
Bounded CCA2-Secure Proxy Re-encryption from
Lattices

Shingo Sato1,2 and Junji Shikata1,3

1 Institute of Advanced Sciences, Yokohama National University, Yokoaham, Japan
2 Organization for the Promotion of Education, Yokohama National University,

Yokoaham, Japan
3 Graduate School of Environment and Information Sciences, Yokohama National

University, Yokoaham, Japan
{sato-shingo-zk, shikata-junji-rb}@ynu.ac.jp

Abstract. Proxy re-encryption (PRE) allows a semi-honest party (called
a proxy) to convert ciphertexts under a public key into ciphertexts un-
der another public key. Due to this functionality, there are various ap-
plications such as encrypted email forwarding, key escrow, and secure
distributed file systems. On the other hand, post-quantum cryptography
(PQC) is one of the most important research areas. However, there is no
post-quantum PRE scheme with security against adaptive chosen cipher-
text attacks (denoted by CCA2 security) while many PRE schemes have
been proposed so far. In this paper, we propose a bounded CCA2-secure
PRE scheme based on CRYSTALS-Kyber (Kyber, for short) which is a
selected algorithm in the NIST PQC competition. To this end, we present
a generic construction of bounded CCA2-secure PRE. Our generic con-
struction starts from PRE with (a variant of) security against chosen
plaintext attacks (denoted by CPA security) and a new PRE’s property
introduced in this paper. In order to instantiate our generic construc-
tion, we present a lattice-based PRE scheme with the required property.
As a result, we can construct a bounded CCA2-secure PRE scheme from
lattices.

Keywords: Proxy re-encryption · Bounded CCA2 security · Post-quantum
cryptography.

1 Introduction

1.1 Background and Related Work

The notion of proxy re-encryption (PRE) was introduced in [5], and PRE is
public key encryption (PKE) which allows a semi-honest party (called a proxy)
to convert an encryption of a message under a public key into another encryption
of the same message under another public key. That is, a user Alice with a public
key pkA can generate a re-encryption key rkA→B converting ciphertexts under
pkA into ciphertexts under a public key pkB of another user Bob and give rkA→B

to a proxy. Then, this proxy can transform ciphertexts under pkA into ciphertexts

under pkB , without knowledge of underlying messages. Security of PRE ensures
confidentiality of messages even though the adversary has several re-encryption
keys. Additionally, PRE is classified into several types, as follows:
Unidirectional vs. Bidirectional. A PRE scheme is said to be bidirectional if rkA→B

also allows to convert from ciphertexts under pkB to pkA. Meanwhile, unidi-
rectional PRE just allows re-encryption from pkA to pkB , and not vice versa.
Unidirectional PRE is more desirable because the proxies of bidirectional PRE
are authorized in order to realize re-encryption functionalities.
Single-hop vs. Multi-hop. Suppose that ctA is transformed to ctB by using rkA→B ,
and pkC is another user’s public key. A PRE scheme is said to be single-hop if
a re-encryption key rkB→C cannot convert ctB to another ciphertext ctC under
pkC . In contrast, multi-hop PRE allows convert a ciphertext ctB into a ciphertext
ctC under pkC by using rkB→C .

Due to PRE’s functionality, there are various applications such as encrypted
email forwarding [5], key escrow [21], secure distributed file systems [3], and
secure publish-subscribe system [29]. Accordingly, there are many PRE schemes
such as Diffie-Hellman-based schemes (e.g., [5, 7, 11, 28]), pairing-based schemes
(e.g., [2, 3, 8, 23]), and obfuscation-based schemes [9, 10].

In particular, we focus on post-quantum PRE because post-quantum cryptog-
raphy (PQC) is one of the most important research areas, and there are many re-
searches on selected algorithms and candidates in the NIST (National Institute of
Standards and Technology) PQC standardization process (e.g., [1,15,19,27,31]),
due to advancement of quantum computers. As post-quantum PRE, several
lattice-based PRE schemes have been proposed so far (e.g., [9, 16, 29, 34, 35]).
However, there is no post-quantum PRE scheme with security against adap-
tive chosen ciphertext attacks (denoted by CCA2 security) which was formalized
in [8]. To the best of our knowledge, all the existing lattice-based schemes satisfy
security against chosen plaintext attacks, non-adaptive chosen ciphertext attacks,
or honest re-encryption attacks (denoted by CPA, CCA1, or HRA security, respec-
tively). CPA and CCA1 security are strictly weaker than CCA2 security and may
be insufficient in PRE’s applications, as discussed in [12]. Additionally, the re-
lation between CCA2 and HRA security is not known. Achieving CCA2 security
is important because this security is one of the most desirable security notions
and provides a wide range of applications, for PRE.
Related Work. Blaze, Bleumer, and Strauss introduced the notion of PRE
and proposed a PRE scheme based on the DDH assumption [5]. This scheme is
bidirectional, multi-hop, and CPA secure. Ateniese, Fu, Green, and Hohenberger
presented the first (single-hop) unidirectional PRE scheme with CPA security
by using bilinear maps [4]. Since Canetti and Hohenberger [8] formalized CCA2
security for PRE, CCA2-secure PRE schemes have been proposed in [7,8,11,23].

As post-quantum PRE, there are only lattice-based PRE schemes. Lattice-
based PRE schemes with CPA security have been proposed in [9, 17, 22, 29, 35].
Fan and Liu [16] gave tag-based PRE schemes based on the learning with errors
(LWE) assumption and these achieve CCA1 security. On the other hand, Co-
hen [12] introduced the notion of HRA security and showed that one of practical

2

lattice-based (CPA-secure) PRE schemes of [29] was insecure in the HRA security
model. Furthermore, Fuchsbauer et al. [17] formalized adaptive CPA and HRA
security notions and proposed adaptive HRA-secure schemes based on the PRE
schemes of [9,18]. Zhou, Liu, and Han [34] presented a LWE-based construction
of HRA-secure fine-grained PRE whose notion was introduced in [35].

From the above, all the existing post-quantum PRE schemes do not satisfy
CCA2 security.

1.2 Our Contribution

Our goal is to propose a bounded CCA2-secure post-quantum PRE scheme with
compact ciphertexts. In the bounded CCA2 security game of PRE, the numbers of
queries which the adversary can issue to the decryption and re-encryption oracles
are at most a-priori parameters td and tr, respectively. Although bounded CCA2
security is a weak variant of CCA2 security, there are practical applications where
PKE’s bounded CCA2 security is sufficient (e.g., see [13,20,33]). Here, compact
ciphertexts for bounded CCA2-secure PRE mean that ciphertext size does not
depend on the parameters td, tr linearly.

To achieve our goal, we propose a generic construction of bounded CCA2-
secure PRE. This construction is based on the generic construction of bounded
CCA2-secure PKE [13], and its building blocks are PRE with a variant of CPA
security and one-time signatures (OTSs). To achieve compact ciphertexts, we
require the underlying PRE to satisfy an additional property, and we present a
lattice-based PRE scheme with this additional property, so that we can instan-
tiate our generic construction. Details on our contribution are as follows:

– We formalize a notion of bounded CCA2 security for single-hop unidirec-
tional PRE. This formalization is based on the definition of bounded CCA2
security for PKE [13]. The formalized security notion is a bounded variant
of the standard CCA2 security (concretely, [11, Definition 2]) for single-hop
unidirectional PRE.

– As a new property of PRE, we introduce re-encrytption key homomorphism
in order to construct the objective bounded CCA2-secure PRE scheme. Ac-
cordingly, we also formalize a new security notion: RKH-CPA security, which
is a variant of CPA security.

– We propose a generic construction of bounded CCA2-secure (single-hop uni-
directional) PRE with compact ciphertexts. This is based on the bounded
CCA2-secure PKE scheme [13]. The building blocks of our scheme are re-
encryption key homomorphic PRE with RKH-CPA security and strongly un-
forgeable OTS. An overview of this construction appears in Section 1.3.

– In order to instantiate our generic construction, we present a RKH-CPA se-
cure PRE scheme with re-encryption key homomorphism, from lattices. This
scheme is based on the underlying PKE scheme of CRYSTALS-Kyber (Ky-
ber, for short) [6] which is a selected key encapsulation mechanism in the
NIST PQC competition. We have chosen Kyber since this is intended to be
used widely as one of standard PQC algorithms.

