the security parameter, and ¢ = q(n) €
poly(n) be a prime such that ¢ > w(n). There exists a construction of TDF
family assuming one of the following three conditions.

(i) The (n*®, n=W)-hardness of search LWE(n, q(n),0(1/\/n)).

1 1
(ii) The (22() 2= )) _hardness of search LWE(n, g(n), O(1/4/ n' % log n)),
for some constant c¢; > 1.
(iii) The (2 e77) 27 af5)) hardness of search LWE(n, q(n),0(1//10g® 1 n)),

for some constant co > 0.
Specifically, assuming condition (i) or condition (ii) with ¢; > 2, we have the
TDF family is injective.

In order to prove Theorem 10, we generalize the trapdoor in [MP12], and con-
struct a TDF family 7, from search LWE(), ¢, &), where A € (w(logn), O(n<1)],
g = q(\) € poly(A) is a prime such that ¢ > w(\), & = O(Alog)\/logn),
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in Theorem 10 then follows straightforwardly by applying Lemma 2.

The organization of this section is as follows. In Subsection 5.1, we revisit the
concepts of primitive lattices from [MP12] and establish several bounds pertinent
to our analysis. In Subsection 5.2, we show how to invert LWE on primitive
lattices. In Subsection 5.3, we show how to generate an LWE instance with
auxiliary information (trapdoor) that enables us to recover the secret and the
noise. In Subsection 5.4, we give the formal construction of injective trapdoor
function family 7T, as well as the proof of its injectivity and invertibility. We
also remark that the conclusions in Subsection 5.1 and Subsection 5.2 do not
require ¢ to be prime.

a < ﬁ. When A = 2(log?n), we prove the injectivity of 7x. The result

5.1 Primitive Lattices

We first recall some notions in [MP12]. Let « = [log, ¢q], and define g :=
(1,2,...,2°"1)T. A short basis for A+(g?) (the g-ary lattices is defined in
Eqn. (2)), denoted by T4, is constructed as follows.

— When ¢ = 2%, let

2
-1 2
Tg - (tla 7tn) = —1
2
—-12
— Alternatively, if ¢ is not a power of 2, let
2 90
-1 2 q1
Tg = (t1,...,te) == 1. g |
2 drk—2
-1 dr—1

where (qo,...,qk—1) € {0,1}" is the bit decomposition of ¢ = Z;:OI 20 . q;.

Since Ty := (ti,...,tx
Ag) = gt (g")".

Define the gadget matrix as G, := diag(g”,g”,...,g") € Z*™", and let
Tg, = diag(Tg, Tg,...,Tg) € Zy"*"™", then we have Tg, is a basis for
A+(G,,). When ¢ = 2%, orthogonalize Ty in the reverse order, and we have
’i‘g = 2-1I,. When ¢ is not a power of 2, orthogonalize Tg in the forward order,
and we have ’i‘g is still a short basis by the following lemma.

) is a basis of A*+(g”)*, we have ¢ - T} is a basis for

Lemma 3. When q is not a power of 2, let ’i‘g = (‘El, e ,EK) be the orthogo-
nalization of Tg in the forward order. It holds that
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. ~ i+2
- V1I<i<g, ||tji1= 22i+-|{1 € [3,4);
el = 52 € (3,3);

— V1 <i <k, |t = /2Tt € (2,VE];

— Bz = v/ 2Z5 € (2, V3).

In Lemma 3, we extend [MP12, Lemma 4.3] by figuring out more details on
the bounds of both ¢;-norm and ¢5-norm for each t;. The proof is postponed to
Appendix C.

5.2 Inverting Large Noise LWE on Primitive Lattices

For s € Zj and specific errors ey, es, ..., e, € Zg", let b; 1= GTs + e; for all
1 < i < ¢. We then describe an algorithm that, given (by,...,by), recovers s
and e, e, ..., ey with overwhelming probability.

For simplicity, we set n = 1 without loss of generality. (In cases where n > 1,
we can decompose each b; into n vectors in Zg, apply the inversion algorithm
to each of them, and then concatenate the results.) Now our task is to recover
s € Lq and ey, ey, ..., e € Zy from (b =sg+e1,...,by=sg8+e).

If we view sg as a lattice point on A(g), then we can use the generalized
nearest plane algorithm in section 4 to recover it. We further explain this in the

following lemma.