3

As a result, we can obtain a bounded CCA2-secure post-quantum PRE scheme
with compact ciphertexts by applying our generic construction to our lattice-
based PRE scheme. Furthermore, our lattice-based PRE is simple and prac-
tical because this scheme is constructed just by adding the re-encryption key
generation and re-encryption algorithms to slightly modified Kyber’s key gen-
eration, encryption, and decryption algorithms. Hence, the resulting bounded
CCA2-secure PRE scheme is also constructed simply.

1.3 Technical Overview

We explain an overview of technical aspects of our bounded CCA2-secure PRE
with compact ciphertexts.
Bounded CCA2-secure PRE from CPA secure PRE. To construct bounded
CCA2-secure PRE with compact ciphertexts, we first consider a basic generic
construction of bounded CCA2-secure PRE ΠB-PRE. This construction is based
on the generic construction of bounded CCA2-secure PKE [13], so that ΠB-PRE
achieves the bounded CCA2 security of PRE. Furthermore, ΠB-PRE is constructed
from CPA-secure PRE and OTS in order to achieve the re-encryption function-
ality, while the generic construction [13] starts from CPA secure PKE and OTS.

More concretely, a public key pk and a secret key sk of ΠB-PRE consist of u
public keys pk′1, . . . , pk

′
u and u secret keys sk′1, . . . , sk

′
u of the underlying PRE,

respectively, where a positive integer u is a parameter of a cover-free family 4.
Then, for a user i ∈ {A,B}, let pki = (pk′i,1, . . . , pk

′
i,u) and ski = (sk′i,1, . . . , sk

′
i,u)

denote the user i’s public key and secret key, respectively. A ciphertext ctA under
pkA consists of (vkA, ct′vkA , σA), where vkA is a verification key of the underlying
OTS, ct′vkA = (ct′1, . . . , ct

′
v) is a tuple of v ciphertexts of the underlying PRE,

and σA is an OTS signature on ct′vkA . Here, ct′vkA = (ct′1, . . . , ct
′
v) is a ciphertext

associated with vkA, as follows: Let α1, . . . , αv ∈ {1, . . . , u} be indices determined
by vkA and a cover-free family, and ct′i is a PRE ciphertext under pk′αi

for each
i ∈ {1, . . . , v}. Then the correctness of the ciphertext ctA is ensured in the same
way as the PKE scheme of [13].

We consider converting ctA into a ciphertext ctB = (vkB , ct
′
vkB

, σB) under
pkB . A re-encryption key of ΠB-PRE consists of u2 re-encryption keys rk′(A,1)→(B,1),

. . . , rk′(A,u)→(B,u) of the underlying PRE. Notice that each re-encryption rk(A,i)→(B,j)

transforms a ciphertext under pk(A,i) into a ciphertext under pk(B,j) (where
i ∈ [u] and j ∈ [u]). When re-encrypting a ciphertext ctA, it is possible to
generate a tuple of PRE ciphertexts ct′vkB = (ct′B,1, . . . , ct

′
B,v) on another OTS

verification key vkB since it is possible to convert ct′A,i into a ciphertext ct′B,i

under pk′B,βi
by using a re-encryption key rk(A,αi)→(B,βi), where the indices

β1, . . . , βv ∈ {1, . . . , u} are determined by vkB in the same way as the in-
dices α1, . . . , αv. Because a new verification/signing key-pair (vkB , sigkB) of
OTS is generated in the re-encryption procedure, we can generate a signature

4For simplicity, we employ disjunct matrices in our PRE, instead of cover-free fam-
ilies. Notice that the notion of such matrices is identical to that of cover-free families.

4

σB on ct′vkB = (ct′B,1, . . . , ct
′
B,v) by using sigkB . Since each ctB,i is a valid ci-

phertext of the underlying PRE, the correctness of the transformed ciphertext
ctB = (vkB , ct

′
vkB

, σB) is also ensured.
Hence, this basic scheme ΠB-PRE achieves the re-encryption functionality. This

concrete construction and its security proof are given in Appendix A.

Bounded CCA2-secure PRE with Compact Ciphertexts. We explain an
overview of our bounded CCA2-secure PRE ΠC-PRE with compact ciphertexts.
This construction is based on the basic scheme ΠB-PRE. The main difference
between these schemes is how to create ct′vkA when generating a ciphertext ctA =
(vkA, ct

′
vkA

, σA) under pkA. More concretely, ct′vkA is an encryption of a message
under a compressed public key pk′vkA =

∑
i∈{1,...,v} pk

′
αi

. In order to ensure
the correctness of this encryption, we require the underlying PRE to satisfy a
property: secret-key to public-key homomorphism, which was formalized in [30].
Problem of Re-encryption of Our Scheme. One may think that the secret-
key to public-key homomorphism is sufficient to construct the objective PRE
scheme; however, we cannot ensure the correctness of re-encrypted ciphertexts
just by requiring secret-key to public-key homomorphism. A re-encryption key
of ΠB-PRE consists of rk′(A,1)→(B,1), . . . , rk

′
(A,u)→(B,u). When re-encrypting ctA =

(vkA, ct
′
vkA

, σA) by using re-encryption keys rk′(A,α1)→(B,β1), . . . , rk
′
(A,αv)→(B,βv)

in the same way as ΠB-PRE, there are no ciphertexts ctA,α1
, . . . , ctA,αv

since ct′vkA
is a single ciphertext under the public key pk′vkA .

In order to resolve this, we introduce a new property of PRE called re-
encryption key homomorphism. This property guarantees the homomorphic evalu-
ation of rk′(A,α1)→(B,β1), . . . , rk

′
(A,αv)→(B,βv). Intuitively, we can convert ct′vkA un-

der pk′vkA into a single ciphertext ct′vkB under pk′vkB =
∑

i∈{1,...,v} pk
′
βi

by using a
re-encryption key rk′vkA→vkB =

∑
i∈{1,...,v} rk

′
(A,αi)→(B,βi). Due to the introduced

property, it is possible to ensure the correctness of the transformed ciphertext
ctB = (vkB , ct

′
vkB

, σB). Furthermore, we need to consider a new security notion
related to re-encryption key homomorphism, as the remaining problem. We formal-
ize RKH-CPA security for PRE with this homomorphic property. This security
is defined in the same way as CPA security except that the adversary can ac-
cess homomorphic re-encryption key generation oracle which returns re-encryption
keys {rk′(A,i)→(B,j)}i∈{1,...,u},j∈{1,...,u} such that the homomorphic computation∑

i∈{1,...,v} rk
′
(A,αi)→(B,βi) is possible. Finally, we give a security proof for ΠC-PRE

by assuming the RKH-CPA security of the underlying PRE.

Instantiation of Our Generic Construction. We construct a lattice-based
PRE scheme to instantiate our generic construction. As mentioned beforehand,
the key generation, encryption, and decryption algorithms of our scheme are
constructed by slightly modifying those of Kyber PKE scheme. Although we
need the introduced property re-encryption key homomorphism, all the existing
post-quantum scheme cannot generate re-encryption keys satisfying such homo-
morphism. Hence, we present a new re-encryption key generation algorithm so
that our lattice-based PRE scheme satisfies the objective homomorphism.

5

Additionally, we can use existing strongly unforgeable OTS schemes [25, 26]
based on lattice assumptions, to instantiate our generic construction. As a result,
we can obtain the objective bounded CCA2-secure post-quantum PRE scheme.

2 Preliminaries

Throughout this paper, we use the following notation: For a positive integer n,
let [n] := {1, . . . , n}. For n values x1, . . . , xn and a subset I ⊆ [n], let (xi)i∈I
be a sequence and {xi}i∈I be a set of values whose indices are included in I.
For a value v, let |v| be the bit-length of v. If a function f : N → R satisfies
f(λ) = o(λ−c) for any constant c > 0 and sufficiently large λ ∈ N, then f is
said to be negligible in λ and denoted by f(λ) ≤ negl(λ). A probability is an
overwhelming probability if it is at least 1− negl(λ). “Probabilistic polynomial-
time” is abbreviated as PPT. For a positive integer λ, let poly(λ) be a universal
polynomial of λ.
Matrices and vectors. For consistency, we use capital bold letters for matri-
ces, non-capital letters for scalars, and bold letters for (column) vectors. For a
(binary) matrix M ∈ {0, 1}u×n, we use the standard notation M = (mi,j). For
a n-dimensional vector v, vi is the i-th entry, namely v = (v1, . . . , vn)

⊤. where∨
is the bitwise-OR. For a binary matrix M = (mi,j) ∈ {0, 1}u×n and c ∈ [n],

let ϕM (c) := {i ∈ [u] | mi,c = 1}.
Rings and distributions. Let R := Z[X]/(XN+1) and Rq := Zq[X]/(XN+1),
where N = 2N

′
such that XN + 1 is the 2N

′−1-th cyclotomic polynomial. For a
set S, s $← S means that an element s ∈ S is chosen uniformly at random. For a
positive integer η, v ← Uη denotes that each coefficient of v ∈ R is drawn from
a uniform distribution Uη over [η]. In the same way as this, v ← Uk

η means that
a k-dimensional vector v ∈ Rk is chosen from Uk

η .
Furthermore, we describe definitions of cryptographic primitives and compu-

tational assumptions used in our schemes.