Lemma 4. Adopt the notations of g7Tg,T;,'i‘g, and {tj,t}fj}lgjgm in Sub-
section 5.1. If e1,...,e; € Z" are independent random vectors and satisfy

. ) ; 2
V1<i</(,1<j<k, Pr[/{e;t;)] <q/2]> 3’
e;
then there is an algorithm that for any s € Z,, it takes (b1 = sg+e1,...,by =
sg + e¢) as input, and recovers (s,e1,ea,...,er) with overwhelming probability.
Particularly, when g = 2", the condition is simplified as

Wl N

V1 <i<{,1<j<r, Prlle(j) <q/4] >

Proof. Since sg € A(g), we can view it as a “common closest lattice vector” of
{b;}1<i<¢. Denote by ’i‘; the orthogonalization of Ty . Since ¢q - Ty is a basis
for A(g), we have ¢ - ’i‘; is an orthogonal basis of A(g). By Theorem 9, we only
need to prove

V1 <i<{,1<j<kPrl{e;,qt])] < lqt;]°/2] > 2/3,
€e;

which is easy to prove since

Pr(|(e;, qt})| < llat;[*/2) = Prll(e:, t)| < a/2] > 2/3,

€;
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where the equation holds by fj =7 ft*jH”
i
Particularly, when ¢ = 2%, we do Gram-Schmidt orthogonalization in the

reverse order and get ’i‘g = 2I. Then ’i‘g =1/2, and thus

and the “>” holds by assumption.

V1<i<{t,1<j<nPrl[(e;,t;)| <q/2] =Prlle:(j)| < q/4].

Substitute this back into the condition and then we finish the proof. O
For completeness, we present the inversion process for b = GL's + e in Algo-
rithm 2.

Algorithm 2 Inverting Large Noise LWE on Primitive Lattices

1: function INVERTPRIMITIVELWE™"**({b;}1<i<()
2: if ¢ = 2" then

3: Let Tg := (t5,th 1,...,t]).

4: Let Tg, = diag(T;, T%, ..., Tk) € Zexns

5: return FINDCLOSESTVECTOR(A(GY), T4, , {bi}1<i<e)
6: else

7 return FINDCLOSESTVECTOR(A(GY), Tg, , {bi}1<i<e)
8: end if

9:

end function

5.3 Generating Large Noise LWE with Trapdoor

Trapdoor Generation Let A € (w(logn),O(n<%)], ¢ = q(\) € poly()\) be
a prime such that ¢ > w()\), & = O(\log\/logn), a < ﬁ, ¢ = w(logn),
k = [logq], w = Xk, B = n — fw. Let x, be some distribution on Z} such

that Heo(xr) > 2Alogq. We present the trapdoor generation algorithm in Al-
gorithm 3, which takes as input a matrix A € Z;Xﬁ and an invertible matrix
He Zg‘x’\, (If there is no input, it randomly picks A « Z;‘Xﬁ, and set H =1.)
and outputs a pseudo random matrix A € Zg‘X” with trapdoor (R,...,Ry).
Theorem 11. Let A € (w(logn),O0(n<1)], ¢ = q(A\) € poly()\) be a prime such
that ¢ > w(X), k = ©(AlogA/logn), a < ﬁ, ¢ = w(logn), k = [logq],
w = Ak, n = n —fw. Let x, be some distribution on Z’; such that Hoo(xr) >
2M\1og q. For a random matriz A « Z;‘m, and an invertible matrix H € Z;\X)‘,
let (A, (Ry,...,Ry)) < TRAPGENMOXr (A H). Then A is statistically indis-
tinguishable from uniform.

Proof. By Lemma 7, we have
SD((A, (AR, AR, ..., AR,)), (A, (U}*"))) < 20wl oxa-uwtH (x)/2 _ neg|(n).
So
A A A A A (7 AXWYRLYY
SD((A, (HGx—AR;, HG x—ARy,...,HG\—-ARy)), (A, (U~ )®5)) = negl(n).

Then we have A is statistically indistinguishable from uniform. O
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Algorithm 3 Trapdoor Generation

1: function TRAPGEN™™*X" (A H)

2: Sample 71, ..., Twe < Xr-

3: fori=1 to ¢ do

4: Let RZ = (T(i—l)w+1|l .. _HT“U)
5: Compute A, = HG) — AR,

6: end for -

T Compute A := [A||A; || A, ... |A,]
8: return A, (Ry,...,Ry)

9: end function

Inversion Assume (A, (Ry,...,Ry)) + TrapGen(A,H) is generated by the
algorithm above. Let s < Zg‘,e +— ¥4, For LWE instance b = ATs + e, we
show that Algorithm 4 takes as input A, (Ri,...,Ry),H,b, and outputs the
correct s and e with 1 — negl(n) probability.

Algorithm 4 Inverting LWE with Trapdoor

1: function INVERTLWE™ (A, (R4,...,Re), H,b)
2:  Parse b= (b",bl,....b} )" € ZI x (Z¥)®*

3: for i=1 to ¢ do

4 Compute b; := RTb + b,

5 end for

6: Let (8, {&i}1<i<r) < INVERTPRIMITIVELWE* ({b,; }1<i</)
T Compute s := H Ts.
8.
9
0:

Compute e :=b — ATs
return s, e

10: end function

We begin our analysis of Algorithm 4 by parsing e = (e”,el,... ,g{)T €
Z™ x (Z*)®" for clarity. This yields b = ATs+¢& and b; = ATs+e; for each 1 <
i < (. Then b; := RTb+b; = RTATs+RTe+ATs+e, = GTH s+ R e +e,;.
Let § = H”'s, &; = Rl e+e;, the remaining thing to do is giving a bound for every
é;. Concretely, parse & = (&] | ... ||éZA)T € (Z%)®*. For every h = 1,...,\, we
need to prove Pr[(&;,t;) < ¢/2] > 2/3, which enables us to recover 3(h) by
Lemma 4 (note that § = (3(1),...,8(h))). Then the secret s can be calculated
by s = H 7s.