2.1 Proxy Re-encryption

Following [2], we describe the syntax of (single-hop) unidirectional proxy re-
encryption (PRE), as follows:

Definition 1 (Unidirectional PRE). For a security parameter λ, let M =
M(λ) be a message space. A (single-hop) unidirectional PRE scheme consists of
six polynomial-time algorithms (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc):

– Setup(1λ) → pp: The randomized algorithm Setup takes as input a security
parameter 1λ and outputs a public parameter pp.

– KeyGen(pp) → (pk, sk): The randomized algorithm KeyGen takes as input a
public parameter pp and outputs a public key pk and a secret key sk.

– Enc(pk,m) → ct: The randomized algorithm Enc takes as input a pubic key
pk and a message m ∈M, and outputs a ciphertext ct.

6

– Dec(sk, ct)→ m/⊥: The deterministic algorithm Dec takes as input a secret
key sk and a ciphertext ct, and outputs a message m or the rejection symbol
⊥.

– ReKeyGen(ski, pkj) → rki→j: The randomized or deterministic algorithm
takes as input a secrete key ski and a public key pkj, and outputs a re-
encryption key rki→j.

– ReEnc(rki→j , cti) → ctj: The randomized or deterministic algorithm ReEnc
takes as input a re-encryption key rki→j and a ciphertext cti, and outputs a
new ciphertext ctj.

For simplicity, we suppose that a public parameter pp is implicitly contained
in the inputs of the algorithms Enc,Dec,ReKeyGen,ReEnc.

Definition 2 (Correctness). A single-hop unidirectional PRE scheme (Setup,
KeyGen,Enc,Dec,ReKeyGen,ReEnc) is said to be correct if, for every pp← Setup(1λ)
and every m ∈M, the following conditions hold:

Encryption Correctness. For every (pk, sk)← KeyGen(pp), it holds that Dec(sk,
ct) = m with overwhelming probability, where ct← Enc(pk,m).

Re-encryption Correctness. For every (pki, ski)← KeyGen(pp), (pkj , skj)←
KeyGen(pp), and every rki→j ← ReKeyGen(ski, pkj), it holds that Dec(skj , ctj) =
m with overwhelming probability, where ctj ← ReEnc(rki→j , cti) and cti ←
Enc(pki,m).

Following [8,11], we describe definitions of oracles in security games of PRE.

Definition 3. An adversary against a PRE scheme (Setup,KeyGen,Enc,Dec,
ReKeyGen,ReEnc) is given access to the following oracles in a security game of
PRE: Suppose that a public parameter pp and n key-pairs (pk1, sk1), . . . , (pkn, skn)
are generated by Setup and KeyGen for n = poly(λ), respectively, where λ is a
security parameter.

– Re-Encryption Key Generation Oracle O.ReKeyGen(i, j): Given a re-encryption
key query (i, j) ∈ [n] × [n], the oracle O.ReKeyGen returns ⊥ if i = i∗ ∧ j ∈
LCorrupt or i = j holds (where i∗ is the user-index issued to the challenge
query below); otherwise, this oracle does the following:
• If Trk[i, j] = rki→j, O.ReKeyGen returns rki→j, where Trk is the list of

re-encryption key query-response pairs.
• If Trk[i, j] = ∅, it returns rki→j ← ReKeyGen(ski, pkj) and sets Trk[i, j]←

rki→j.
– Challenge Oracle O.Challengeb(i

∗,m∗
0,m

∗
1): Given a challenge query (i∗,m∗

0,
m∗

1) (where i∗ ∈ [n] and (m∗
0,m

∗
1) ∈M×M), the oracle O.Challengeb with

b ∈ {0, 1} returns ⊥ if i∗ ∈ LCorrupt or |m∗
0| ̸= |m∗

1| holds, and returns
ct∗ ← Enc(pki∗ ,m

∗
b) otherwise.

– Decryption Oracle O.Dec(i, cti): Given a decryption query (i, cti), the oracle
O.Dec returns ⊥ if (i, cti) is a derivative of (i∗, ct∗) (Definition 4), and returns
Dec(ski, cti) otherwise.

7

– Re-Encryption Oracle O.ReEnc(i, j, cti): Given a re-encryption query (i, j, cti),
the oracle O.ReEnc returns ⊥ if (i, cti) is a derivative of (i∗, ct∗) and j ∈
LCorrupt holds; otherwise, this oracle does the following:
• If Trk[i, j] = rki→j, O.ReEnc returns ctj ← ReEnc(rki→j , cti).
• If Trk[i, j] = ∅, it computes rki→j ← ReKeyGen(ski, pkj), returns ctj ←
ReEnc(rki→j , cti), and sets Trk[i, j]← rki→j.

Additionally, we describe the definition of derivatives of single-hop unidirec-
tional PRE ciphertexts in a CCA2 game, by following [11]:
Definition 4 (Derivatives for CCA2 security [11]). Let ΠPRE = (Setup,
KeyGen,Enc,Dec,ReKeyGen,ReEnc) be a single-hop unidirectional PRE scheme.
Suppose that the challenge ciphertext ct∗ under a public key pki∗ is defined in a
security game of PRE. Derivatives of (i∗, ct∗) are defined as follows:

– (i∗, ct∗) is a derivative of itself.
– If the adversary against ΠPRE has queried the re-encryption oracle O.ReEnc

on input (i, i′, cti) and obtained the response cti′ , then (i′, cti′) is a derivative
of (i, cti).

– If the adversary against ΠPRE has queried the re-encryption key genera-
tion oracle O.ReKeyGen on input (i, i′), and Dec(pki′ , cti′) ∈ {m∗

0,m
∗
1}, then

(i′, cti′) is a derivative of (i, cti).

As a new security notion of PRE, we formalize a bounded variant of secu-
rity against chosen ciphertext attacks (denoted as bounded CCA2 security) by
following [11, 13]. For simplicity, we consider security notions under selective
corruptions, rather than adaptive corruptions, throughout this paper.
Definition 5 (Bounded CCA2 security). Let td, tr be positive integers. For
a security parameter, let n = poly(λ) be a positive integer. A single-hop uni-
directional PRE scheme ΠPRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) is
(td, tr)-CCA2-secure if for any PPT adversary A = (A0,A1,A2) against ΠPRE,
its advantage

Adv
(td, tr)-cca2
ΠPRE,A,n (λ) :=

∣∣∣Pr[Expt(td, tr)-cca2ΠPRE,A,n (λ) = 1]− 1/2
∣∣∣

is negligible in λ, where the experiment Expt(td, tr)-cca2ΠPRE,A,n (λ) is defined as follows:

Expt
(td, tr)-cca2
ΠPRE,A,n (λ) :

Generate pp← Setup(1λ) and set Trk ← ∅;
∀i ∈ [n], generate (pki, ski)← KeyGen(pp);
(LCorrupt, state0)← A0(pp, {pki}i∈[n]);

(i∗,m∗
0,m

∗
1, state1)← A

O.ReKeyGen,O.Dec,O.ReEnc
1 (state0, {ski}i∈LCorrupt

);

Sample b
$← {0.1} and run ct∗ ← O.Challengeb(i

∗,m∗
0,m

∗
1);

b′ ← AO.Corrupt,O.ReKeyGen,O.Dec,O.ReEnc
2 (state1, ct

∗);
Return 1 if b = b′; otherwise, return 0,

where A is allowed to issue at most td queries to O.Dec and at most tr queries
to O.ReEnc, LCorrupt is a subset of [n], and (state0, state1) is internal state infor-
mation.

8

2.2 One-Time Signatures

We describe the syntax of one-time signatures (OTSs), as follows.

Definition 6 (OTS). For a security parameter λ, letM =M(λ) be a message
space. An OTS scheme consists of three polynomial-time algorithms (KeyGen,Sign,
Vrfy):

– KeyGen(1λ) → (vk, sigk): The randomized algorithm KeyGen takes as input
a security parameter 1λ and outputs a verification key vk and a signing key
sigk.