We first give a bound for R;€. Attentive readers may have realized that the
distribution of R; (or x,) has not yet been specified. Here, we need every R;e
to have an independent bound conditioned on the choice of €. Therefore, instead
of letting x, ~ S as in our PKE construction, we let x,. ~ [;’Z/ﬁ, namely the
truncated Bernoulli distribution (see Definition 10). This enables us to bound
the projection length of R;€ on t j» which is presented in the following lemma.
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Lemma 5 (Bound for R;e). Let A € (w(logn),0(n<')], ¢ = q(\) € poly())
be a prime such that ¢ > w(A), £ = w(logn), k = [logq], w = Ak, 1 = n — fw,
E = O(AlogA/logn) s.t. HDO(BZ/ﬁ) > 2Xlogq. Let ry,...,1r, BZ/@: and
R := (r1||...||ry). For any fized € € R™ with the following two properties,

(i) | 2521 €' ()] < 0.01/ 2582,
(ii) 3o € (i) < Sage

let & = |ge'], and we have Y1 < j < k, Pr[(R7e,t;) < q/4] > 0.79.

We postpone the proof of Lemma 5 to Appendix D.

In the following we show when we generate a matrix A with trapdoor Ry,..., Ry
using x, ~ BZ 5 in Algorithm 3, we can invert large noise LWE with overwhelm-
ing probability by Algorithm 4.

Theorem 12 (Correctness of inversion). Let A € (w(logn),O0(n<1)], ¢ =
q(A) € poly(X) be a prime such that ¢ > w(\), £ = w(logn), k = [logq], w = Ak,
n=mn—{lw, k=06(Alog\/logn) s.t. HOO(BZM) > 2\ logq, a < 1/(10VE). Let
s € Z;‘,e ~ Wy . Assume (A, (Ry,...,Ry)) « TRAPGEN"”\’Z’BZL/T‘L(A,H), and
let b= ATs+e. Then

Pr[INVERTLWE™ (A, (Ry,...,Ry),H,b) = (s,e)] = 1 — negl(n).

The proof of this theorem is just a combination of previous lemmas (Lemma 12,
Lemma 5, Lemma 13 and Lemma 4), and we postpone its proof to Appendix E.

5.4 Construction of iTDF Family

Now, we are ready to construct iTDF family 7. Let A € [R2(log?n),O(n<1)],
q = q(A) € poly(A) be a prime such that ¢ > w()), £ = w(logn), k = [logq],
w = Ak, i =n—Llw, k = O(Alog)/logn) such that HOO(BZM) > 2\logq,
a < ﬁ. Let D := Zj x [—qav/logn, go/logn]", R := Z™ be the domain and
range of Ty respectively, and we construct its syntax as follows.

— Sample(1™): Randomly sample a matrix A + Z;J\Xﬁ and an invertible ma-
trix H € Zy**. Compute (A, (Ry,...,Ry)) TRAPGEN™M0FBi/n (A, H).
Output (ek,ik) = (A, (A, (Rq,...,Ry), H)).

— Eval(ek, (s,e)) takes as input the evaluation key ek = A and (s, e) € Z) x
[—gav/Togn, qa/logn], and outputs y = ATs + e.

— Invert(ik,y) takes as input an image y € Z" and the inversion key ik =
(A, (R4,...,Ry),H). It computes (s, e) < INVERTLWE™ (A, (Ry,...,Ry),
H, A”s +e), and outputs (s, e) (or output L if INVERTLWE returns L).

Theorem 13 (Injectivity). Let A € [2(log®n),0(n<")], ¢ = q(\) € poly()\)
be a prime such that ¢ > w(A), £ = w(logn), k = [logq], w = Ak, i = n — fw,
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k= O(Xlog\/logn) such that Hoo(lgl’z/ﬁ) > 2M\logq, a <

1
< oV Then

o _k)g;ar (1) dsi,80 € Z;‘,el,eg € [—qan/logn, qa/logn|™ s.t.
ek,i m (1)

(s1,€1) # (s2,e2) A Eval(ek, (s1,e1)) = Eval(ek, (52762))} = negl(n).
Proof. We have

the left hand side of Eqn. (1)

=negl(n) + Pr [351,52 € Z;‘,el,eg € [—qan/logn, gar/log n]™ s.t.
A7

(s1,e1) # (s2,e2) AATs; + e = ATsy + ez}

<negl(n) + Pr [351752 IS Zg,el,eg € [—q/8,q/8]" s.t. (s1,e1) # (s2,€2) A ATs; +e; =ATs, +e2}

AzyX"

=negl(n) + Pr [Eisl,sQ € Z(’I\,el,eg € [—q/8,q/8]" s.t. s1 # s A ATs; +e; = ATsy + eg]

AezyXn

=negl(n) + Pr [Els € Zé,e €[—q/4,q/4" st.s#A0NATs=e

Azyx"

<negl(n) + ¢~ %% = negl(n).