– Sign(sigk,m)→ σ: The randomized or deterministic algorithm Sign takes as
input a signing key sigk and a message m ∈M, and outputs a signature σ.

– Vrfy(vk,m, σ) → ⊤/⊥: The deterministic algorithm Vrfy takes as input a
verification key vk, a message m ∈ M, and a signature σ, and it outputs ⊤
(accept) or ⊥ (reject).

Definition 7 (Correctness). An OTS scheme (KeyGen,Sign,Vrfy) is said to
be correct if for every (vk, sigk) ← KeyGen(1λ) and every m ∈ M, it holds that
Vrfy(vk,m, σ) = ⊤ with overwhelming probability, where σ ← Sign(sigk,m).

As a security notion of OTSs, we describe the definition of strong unforge-
ability, as follows:

Definition 8 (Strong unforgeability). An OTS scheme ΠOTS = (KeyGen,
Sign,Vrfy) is strongly unforgeable if for any PPT adversary against ΠOTS, its
advantage Advsuf-ot

ΠOTS,A(λ) = Pr[A wins] is negligible in λ, where [A wins] is the
event that A wins in the following security game between a challenger and A:

Setup. The challenger generates (vk, sigk) ← KeyGen(1λ), sets LSign ← ∅, and
gives vk to A.

Queries. A is allowed to access the signing oracle O.Sign, where O.Sign on
input a signing query m ∈ M returns ⊥ if LSign ̸= ∅; otherwise it returns
σ ← Sign(sigk,m) and sets LSign ← LSign ∪ {(m, σ)}.

Forgery. A outputs a forgery (m∗, σ∗). A wins if it holds that (m∗, σ∗) /∈ LSign

and Vrfy(vk,m∗, σ∗) = ⊤.

2.3 Module-Learning with Errors Assumption

We describe the definition of the module-learning with errors (MLWE) assump-
tion with uniform error distributions, as follows:

Definition 9 (MLWE assumption). For a security parameter λ, let n = n(λ), k =
k(λ), η = η(λ) denote positive integers. The module-LWE problem is to distin-
guish between uniform samples (ai, bi) ∈ Rk

q × Rq from m samples (ai, bi) ∈
Rk

q × Rq for i ∈ [m], where ai
$← Rk

q , s
$← Uk

η , and ei
$← Uη are samples

(uniformly) at random, and bi = a⊤
i s+ ei.

9

The module-LWE assumption MLWEm,k,η holds if for any PPT algorithm A
solving the module-LWE problem, its advantage

Advmlwe
m,k,η(A) :=

∣∣∣∣∣Pr
[
b′ = 1

∣∣∣∣∣ A
$← Rm×k

q ; (s,e)← Uk
η × Um

η ;
b = As+ e ∈ Rm

q ; b′ ← A(A, b)

]
−Pr

[
b′ = 1

∣∣∣ A
$← Rm×k

q ; b
$← Rm

q ; b′ ← A(A, b)

]∣∣∣
is negligible in λ.

2.4 Disjunct Matrices

Following [14], we describe the definition of disjunct matrices. Notice that the
notion of disjunct matrices is identical to that of cover-free families.

Definition 10 (t-disjunct matrices). Let n̄, u be positive integers. A binary
matrix M = (mi,j) ∈ {0, 1}u×n̄ is t-disjunct if for every distinct s1, . . . , st ∈ [n̄]
and every j ∈ [n̄]\{s1, . . . , st}, there exists a row q ∈ [u] such that mq,j = 1 and
∀j′ ∈ {s1, . . . , st}, mq,j′ = 0.

Without loss of generality, we suppose that the Hamming weight of each column
vector of a t-disjunct matrix M is some positive integer v.

For t-disjunct matrices, u is bounded by u = Ω(t2 log n̄) and there are con-
crete constructions with order-optimal values of u and v = O(t log n̄) (e.g.,
see [14]).

3 Bounded CCA2-Secure PRE with Compact
Ciphertexts

In this section, we propose a generic construction of bounded CCA2-secure PRE
with compact ciphertexts. To achieve this, we introduce re-encryption key homo-
morphism and a security notion associated with this property. Then, we propose
a generic construction starting from re-encryption key homomorphic PRE with
our formalized security and strongly unforgeable OTS, and give a security proof
for this construction.

3.1 Re-encryption Key Homomorphism of PRE

In order to construct a bounded CCA2-secure PRE with compact ciphertexts,
we introduce re-encryption key homomorphism as a new property of PRE. This
property is inspired by the secret-to-public key homomorphism defined in [30].

Definition 11 (Re-encryption key homomorphism). Throughout this sec-
tion, we consider a PRE scheme ΠPRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,
ReEnc) with the property that the secret keys, public keys and re-encryption keys
are elements of groups Ksk, Kpk, and Krk, respectively. For simplicity, we suppose
that all of the group operations of Ksk, Kpk, and Krk are +. The PRE scheme
ΠPRE is said to be re-encryption key homomorphic if there exist the following map
µ : Ksk → Kpk and polynomial-time algorithms (HReKeyGen,ReKeyEval):

10

– Every (pk, sk) generated by KeyGen satisfies pk = µ(sk);
– µ is a homomorphism: i.e., for all sk, sk′ ∈ Ksk, it holds that µ(sk + sk′) =

µ(sk) · µ(sk′);
– HReKeyGen((skA,i)i∈[u], (pkB,j)j∈[u])→ (rk(A,i)→(B,j))i∈[u],j∈[u]: The random-

ized or deterministic algorithm HReKeyGen takes as input u secret keys
(skA,i)i∈[u] and u public keys (pkB,j)j∈[u] (where ∀i ∈ [u], ∀j ∈ [u] : pkA,i ̸=
pkB,j), and outputs u re-encryption keys (rk(A,i)→(B,j))i∈[u],j∈[u].

– ReKeyEval((rk(A,αi)→(B,βi))i∈[u]) → rkA→B: The deterministic or random-
ized algorithm ReKeyEval takes as input v re-encryption keys (rk(A,αi)→(B,βi))i∈[v]

(where v ≤ u and ∀i ∈ [v] : αi ∈ [u] ∧ βi ∈ [u]) and outputs a new re-
encryption key rkA→B.

– For every n = poly(λ), u = poly(λ), every pp← Setup(λ), every {(pki,j , ski,j)←
KeyGen(pp)}i∈{A,B},j∈[u], every (rk(A,i)→(B,j))i∈[u],j∈[u] ← HReKeyGen((skA,i)i∈[u],
(pkB,i)i∈[u]), every rkA→B ← ReKeyEval((rk(A,αi)→(B,βi))i∈[v]) (for any {(αi, βi) ∈
[u]× [u]}i∈[v]), and every m ∈M, it holds that Dec(skB , ctB) = m with over-
whelming probability, where ctB ← ReEnc(rkA→B , ctA), ctA ← Enc(pkA,m),
pkA = µ(pkA1

, . . . , pkAu
), and skB = µ(skB1

, . . . , skBu
).

Due to the additional property above, we need to introduce security against
chosen plaintext attacks with re-encryption key homomorphism (denoted by RKH-CPA
security) as a new security notion, since the two algorithms ReKeyGen and
HReKeyGen are not compatible. This security is defined in the same way as
the definition of CPA security (Definition 13) except that the adversary is given
access to the homomorphic re-encryption key generation oracle O.HReKeyGen,
instead of O.ReKeyGen. This formalization is Definition 12. Notice that, for sim-
plicity, user-indices in Definition 12 are regarded as index-pairs (i, j) ∈ [n]× [u]
rather than i ∈ [n].