Here, the first “=" uses Theorem 11 (ek = A is statistically indistinguishable

from uniform); the “<” follows from aqv/Togn < ¢v/logn/(10vVk) = O(qlogn//Alog X) =
O(q/+/1loglogn) < ¢/8; the second “=" is because when s; = sy and e; # es,
the equation ATs; + e; = ATsy + ey does not hold; the third “=" results from
replacing s; — s9 by s and e; — e3 by e; and the “<” uses Lemma 6. O

Theorem 14 ((U} x @£7q)-invertibility). Let A € (w(logn),0(n<Y)], ¢ =
q(A) € poly(\) such that ¢ > w()), £ = w(logn), K = [logq], w = Ak,
n=n—Vtw, k=060(Alog\/logn) such that HOO(BZ/ﬁ) > 2Mlogq, a < Let

1
5 = 10vk"
(ek,ik) < Sample(1™),s < Z/{(;\,e Wy - 1t holds that

()
P | t(ik, Eval(ek = =1- [(n).
o B wert(ik, Eval(, (5,0)) = (5.¢)] = 1~ negl(n)
sUy,eT7

(i) if search LWE(\, ¢, ) is hard, then for any PPT adversary A

P k, Eval(ek = = I(n).
e B Ak Bal(ek, (5. ¢)) = (s.€)] = negl(n)
s<—Z/{q>‘,e<—lI~/gwq

Proof.
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(i) Let (A, (A, (Rq,...,Ry),H)) = (ek,ik) < Sample(1™). We have

Pr _ [Invert(ik, Eval(ek, (s, e))) = (s, e)]

A
s<—1/{q ,e(—lpqu

> Pr [Invert(ik, Eval(ek, (s, e))) = (s, e)] — negl(n)

- Py n
sUg eV g o

=  Pr  [INVERTLWE™ (A, (R4,...,Ry), H,b) = (s,e)] — negl(n)

Py n
sUg eV g o

=1 — negl(n),

where the first inequality is by definition of @gj
Theorem 12.

(i)

> and the last equality is by

Eval =
(ek,ik)esgmple(ln)[A(ek, ve (ek’ (S, 6))) (S7 e)]
s—UY eI

a,q

< P A(ek, Eval(ek, (s, = (s, |
< B Aok, vl (5,0)) = (5.¢)] + negl(n)
sUy e 07

< Pr [A(A,ATs +e) = (s, e)] + negl(n) < negl(n),
AeZ""
selx{;‘,eelll(?,q
where the first inequality is by definition of @gq, the second inequality is by
Theorem 11 (A is statistically close to random), and the last inequality is
by hardness of search LWE(, ¢, «).

O

6 Public-Key Encryption from LPN with Constant Noise

Yu, Zhang [YZ16] proposed a PKE scheme based on (2‘*’("1/2), 2*“’(”1/2))—hardness
of LPN(n, i), where p is a constant. In this section, we propose a simpler PKE
scheme with equivalent security. This construction is very similar to that in
Subsection 3.1.

6.1 Single-Bit LPN-PKE Scheme with Weak Correctness

Construction Let A = H. (Z")/2 = O(log? n), where k = logn. Let u €
(0,1) be a constant.

— The message space is M = {0,1}.

— KeyGen(17) : Given security parameter 17, it samples A «+ {0,1}**" as
well as s < {0,1}*, e « Bj;. Then it computes b := ATs + e, and sets
(pk, sk) :== ((A,b),s).
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— Enc(pk, m) : Given the public key pk = (A,b) and the message m € M, it
samples r « Z[* and outputs ¢ := (c1, ¢2) as ciphertext, where ¢; = Ar
and ¢o = r’b +m.

— Dec(sk,¢) : Given the secret key sk = s and the ciphertext ¢, parse ¢ into
(c1,c2), output d = ¢y — cl's.

Theorem 15 (Weak correctness). Let A = O(log?n) = Hoo(5™k) /2, 1 e

(0,1/2) be a constant. IT*"N has (5 + m)—correctness.

Remark 2. To make the scheme strongly correct, we cannot apply the method in
subsection 3.2, i.e., generating a public key with £ secret keys, and encrypting the
message for £ times. This is because the correctness of IT*" is only £ + m,
which needs poly( ) times of repetition to reach 1 — negl(n). However, we need
¢ < O(\) = O(log®n) to bound the min-entropy of Z*!. Therefore, to achieve
strong correctness, we should apply a parallel repetition to not only the secret
key but also the public key.

Proof. d = c; — ¢f's = rTe + m. Let ¢’ = r’e, then e ~ (B,L)*k. By Lemma 8,
Prle/ =1]=11-(1-2pk) =13 - poly(n) So Prld=m] =1+ m. O

Theorem 16 (CPA security). Let A\ = O(log’n) = Ho (ZM™*)/2, u €
(0,1/2) be a constant. Assume LPN(X, 1) is hard, then IT*PN is IND-CPA se-
cure.

Remark 3. Similar to Lemma 2, we have the hardness of LPN(A, 1) can be im-
plied by (2w(”1/2), Z_w(”l/z))-hardness of LPN(n, ).

The proof of this theorem is almost the same as that of Theorem 6, and we
postpone it to the full version.
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A Preliminary (Extended)

A.1 Linear Algebra and Lattices

For any ordered set V = {v1,..., vk} € R" denote its Gram-Schmidt orthogo-
nalization as V = {¥y,...,V,}, where v; is the component of v, orthogonal to
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span(vy,...,v;—1) for all ¢ = 1,..., k. For any basis V = {vy,...,v,} of R",
its dual basis is defined as V* = V=T If we orthogonalize V and V* in for-
ward and reverse order respectively, then we have v} = v;/||v;|%. Particularly,
%21 = 1/1l

An n-dimensional lattice L of rank k < n is a discrete additive subgroup
of R™. Given k linearly independent basis vectors B = {by,...,b; € R"}, the
lattice generated by B is L(B) = L(by,...,by) = {Zle x; b x; € Z}. By
default, we work with full-rank lattices unless explicitly mentioned. The dual of
lattice L C R™ is defined as L* :={y e R" : (y,x) € Z for all x € L}.

If B is a basis of a full-rank lattice L, then B* = B~7T is a basis of L*. For
an arbitrary matrix A € Zy*™, define the following g-ary lattices

AL (A):={z€Z™: Az =0 mod ¢}

2
AAT) :={z€Z™:3Ts¢c Ly st.z= ATs mod ¢}. @)

It is easy to check that ¢ - AL(A)* = A(AT), that is, A-(A)* and A(AT) are
dual lattices up to a scaling factor of q.
Lemma 6 ( [CHL"™25, Lemma 16]). Let g > 2,m > 2nloggq, then for all

but at most q~%1%" fraction of A € ZI*™, we have A\{°(A(AT)) > q/4, where
ASC s the first successive minimum in distance measured in the {oo-norm.

A.2 Gaussians

In this paper, we focus on 1-dimensional Gaussians. For any real » > 0, define the
Gaussian function on R with width parameter r as: Vo € R, p,(x) := e~ /1?,
And we define the continuous Gaussian distribution D, as: Vo € R, D,(x) :=
pr(2)/r. For any real @ > 0 and integer ¢ > 0, we use the following version of
discrete Gaussian distribution: Vi € Z, ¥, 4(i) := f::ri% Doq(z)dz. That is,
Uog ~ [Dagl-

A.3 Learning with Errors
In this paper, we focus on the following variant of LWE, which is put forward
in [Reg05].
Definition 1 (Learning with errors). Let ¢ = g(n) be a prime modulus.
m = m(n),a = a(n),t = t(n),e = €(n). We say the search LWE(n,q,a) is
(t,€)-hard if for every inverter A of running time t,
Pr [A(A,ATs +e)=s] <e

ALy X ™ s L7 e,
We say the decision L\WE(n, q,«) is (t,€)-hard if for every distinguisher D of
running time t,

Pr [D(A,ATs+e)=1]— Pr [DAU") =1]|<e.

nxm . . nxXm
A<Zq S Ly eV, A<Zq
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When t = n*M and e = n=W | we simply say the search (decision) LWE
problem is hard.

A.4 Learning Parity with Noise

The learning parity with noise (LPN) problem, which can be seen as an analog
of LWE, is defined as follows.

Definition 2 (Learning parity with noise). Let m = m(n),0 < p <
1/2,t = t(n),e = e(n). We say the search LPN(n, p) is (t,€)-hard if for every
inverter A of running time t,

Pr [A(A,ATs +e)=s] <e
A—{0,1}"xm 5¢{0,1}", e« B

We say the decision LPN(n, ) is (t,€)-hard if for every distinguisher D of run-
ning time t,

Pr [D(A,ATs +e)=1] - Pr  [DAU™) =1]| <e
A«{0,1}m*m 5+{0,1}",e«-B7 A«{0,1}nxm

When t = n*M and e = n=*W, we simply say the search (decision) LPN
problem is hard.

A.5 Public-Key Encryption Schemes

Definition 3 (Public-key encryption schemes). A public-key encryption
scheme is a tuple of PPT algorithms (KeyGen, Enc, Dec) with message space M
such that

— Key generation: KeyGen(1™) takes as input a security parameter 1, and
outputs a pair of public and private keys (pk, sk).

— Encryption: Enc(pk,m) takes a public key pk and a message m € M as
input, and outputs a ciphertext c.

— Decryption: Dec(sk,c) takes as input a secret key sk and ciphertext ¢, and
deterministically outputs a message m.