Definition 12 (RKH-CPA security). For a security parameter λ, let n = poly(λ),
u = poly(λ) be positive integers. A re-encryption key homomorphic PRE scheme
ΠPRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) with (HReKeyGen,ReKeyEval)
is u-RKH-CPA-secure if for any PPT adversary A = (A0,A1,A2) against ΠPRE,
its advantage Advu-rkh-cpa

ΠPRE,A,n (λ) :=
∣∣∣Pr[Exptu-rkh-cpa

ΠPRE,A,n (λ) = 1]− 1/2
∣∣∣ is negligible in

λ, where the experiment Exptu-rkh-cpa
ΠPRE,A,n (λ) is defined as follows:

Exptu-rkh-cpa
ΠPRE,A,n (λ) :

Generate pp← Setup(1λ);
∀i ∈ [n],∀j ∈ [u], generate (pki,j , ski,j)← KeyGen(pp);
(LCorrupt, state0)← A0(pp, {pki,j}i∈[n],j∈[u]);

((i∗, j∗),m∗
0,m

∗
1, state1)← A

O.HReKeyGen
1 (state0, {ski,j}(i,j)∈LCorrupt

);

Sample b
$← {0.1} and run ct∗ ← O.Challengeb((i

∗, j∗),m∗
0,m

∗
1);

b′ ← AO.HReKeyGen
2 (state1, ct

∗);
Return 1 if b = b′; otherwise, return 0,

where LCorrupt is a subset of [n]× [u] in the experiment above, (state0, state1) is
internal state information, and the oracle O.HReKeyGen is defined as follows:

11

– Homomorphic re-encryption key generation oracle O.HReKeyGen given a ho-
momorphic re-encryption key query ((A, i)i∈[u], (B, j)j∈[u]) (where A,B ∈
[n]) returns ⊥ if there exists some index (̂i, ĵ) ∈ [u]× [u] such that ((A, î) =
(i∗, j∗) ∧ (B, ĵ) ∈ LCorrupt) or (A, î) = (B, ĵ) (where LHonest = [n]\LCorrupt);
otherwise, it returns (rk(A,i)→(B,j))i∈[u],j∈[u] ← HReKeyGen((skA,i)i∈[u], (pkB,j)j∈[u]).

Regarding the relation between CPA security and RKH-CPA security, it is
clear that RKH-CPA security implies CPA security. However, it seems that CPA
security does not necessarily imply RKH-CPA security. This is because O.HReKeyGen
in the RKH-CPA game needs to return re-encryption keys such that homomorphic
evaluation is possible, while O.ReKeyGen in the CPA game does not necessarily
return such re-encryption keys.

3.2 Construction from Re-encryption Key Homomorphic PRE

We give a generic construction of bounded CCA2-secure PRE scheme ΠC-PRE with
compact ciphertexts. As described before, this is constructed from RKH-CPA-
secure PRE and strongly unforgeable OTS. To achieve compact ciphertexts, we
require the underlying PRE scheme to be re-encryption key homomorphic (Defi-
nition 11).

The proposed scheme ΠC-PRE employs the following cryptographic primitives:

– a re-encryption key homomorphic PRE scheme Π′
PRE = (Π′

PRE.Setup,Π
′
PRE.KeyGen,

Π′
PRE.Enc,Π

′
PRE.Dec,Π

′
PRE.ReKeyGen,Π

′
PRE.ReEnc) with two PPT algorithms

Π′
PRE.HReKeyGen,Π

′
PRE.ReKeyEval; and

– a strongly unforgeable OTS scheme ΠOTS = (ΠOTS.KeyGen,ΠOTS.Sign,ΠOTS.Vrfy).

The proposed PRE scheme ΠC-PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc)
is constructed as follows:

– Setup(1λ) → pp: Generate pp′ ← Π′
PRE.Setup(pp). Let M = M(λ) be the

message space, which is the same as that space of Π′
PRE, let n̄ = n̄(λ), u =

u(λ) be positive integers, and let [n̄] be the verification key space of ΠOTS
5.

Let M = (mi,j) ∈ {0, 1}u×n̄ be a t-disjunct matrix. Output pp = (pp′, n̄, u,M).
– KeyGen(pp) → (pk, sk): Parse pp = (pp′, n̄, u,M) and generate (pk′i, sk

′
i) ←

Π′
PRE.KeyGen(pp

′) for i ∈ [u]. Output pk = (pk′i)i∈[u] and sk = (sk′i)i∈[u].
– Enc(pk,m)→ ct:

1. Parse pk = (pk′i)i∈[n].
2. Generate (vk, sigk)← ΠOTS.KeyGen(1

λ).
3. Compute {τ1, . . . , τv} ← ϕM (vk), where all τ1, . . . , τv ∈ [u] are distinct.
4. Compute pk′vk ←

∑
i∈[v] pk

′
τi and ct′vk ← Π′

PRE.Enc(pk
′
vk,m).

5. Compute σ ← ΠOTS.Sign(sigk, ct
′
vk).

6. Output ct = (vk, ct′vk, σ).

5By using a collision resistant hash function, we can compress the verification key
size of ΠOTS into the space [n̄] in order to reduce the public key size of ΠC-PRE.

12

– Dec(sk, ct) → m/⊥: Parse sk = (sk′i)i∈[u] and ct = (vk, ct′vk, σ). Output ⊥ if
ΠOTS.Vrfy(vk, ct

′
vk, σ) = ⊥ holds; otherwise, compute {τ1, . . . , τv} ← ϕM (vk),

sk′vk ←
∑

i∈[v] sk
′
τi , and output m′ ← Π′

PRE.Dec(sk
′
vk, ct

′
vk).

– ReKeyGen(skA, pkB)→ rkA→B :
1. Parse skA = (sk′A,i)i∈[u] and pkB = (pk′B,i)i∈[u].
2. Compute (rk(A,i)→(B,j))i∈[u],j∈[u] ← Π′

PRE.HReKeyGen((sk
′
A,i)i∈[u], (pk

′
B,j)j∈[u]).

3. Output rkA→B = (rk(A,i)→(B,j))i∈[u],j∈[u].
– ReEnc(rkA→B , ctA)→ ctB :

1. Parse rk = (rk(A,i)→(B,j))i∈[u],j∈[u] and ctA = (vkA, ct
′
vkA

, σA).
2. Output ⊥ if ΠOTS.Vrfy(vkA, ct

′
vkA

, σA) = ⊥ holds.
3. Generate (vkB , sigkB)← ΠOTS.KeyGen(1

λ).
4. Compute {α1, . . . , αv} ← ϕM (vkA) and {β1, . . . , βv} ← ϕM (vkB).
5. Compute rkvkA→vkB ← Π′

PRE.ReKeyEval((rk(A,αi)→(B,βi))i∈[v]).
6. Compute ct′vkB ← Π′

PRE.ReEnc(rkvkA→vkB , ct
′
vkA

).
7. Compute σB ← ΠOTS.Sign(sigkB , ct

′
vkB

).
8. Output ctB = (vkB , ct

′
vkB

, σB).

Due to the correctness of Π′
PRE,ΠOTS and the re-encryption key homomorphism

of Π′
PRE, the correctness of ΠC-PRE holds. Proposition 1 shows this correctness,

and we omit the proof of this proposition because this is proved clearly.

Proposition 1 (Correctness of ΠC-PRE). If the PRE scheme Π′
PRE is correct

and re-encryption key-homomorphic, and the OTS scheme ΠOTS is correct, then
the resulting PRE scheme ΠC-PRE is correct.

3.3 Security Proof

The following theorem shows the bounded CCA2 security of ΠC-PRE:

Theorem 1 (Security of ΠC-PRE). Suppose that the matrix M ∈ {0, 1}u×n̄ is
a t-disjunct matrix and n (resp. nh) is the total number of users (resp. honest
users) in the (t, t)-CCA2 game. If the PRE scheme Π′

PRE is u-RKH-CPA-secure,
and the OTS scheme ΠOTS is strongly unforgeable, then the resulting PRE scheme
ΠC-PRE is (t, t)-CCA2-secure.

In particular, if there exists a PPT algorithm A against a (t, t)-CCA2-secure
PRE scheme ΠC-PRE, then there exists a PPT algorithm B against a u-RKH-CPA-
secure PRE scheme Π′

PRE and a PPT algorithm F against strongly unforgeable
OTS scheme ΠOTS, such that

Adv
(t, t)-cca2
ΠC-PRE,A,n(λ) ≤ n3

hu
2 · Advu-rkh-cpa

Π′
PRE,B,n (λ) + Advsuf-ot

ΠOTS,F (λ).

Proof. Let A be a PPT adversary against the PRE scheme ΠC-PRE. Let ct∗ =
(vk∗, ct′∗vk∗ , σ

∗) denote the challenge ciphertext. In order to prove Theorem 1, we
consider security games Game0,Game1. For i ∈ {0, 1}, let Wi be the event that
the experiment outputs 1 in Gamei.
Game0: This game is the same as the ordinary (t, t)-CCA2 game. Then, we have
Adv

(t, t)-cca2
ΠC-PRE,A,n(λ) = |Pr[W0]− 1/2|.