Definition 4 (§-correctness). For 0 < § < 1, we say that a public-key en-
cryption scheme is §-correct if for every m € M, it holds that

P D k,E k =m] > 6.
(pk,sk)eKEyGen(l")[ eC(S ’ nC(p 7m)) m] -

When 6 > 1—neg(n), we say the scheme is (strongly) correct. Otherwise, we say
it s weakly correct if for any m' € M such that m’ # m, it holds that

[Dec(sk, Enc(pk, m)) = m’] > 1

Pr [Dec(sk, Enc(pk, m)) = m] 2 ooly(n)’

— Pr
(pk,sk)«+KeyGen(1™) (pk,sk)<+—KeyGen(1™)
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Definition 5 (IND-CPA security). A public-key encryption scheme II is
IND-CPA secure if for any PPT adversaries A,

1
Pr{ExpS (1) = 1] = 5 + negl(n),

where ExpiFjIAj(ln) is the IND-CPA indistinguishability experiment defined as

below:

— KeyGen(1") is run to obtain (pk, sk).

— The adversary A takes 1™ and pk as input, and then outputs a pair of mes-
sages mg, my with the same length.

— A random bit B < {0,1} is chosen, and then a challenge ciphertext ¢ <
Encpr(mg) is computed and given to A.

— A guesses a bit 3.

— The output of the experiment is defined to be 1 if f' = B (indicating A
succeeds), and 0 otherwise (indicating A fails).

A.6 Injective Trapdoor Functions

Definition 6 (Trapdoor functions). An (injective) trapdoor function family
is a tuple of PPT algorithms (Sample, Eval, Invert) with domain D and range R
such that

— Sample(1™) outputs (ek,ik), where ek is an evaluation key and ik is an in-
version key (trapdoor).

— Eval(ek, ) takes as input a string x € D and an evaluation key ek, and
outputs a string y € R.

— Invert(ik,y) takes a string y € R and an inversion key ik as inputs, out-
putting either a string x € D or a special symbol L to denote failure.

Definition 7 (Injectivity). For any injective trapdoor function (iTDF) family
T : D — R consisting of (Sample, Eval, Invert), it holds that

Pr [Fz1,22 € D s.t. (x1 # xoAEval(ek, z1) = Eval(ek, z2))] = negl(n).
(ek,ik)<—Sample(1™)

Definition 8 (¥-invertibility). For some distribution ¢ on D, an (injective)
trapdoor function is easy to invert only with the trapdoor. More concretely, an
iTDF family T : D — R consisting of (Sample, Eval, Invert) should be

— easy to invert with a trapdoor, i.e.,

P | t(ik, Eval(ek =z|=1- I(n).
(ek,ik)eSam;fle(l"),we@[ nvert(ik, Eval(ek, z)) = ] negl(n)

— hard to invert without a trapdoor, i.e., for any PPT adversary A

[A(ek, Eval(ek, z)) = z] = negl(n).

Pr
(ek,ik)<+Sample(1™),z+P
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A.7 Leftover Hash Lemma
We first present the definition of 2-universal hash function family as follows.

Definition 9. A family of hash functions H := {hs, : X — {0,1}},k € S} is 2-
universal if for any x1,x9 € X such that x1 # x4, it holds that Pry.s[hi(z1) =
hk(ﬁg)] < 2- L,

We present the leftover hash lemma [ILL89] as follows.
Lemma 7 (Leftover hash lemma). Let X € X be a random variable such
that Hoo(X) > k. Let h: {0,1}* x X — {0, 1} be any 2-universal hash function.

=k

If V < {0,1}%, then it holds that SD((V, h(V, X)), (V,U')) < 2'F".

A.8 Probabilistic Bounds
In this subsection, we present some mathematical bounds.

Lemma 8 (Piling-up lemma). For 0 < p < 1/2, let Xq,..., X, be in-
dependent random variables sampled from B,. Then, @le X; ~ B,, where
o= 11— (1-20)).

Lemma 9 (Laurent-Massart bounds [LMO00, Lemma 1]). The chi-squared
distribution with k degrees of freedom, denoted as x*(k), is the distribution of a
sum of k independent standard normal variables. Let X ~ x?(k). Then, for any
x>0, Pr[X — k> 2vVkx +2z] < e ®.

Lemma 10. When k = O(m<!), Hy(Z™#) = O(klogm).

Proof. By the definition of min-entropy, we get
b it+m—k
Hoo (EmiHy = log (72?) = E log ——— € (klog(m/k), klog(m — k + 1)).
i
i=1

Therefore, Hoo(ZM#) = O(klogm). O
Lemma 11. For any a > 0, Pryop_[|z| > a] < exp (—“2—’7) :

202

Proof. Consider

© 1 2 1 0o oo 2 4 42
Pr[z > a :/ — exp <7r (g) >du— a\// / exp (wu ;U >dudv.

Make a polar coordinate substitution, that is, let v := apcosf,v := apsinb,
and we obtain

1 o /2 0o
Prlz > a] < — / / exp (—mp?) a?pdpdd = T / exp (—mp?) pdp.
« p=a/a JO=0 2 p=a/a




26 Liheng Ji and Yilei Chen

Further let t := 7p?, and we get

> / (—t)dt 1 Ta? 1 wa>
ZC a — €eX = — eX —_ = —eX — .
a2 /a2 2T T 1P\ T2 ) TP T2

which implies Pr[|z| > a] < exp (—%) [

Lemma 12. For a > 0, let ey, ea,...,e, ~ D,, the following two inequalities
hold with overwhelming probability.

(i) | > 1el| < 0.1av/nlogn.
(ii) S e? < 0.16a%n.

Proof.

(i) Since Y71, e; ~ D sz, the conclusion can be directly deduced by applying
Lemma 11.

(ii) By Lemma 9, we have Pr[>"""_ 1(F ;)% < 1.001n] = negl(n), which implies
e 2 < 0.16a%>n with overwhelming probability.

O

Lemma 13. For any positive integers k,q, real constants o, let e < !175 o bt e
RE. If |t]|1 = o(q), then for any two constants v, such that 0 <y <~/ <1, it

holds that

2
Ty
Pr(|{e,t)| <~'q] > 1 —exp (—) )
2[[t][302

Proof. By definition, for every 1 < i < k, e(4) is obtained by sampling some e} ~
D,, and calculate e(i) = |ge}]. Therefore, we may write (e, t) = Zle t(7) |ge;] -
Since the bias introduced by the |-] function does not exceed 1/2, we have
|(e,t) — Zle t(i)gel| < % Thus, it suffices to prove:

2

™y
>1-— - ).
e"p( 2||t||5a2)

Since ||t||1 = o(g), and v,~" are two constants such that 0 < v <+’ < 1, we have

~v'q— ‘tHl > ~yq. Therefore, we only need to prove

2
<y >1—exp<—m>.
2[[t[|30

Due to the properties of the normal distribution, Z L t(@)e; ~ D) a- Accord-
ing to Lemma 11, the above statement holds. O

ti1
g Il

=1
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Corollary 2. Let vy, be two constant such that 0 < v <~ < 1. If k = o(q),
then

2
’ 1— ™ .
el <7'd) > 1= exp (-7

CN(Wa,q)*k

Proof. Let t = (1,...,1) € RF x « WC’f,q. Then e and (t,x) have the same
distribution. Using Lemma 13, we get the conclusion. O

A.9 Truncated Distributions

We first introduce the truncated Bernoulli distribution, which is put forward
in [YZ16].

Definition 10. For any pu € (0,1), a sample x ~ BLL is generated in the follow-
ing procedure.

(i) x < Bj;.
(it) If Ham(x) & [fpun, 3pn], discard x and go back to (i).

When p = w(1/n), we have BZ can be efficiently sampled, and SD(BZ, Bp) =
exp(—©(un)), which can be proved using Chernoff Bound. What’s more, for

any positive integer k = O(n<1), Z/n can be viewed as a combination of

k2 Z8k/2] g0 we have Hoo( Ng/n) = O(klogn) by Lemma 10.
Then we define the truncated discrete gaussian distribution as follows.

Definition 11. For any o > 0, a sample e < @mq s generated in the following
procedure.

(1) e Wy q.
(ii) If e ¢ [—qan/Togn, qan/logn|, discard e and go back to (i).

By Lemma 11, we know @aq can be efficiently sampled, and is statistically
indistinguishable from W,,.

B The IND-CPA Security of ITfWF

Proof of Theorem 6. Consider any adversary A. We aim to demonstrate that
A’s probability of winning the IND-CPA security experiment is 1 + negl(n). We
prove this by game hopping. To be precise, we define a sequence of games, where

(i) The first game is the same as Expj’?/}jALWE(ln)

(ii) In the last game, A gains no advantage in correctly guessing the challenge
bit.
(ili) Any two consecutive games are computationally indistinguishable.

Then the security of ITX"'F will be established.
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Game 0. In this game, the challenger C simulates exactly Expili??]fWE(ln) for

the adversary A. Because this is a single-bit PKE, we can set mg = 0 and m; = 1
without loss of generality (thus there is no need for A to choose the message).

— The challenger C samples A <+ ZQX”, as well as s < Zq)‘, e« vy .,
b := (ATs +e) mod ¢, and sends pk := (A, b) to A.

— C continues to choose a random bit 8 + {0, 1}, and compute c; = Ar, co =
(rTb + [g/2] - B) mod q. Then it gives the challenge ciphertext ¢ := (cy,c2)
to A.

— After A guesses a bit 3, C outputs 1 if 8/ = 3, or outputs 0 otherwise.

computes

Game 1. This game is identical to Game 0 except that the second element of
the public key is sampled uniformly from Zj. In other words, the challenger
samples A <« ZQX”, b’ < Zj, and sends pk = (A,b’) and ciphertext ¢ :=
(Ar, (rTb’' + |¢/2] - B) mod q) to A.