13

Game1: This game is the same as Game0 except for the following procedures of the
decryption oracle O.Dec and the re-encryption oracle O.ReEnc: At the beginning
of the game, the experiment generates (vk∗, sigk∗) ← ΠOTS.KeyGen(1

λ). For a
decryption query (i, cti) (resp. a re-encryption query (i, j, cti)) (where cti =
(vki, ct

′
vki

, σi)), the experiment aborts if it holds that vki = vk∗, cti ̸= ct∗, and
ΠOTS.Vrfy(vki, ct

′
vki

, σi) = ⊤ (this event is denoted as Bad); otherwise, it returns
the result of O.Dec(i, cti) (resp., O.ReEnc(i, j, cti)).

It is clear that Game0 and Game1 are identical unless Bad occurs. Thus, we
construct a PPT algorithm F breaking the strongly unforgeable OTS scheme
ΠOTS so that we bound the probability that Bad occurs.

On input a verification key vk∗ of ΠOTS, F generates pp ← Setup(1λ) and
(pki, ski) ← KeyGen(pp) for every i ∈ [n] and gives (pp, {pki}i∈[n]) to A. Given
LCorrupt, F returns {ski}i∈LCorrupt

. By using the generated key-pairs, this algo-
rithm simulates the oracles O.ReKeyGen, O.Dec, and O.ReEnc except for the follow-
ing: For a decryption query (resp. a re-encryption query) on cti = (vki, ct

′
vki

, σi),
F aborts and outputs (ct′vki , σi) as a forgery in the strong unforgeability game, if
Bad occurs; otherwise, this algorithm checks whether (i, cti) is a derivative of the
challenge ciphertext (i∗, ct∗) if (i∗, ct∗) is defined. If so, it returns ⊥. Otherwise
it returns m′ ← Dec(ski, cti) (resp. ctj ← ReEnc(rki→j , cti)). Additionally, when

A submits (i∗,m∗
0,m

∗
1), F chooses b

$← {0, 1} and computes ct′∗vk∗ by following
the procedure of Enc(pki∗ ,m∗

b). Then, this algorithm issues ct′∗vk∗ to the signing
oracle O.Sign in the strong unforgeability game and obtains σ∗. F returns the
challenge ciphertext ct∗ = (vk∗, ct′∗vk∗ , σ

∗). Finally, when A outputs b′ ∈ {0, 1}
and Bad has not occurred, F halts and aborts.

It is clear that the output of F is a valid forgery in the strong unforgeability
game if Bad occurs. Additionally, F completely simulates the oracles in the
(t, t)-CCA2 game since it has all key-pairs (pki, ski). Hence, we have Pr[Bad] ≤
Advsuf-ot

ΠOTS,F (λ), and it holds that |Pr[W0]− Pr[W1]| ≤ Advsuf-ot
ΠOTS,F (λ).

In order to bound the winning probability of A in Game1, we construct a
PPT algorithm B against the u-RKH-CPA security of Π′

PRE, as follows: On input
(pp′, {pk′i,j}i∈[n],j∈[u]) in the u-RKH-CPA game, B sets pp = (pp′, n̄, u,M), pki =

(pk′i,j)j∈[u] for i ∈ [n], generates (vk∗, sigk∗)← KeyGen(1λ), and gives (pp, {pki}i∈[n])

to A. When A submits LCorrupt ⊂ [n], B chooses i∗
$← [n]\LCorrupt, j∗

$←
ϕM (vk∗), and obtains {sk′i,j}(i,j)∈[n]×[u]\{(i∗,j∗)} by issuing (i∗, j∗) to the u-
RKH-CPA game. Here, let LHonest := [n]\LCorrupt. Then, B sets pk′i∗,j∗ := pk′i∗,j∗ ·(∑

j∈ϕM (vk∗)\{j∗}(pk
′
i∗,j)

−1
)

and returns {ski}i∈LCorrupt
, where let ski := (sk′i,j)j∈[u]

for every i ∈ [n]\{i∗}, and let ski∗ := (sk′i∗,j)j∈[u]\{j∗}. Additionally, B simulates
the oracles O.ReKeyGen, O.Dec, O.ReEnc, O.Challengeb, as follows:

– O.ReKeyGen(A,B): B returns ⊥ if A = i∗∧B ∈ LCorrupt holds. If Trk[A,B] =
rkA→B , B returns rkA→B ; otherwise, it obtains (rk(A,i)→(B,j))i∈[u],j∈[u] by
issuing ((A, i)i∈[u], (B, j)j∈[u]) to the oracle O.HReKeyGen in the u-RKH-CPA
game, returns rkA→B = (rk(A,i)→(B,j))i∈[u],j∈[u], and sets Trk[A,B]← rkA→B .

14

– O.Dec(A, ctA): For ctA = (vkA, ct
′
A, σA), B returns ⊥ if the challenge cipher-

text is defined and ctA is its derivative. Otherwise, this algorithm does the
following:
1. Abort and output a random bit if A = i∗ ∧ j∗ ∈ ϕM (vkA) holds.
2. Return ⊥ if it holds that vkA = vk∗, ctA ̸= ct∗, and ΠOTS.Vrfy(vkA, ct

′
vkA

,
σA) = ⊤.

3. Return ⊥ if ΠOTS.Vrfy(vkA, ct
′
vkA

, σA) = ⊥ holds.
4. Compute skvkA ←

∑
i∈[v] sk

′
αi

, where {α1, . . . , αv} = ϕMA
(vkA).

5. Return m′ ← Π′
PRE.Dec(skvkA , ct

′
vkA

).
– O.ReEnc(A,B, ctA): For ctA = (vkA, ct

′
vkA

, σA), B returns ⊥ if (A, ctA) is a
derivative of (i∗, ct∗) and B ∈ LCorrupt holds. Otherwise, this algorithm does
the following:
1. Abort and output a random bit if A = i∗ ∧ j∗ ∈ ϕM (vkA) holds.
2. Return ⊥ if it holds that vkA = vk∗, ctA ̸= ct∗, and ΠOTS.Vrfy(vkA, ct

′
A,

σA) = ⊤.
3. Return ⊥ if ΠOTS.Vrfy(vkA, ct

′
vkA

, σA) = ⊥ holds.
4. If Trk[A,B] = ∅, compute (rk(A,i)→(B,j))i∈[u],j∈[u] ← HReKeyGen((skA,i)i∈[u],

(pkB,j)j∈[u]) and set Trk[A,B] ← (rk(A,i)→(B,j))i∈[u],j∈[u]. If Trk[A,B] =
rkA→B , parse rkA→B = (rk(A,i)→(B,j))i∈[u],j∈[u].

5. Generate (vkB , sigkB)← ΠOTS.KeyGen(1
λ).

6. Compute {α1, . . . , αv} ← ϕM (vkA), {β1, . . . , βv} ← ϕM (vkB).
7. Compute rkvkA→vkB ←

∑
i∈[v] rk(A,αi)→(B,βi).

8. Compute ct′vkB ← ReEnc(rkvkA→vkB , ct
′
vkA

).
9. Compute σB ← ΠOTS.Sign(sigkB , ct

′
vkB

).
10. Return ctB = (vkB , ct

′
vkB

, σB).
– O.Challengeb(i

′,m∗
0,m

∗
1):

1. Abort and output a random bit if i∗ ̸= i′ holds.
2. Obtain the ciphertext ct′∗vk∗ by issuing ((i∗, j∗),m∗

0,m
∗
1) to the challenge

oracle in the u-RKH-CPA game.
3. Compute σ∗ ← ΠOTS.Sign(sigk

∗, ct′∗vk∗).
4. Return ct∗ = (vk∗, ct′∗vk∗ , σ

∗).

Finally, when A outputs b′ ∈ {0, 1}, B also outputs b′.
We analyze the algorithm B. B simulates the environment of A unless B

aborts in the simulation of the oracles O.ReEnc, O.Dec, O.Challengeb. To estimate
the winning probability of B, we define Abort as the event that this algorithm
aborts in the simulation above (namely, A = i∗ ∧ j∗ ∈ ϕM (vkA) holds in the
oracle O.Dec or O.ReEnc, or i∗ ̸= i′ holds in the oracle O.Challenge). Additionally,
let WB denote the event that B outputs a bit b′ ∈ {0, 1} such that b = b′. Then,
Pr[WB | Abort] = 1/2 and Pr[¬Abort] ≥ 1/(n3

hu
2) hold since Abort can occur in

the simulation of the oracles O.Dec, O.ReEnc, O.Challengeb. Hence, we have

Pr[WB] = Pr[Abort] · Pr[WB | Abort] + Pr[¬Abort] · Pr[WB | ¬Abort]

≥ 1

2

(
1− 1

n3
hu

2

)
+

1

n3
hu

2
· Pr[WB | ¬Abort]

=
1

2
+

1

n3
hu

2

(
Pr[WB | ¬Abort]−

1

2

)
.