By hardness assumption of LWE(), ¢, ), Game 1 is indistinguishable from
Game 0.

Game 2. This game is identical to Game 1 except ¢ is chosen uniformly randomly.
In other words, the challenger samples A «+ ZQX”, b’ « Zq, and sends pk =
(A,Db) and ciphertext ¢ ~ Uy x U,

By Lemma 7, SD((A,b, Ar,r"b), (A, b,U* U)) < 2(+Dloga—He(r)/2
negl(n). So Game 2 is indistinguishable from Game 1. What’s more, in Game 2,

A receives nothing about 3. Thus we have Pr[3’ = ] = 3. O

C Proof of Lemma 3

Proof. By following the Gram-Schmidt procedure directly, we work out the value
of each t; as follows. When 1 < i < &,

- 20 20 , 2t
ti= (72 =2 =, -10,...,0)".
Z_j=04j Zj=04] Zj:04j
So we have
i—1 ; ; ; ;
N oot . 2t 3.20 2724
tills =1 o = 14(20-1)— = 14— = € [3,4),
&l +§:j sy - s e T e <Y
i—1 ; ; ;
. : 21 4 qitl
tiZ=14+) 4 (——)? =14 —— = — € (4,5].
When i = &,
T — . B

T2 ST TSRt
Zj:o 4 Zj:o 4 Z]‘:O 47
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By ¢ € 271 +1,2% — 1], we get

q 3q 3
It _221 2% 1) - = € (=,3),
[t Zjo =( ) @ —10/3 241 (2 )
2 2
q 2 q 3q 3
tel2=) 47 = = 2 3).
.13 = }: o) = srrs ~ w1 Y

D Proof of Lemma 5

Proof. Consider (R7e,t;) = > r_, t;(2)(rs,e). Define & ~ (B km,e’) for all
1<z <k

Kl
¢ ()] < 0.011/ 228" 0,01,
n
i=1

D[fz] = % . (1 — %) . Z@l(i)Q < %

i=1

S| =

g:‘

[Elé]| = —

Let € = (&1,...,&.)7T, and define ¢ = <£,fj> = Z$=1 t}(a:)fm forall1 <j <xk.
By Lemma 3,

@|—|§jt E[&,]] < 0.01[[t;]|x < 0.04,

Zt (z)°D[&,] <—||t |3 < 0.008.

100
By Chebyshev’s inequality,
D[¢
Pri¢, ~ EIG] 2 02 < b <02,

SO
Pr[|¢;] > 0.24] < 0.2,

Because for all 1 <z <k, r; ~ B;;L/ﬁ» by Chernoff bound we have
SD(rx,BZ/ﬁ) = exp(—0O(k)).
Because the statistical distance will decrease after applying a function, we have

SD((rs, €'), &) < exp(—O(k)),
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and then it holds for all 1 < j < k that

SD((R”e,8;),¢;) < Y SD((rs,€'), &) < mexp(=O(k)) = o(1).

r=1

Because the rounding error of |-] is at most 3, and Ham(r,) < 3k, we have

_ s . . 3k 3k -
[(RT-qe', &) — (R7e, &) = | ) #(2)(ra,qe’ — (e < D j(x)- o = 1 Itll = o(a).
x=1 r=1
Finally,
_ 7 q 7 q
Pr|(R7e,t;)| < ;] > Pr{|(R" - ge’, t)| + o(g) < 7]
>Pr[|[(RTe,t;)| < 0.24]
>Pr||¢;| < 0.24] - (1 — o(1))
>0.79.
0
E Proof of Theorem 12
Proof. Parse e = (eT'|leT||...|el)T € Z™ x (Z*)®*. By definition, there exists
some €’ < D" such that € = |ge']. By Lemma 12, we have
(1) 1320 €/(0)] < 0.01,/ =582,
(i) i €'(8)® < Soe
For every 1 < i < £, parse R; = (Riq|l...[|Rin) € (Z2*%)®* and e; =
(el llef )" € (z%)®*. By Lemma 5, we have
VI<h<AVI<j<k Pr[(R},et;) <q/4]>0.79
holds independently for every 1 < i < /.
Besides, by Lemma 13, we have for every i, j, h that
. m- (1/5)?
Pril(e;n, tj)] < ¢/4] > 1 —exp(— ) =1 —negl(n).
’ 20[t3 - (1/10vk)?
Let &; := (&7 H ll€in)" =Rl e+e; € (Z7)®*, then we have &; , = R} ,e+e; ,

for every 1 < h < A. So
Pr[[(&;.n,t;)] < q/2] > 0.79 - (1 — negl(n)) > 2/3

holds independently for every 1,7, h.

Let § = HTs, b; = RTb + b, G{é + €;. By Lemma 4, we can use
Algorithm 2 to get every entry of § one by one. Because H is invertible, we can
use the value of § to compute s, as well as e =b — ATs. O
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