15

Since the A’s advantage εA in Game1 is equivalent to |Pr[WB | ¬Abort]− 1/2|,
the B’s advantage εB = |Pr[WB]− 1/2| is at least εA/(n

3
hu

2).
From the above discussion, we obtain

Adv
(t, t)-cca2
ΠC-PRE,A,n(λ) ≤ n3

hu
2 · Advu-kh-cpa

Π′
PRE,B,n(λ) + Advsuf-ot

ΠOTS,F (λ),

and complete the proof. ⊓⊔

4 Re-Encryption Key Homomorphic PRE from Lattices

In order to instantiate our generic construction with compact ciphertexts, we give
a lattice-based PRE scheme ΠL-PRE with re-encryption key homomorphism and
prove that ΠL-PRE is RKH-CPA secure. The algorithms Setup,KeyGen,Enc,Dec of
ΠL-PRE are similar to those of Kyber’s underlying PKE scheme [6]. For simplic-
ity, we consider a modified Kyber’s algorithms, as follows: (i) Procedures with
compression functions used in Kyber’s PKE scheme are omitted in ΠL-PRE; (ii)
The distributions of secret keys and error vectors of ΠL-PRE are uniform distribu-
tions while Kyber’s PKE scheme uses central binomial distributions which make
easier to sample [24].

Then we add the algorithms ReKeyGen,ReEnc,HReKeyGen,ReKeyEval in or-
der to guarantee the re-encryption functionality and re-encryption key homomor-
phic property of PRE.

To construct the PRE scheme ΠL-PRE, we employ the following functions:

– The bit-decomposition function BitDecomp given a vector x ∈ ZN
q decom-

poses x into its bit representation.
– The powers-of-two function Powersof2 with ℓ = ⌈log q⌉, on input a (column)

vector s ∈ ZN
q , outputs (1, 2, . . . , 2ℓ)⊤ ⊗ s = (s, 2s, . . . , 2ℓ−1s) ∈ ZNℓ

q , where
⊗ is the standard tensor product.

The PRE scheme ΠL-PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) with
(HReKeyGen,ReKeyEval) is constructed as follows:

– Setup(1λ)→ pp:
• Let M = {0, 1}µ be the message space, where µ = µ(λ) is a positive

integer.
• For positive integers N = N(λ), N ′ = N ′(λ) and a prime q = q(λ), let

R := Z[X]/(XN +1) and Rq := Zq[X]/(XN +1), where N = 2N
′−1 such

that XN + 1 is the 2N
′
-th cyclotomic polynomial.

• Let η, k be positive integers, and let ℓ := ⌈log q⌉.
• Sample A

$← Rk×k
q .

Output pp = (λ, µ,N,N ′, q, η, k, ℓ,A).
– KeyGen(pp)→ (pk, sk): Parse pp = (λ, µ,N,N ′, q, ℓ, η, k,A). Sample (s, ŝ)←
Uk
η × Uk

η and (e, ê) ← Uk
η × Uk

η . Compute t ← As + e and t̂ ← Aŝ + ê.
Output pk = (t, t̂) ∈ Rk

q ×Rk
q and sk = (s, ŝ) ∈ Rk ×Rk.

16

– Enc(pk,m) → ct: Parse pk = (t, t̂). Sample (r,e1, e2) ← Uk
η × Uk

η × Uη, and
compute u← A⊤r + e⊤1 and v ← t⊤r + e2 + ⌈ q2⌋ ·m. Output ct = (u, v) ∈
Rk

q ×Rq.
– Dec(sk, ct)→ m:

1. Parse sk = (s, ŝ) and ct = (u, v).
2. Set s̃ ← s if ct is generated by the algorithm Enc. Set s̃ ← ŝ if ct is

generated by the algorithm ReEnc.
3. Output m← ⌈2(v − s̃⊤u)/q⌋ mod 2.

– ReKeyGen(skA, pkB)→ rkA→B :
1. Parse skA = (sA, ŝA) and pkB = (tB , t̂B).
2. Choose RA→B,1,RA→B,2 ← Uk×kℓ

η and rA→B,3 ← Ukℓ
η .

3. Compute UA→B ← A⊤RA→B,1 +RA→B,2 ∈ Rk×kℓ
q .

4. Compute vA→B ← t̂⊤BRA→B,1 + r⊤A→B,3 − Powersof2(s⊤A) ∈ Rkℓ
q .

5. Output rkA→B = (UA→B ,vA→B).
– ReEnc(rkA→B , ctA)→ ctB :

1. Parse rkA→B = (UA→B ,vA→B) and ctA = (uA, vA).
2. Compute uB ← UA→B · BitDecomp(uA).
3. Compute vB ← vA + v⊤

A→B · BitDecomp(uA).
4. Output ctB = (uB , vB).

– HReKeyGen((sk(A,i))i∈[u], (pk(B,j))j∈[u])→ (rk(A,i)→(B,j))i∈[u],j∈[u]:
1. Parse skAi

= (sAi
, ŝAi

) and pkB,j = (tB,j , t̂B,j) for every i ∈ [u] and
j ∈ [u].

2. Choose RA→B,1,RA→B,2 ← Uk×kℓ
η , and r(A,i)→(B,j) ← Ukℓ

η for every
i ∈ [u] and j ∈ [u].

3. Compute UA→B ← A⊤RA→B,1 +RA→B,2.
4. Compute v(A,i)→(B,j) ← t̂⊤B,jRA→B,1 + r(A,i)→(B,j),3 − Powersof2(s⊤A,i)

for every i ∈ [u] and every j ∈ [u].
5. Output (rk(A,i)→(B,j))i∈[u],j∈[u], where rk(A,i)→(B,j) = (UA→B ,v(A,i)→(B,j)).

– ReKeyEval((rk(A,αi)→(B,βi))i∈[v]) → rkA→B : Parse rk(A,αi)→(B,βi) = (UA→B ,
v(A,αi)→(B,βi)) for every i ∈ [v]. Compute vA→B ←

∑
i∈[v] v(A,αi)→(B,βi) ∈

Rkℓ
q . Output rkA→B = (UA→B ,vA→B).

The scheme ΠL-PRE is correct and re-encryption key homomorphic with over-
whelming probability. The formal propositions and these proofs appear in Ap-
pendix B. We give informal propositions, as follows:

Proposition 2 (Correctness of ΠL-PRE (informal)). The proposed PRE scheme
ΠL-PRE is correct with overwhelming probability, under a suitable parameter set-
ting by the algorithm Setup.

Proposition 3 (Re-encryption key homomorphism of ΠL-PRE (informal)).
The proposed PRE scheme ΠL-PRE is re-encrytpion key homomorphic with over-
whelming probability, under a suitable parameter setting by the algorithm Setup.

Furthermore, the following theorem shows the security of ΠL-PRE:

17

Theorem 2 (RKH-CPA security of ΠL-PRE). For a security parameter λ, sup-
pose that n = poly(λ) is a positive integer and u is a positive integer which may
be independent of λ. If the MLWEk+1,k,η assumption holds, the proposed PRE
scheme ΠL-PRE is u-RKH-CPA-secure.

In particular, if there exists a PPT adversary A against the u-RKH-CPA
security of ΠL-PRE, then there exists a PPT algorithm B against the MLWEk+1,k,η

problem, such that

Advu-rkh-cpa
ΠL-PRE,A,n(λ) ≤ nh(qrkkℓ+ 3) · Advmlwe

k+1,k,η(B),

where nh is the number of honest users, and qrk is the maximum number of
queries issued to the re-encryption key generation oracle.

Proof. Let A denote a PPT adversary against the u-RKH-CPA security of the
PRE scheme ΠL-PRE. Let n·u (= nh+nc) be the total number of users whose key-
pairs are generated in the u-RKH-CPA game, where nh and nc are the numbers of
honest users and corrupted users, respectively. Let qrk be the maximum number
of queries issued to the O.HReKeyGen oracle. The challenge ciphertext under the
public key of the user (i∗, j∗) ∈ [n] × [u] is denoted by ct∗ = (u∗, v∗). For
simplicity, without loss of generality, the index (iκ, jκ) ∈ LHonest of the κ-th
honest user (where iκ ∈ [n], jκ ∈ [u], and LHonest = ([i]× [j])i∈[n],j∈[u]\LCorrupt)
is denoted by κ = (iκ, jκ).

In order to prove Theorem 2, we consider security games Game0, (Game
(κ)
1)κ∈[nh],

(Game
(κ)
2)κ∈[nh], (Game

(κ)
3)κ∈[nh],Game4. For i ∈ [3] and κ ∈ [nh], let W

(κ)
i be

the events that the experiment in Game
(κ)
i outputs 1 (i.e., b = b′ holds for the

output b′ ∈ {0, 1} of A). Let W0 and W4 denote the events that the experiments
in Game0 and Game4 output 1, respectively. The games Game0, (Game

(κ)
1)κ∈[nh],

(Game
(κ)
2)κ∈[nh], (Game

(κ)
3)κ∈[nh],Game4 are defined as follows:

Game0: This game is the original RKH-CPA game. Then, we have Advu-rkh-cpa
ΠPRE,A,n (λ) =

|Pr[W0]− 1/2|.
Let Game

(0)
1 be the same game as Game0. For each κ ∈ [nh], we consider a

security game Game
(κ)
1 .

Game
(κ)
1 : This game is the same as Game

(κ−1)
1 except that t̂κ = Aŝκ + êκ ∈ Rk

q

is replaced by a uniformly random t̂κ ∈ Rk
q , when generating the public key

pkκ = (tκ, t̂κ) of the honest user κ.
Assuming the existence of A, there exists a PPT algorithm B(κ)1 against the

MLWEk,k,η problem, because the secret value ŝκ is not necessary to simulate the
environments of A in both Game

(κ−1)
1 and Game

(κ)
1 . By using A’s output, B(κ)

1

can distinguish between a MLWEk,k,η sample and a uniformly random one, in
the straightforward way. Notice that B(κ)1 is given one sample. Hence, we have∣∣∣Pr[W (κ−1)

1]− Pr[W
(κ)
1]

∣∣∣ ≤ Advmlwe
k,k,η(B

(κ)
1) for κ ∈ [nh].

Here, we define Game
(0)
2 as the same game as Game

(nh)
1 , and consider the

security game Game
(κ)
2 for κ ∈ LHonest.

18

Game
(κ)
2 : This game is the same as Game

(κ−1)
2 except that, on input a homomor-

phic re-encryption key query ((A, i)i∈[u], (B, j)j∈[u]) such that κ = (A, î) and
(B, ĵ) ∈ LHonest for some î ∈ [u] and every ĵ ∈ [u], O.HReKeyGen generates a
uniformly random UA→B ∈ Rk×kℓ

q and a uniformly random v(A,̂i)→(B,j) ∈ Rkℓ
q

for every j ∈ [u], instead of UA→B ← A⊤RA→B,1+RA→B,2 and v(A,̂i)→(B,j) ←
t̂⊤B,jRA→B,1 + r(A,̂i)→(B,j) − Powersof2(s⊤

A,̂i
).

For each m ∈ [kℓ], there exists a PPT algorithm B(m,κ)
2 distinguishing whether

the m-th row of [UA→B∥v(A,̂i)→(B,1)∥ · · · ∥v(A,̂i)→(B,u)] is an MLWEk+1,k,η sam-

ple or uniformly random sample. Namely, there exists a PPT algorithm B(m,κ)
2

solving the MLWEk+1,k,η problem. In addition, the total number of queries issued
to the O.HReKeyGen oracle is at most qrk. Hence, we have

∣∣∣Pr[W (κ−1)
2]− Pr[W

(κ)
2]

∣∣∣ ≤
qrkkℓ·Advmlwe

k+1,k,η(B
(κ)
2) by letting B(κ)2 be the PPT algorithm against the MLWEk+1,k,η

assumption, such that Advmlwe
k+1,k,η(B

(m,κ)
2) ≤ Advmlwe

k+1,k,η(B
(κ)
2) for all m ∈ [kℓ].

Here, let Game
(0)
3 be the same game as Game

(nh)
2 , and we define the security

game Game
(κ)
3 for every κ ∈ LHonest.

Game
(κ)
3 : This game is the same as Game

(κ−1)
3 except that tκ = A⊤sκ+eκ ∈ Rk

q

is replaced by a uniformly random tκ ∈ Rk
q , when generating the public key

pkκ = (tκ, t̂κ) of the honest user κ ∈ LHonest.
There exists a PPT algorithm B(κ)3 against the MLWEk,k,η problem. Since sκ

is not used in both Game
(κ−1)
3 and Game

(κ)
3 , it is possible to simulate the views of

A in the two games and construct B(κ)3 . Hence, we have
∣∣∣Pr[W (κ−1)

3]− Pr[W
(κ)
3]

∣∣∣ ≤
Advmlwe

k,k,η(B
(κ)
3).

Game4: This game is the same as Game
(nh)
3 except that the challenge ciphertext

ct∗ = (u∗, v∗) ← Enc(pki∗,j∗ ,m
∗
b) is replaced by a uniformly random vector

(u∗, v∗) ∈ Rk
q ×Rq.

The secret key (sκ, ŝκ) for every κ ∈ [nh] is not used in both Game
(nh)
3

and Game4. Thus, in these games, it is possible to simulate the environments of
A without using that secret key, and construct a PPT algorithm B(i

∗)
4 against the

MLWEk+1,k,η problem. Hence, we have
∣∣∣Pr[W (nh)

3]− Pr[W4]
∣∣∣ ≤ nh·Advmlwe

k+1,k,η(B
(i∗)
4).

Furthermore, Pr[W4] = 1/2 holds since the challenge ciphertext ct∗ is indepen-
dent of b ∈ {0, 1} in Game4.

From the discussion above, we obtain

Advu-rkh-cpa
ΠL-PRE,A,n(λ) ≤

3∑
i=1

nh∑
κ=1

∣∣∣Pr[W (κ−1)
i]− Pr[W

(κ)
i]

∣∣∣
+

∣∣∣Pr[W (nh)
3]− Pr[W4]

∣∣∣+ ∣∣∣∣Pr[W4]−
1

2

∣∣∣∣
≤ nh(qrkkℓ+ 3) · Advmlwe

k+1,k,η(B),

19

where B is a PPT algorithm against the MLWEk+1,k,η assumption, such that
Advmlwe

k+1,k,η(B
(κ)
i) < Advmlwe

k+1,k,η(B) for all i ∈ [4] and κ ∈ LHonest. Therefore, this
completes the proof. ⊓⊔

5 Conclusion

We aimed at constructing a bounded CCA2-secure post-quantum PRE scheme
with compact ciphertexts. To this end, we formalized the notions of re-encryption
key homomorphism and RKH-CPA security for PRE, and proposed a generic con-
struction of bounded CCA2-secure PRE with compact ciphertexts, which starts
from re-encryption key homomorphic PRE with RKH-CPA security and strongly
unforgeable OTS. To instantiate this generic construction, we presented a lattice-
based re-encryption key homomorphic PRE scheme with RKH-CPA security.

As a result, we can construct a bounded CCA2-secure post-quantum PRE
scheme with compact ciphertexts by applying the generic construction to our
lattice-based PRE and an existing lattice-based OTS scheme.

Although we just discussed single-hop PRE schemes, we can consider a multi-
hop variant of our PRE schemes, ΠC-PRE,ΠL-PRE as an extension of these schemes.

Acknowledgements. This work was supported by JST K Program Grant Num-
ber JPMJKP24U2, Japan. The authors would like to thank the anonymous ref-
erees for their helpful comments.

References

1. Almeida, J.B., Olmos, S.A., Barbosa, M., Barthe, G., Dupressoir, F., Grégoire,
B., Laporte, V., Léchenet, J., Low, C., Oliveira, T., Pacheco, H., Quaresma, M.,
Schwabe, P., Strub, P.: Formally verifying kyber - episode V: machine-checked
IND-CCA security and correctness of ML-KEM in easycrypt. In: CRYPTO (2).
LNCS, vol. 14921, pp. 384–421. Springer (2024)

2. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In:
CT-RSA. LNCS, vol. 5473, pp. 279–294. Springer (2009)

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS. The Internet
Society (2005)

4. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

5. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: EUROCRYPT. LNCS, vol. 1403, pp. 127–144. Springer (1998)

6. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - kyber: A cca-secure module-
lattice-based KEM. In: EuroS&P. pp. 353–367. IEEE (2018)

7. Canard, S., Devigne, J., Laguillaumie, F.: Improving the security of an efficient
unidirectional proxy re-encryption scheme. J. Internet Serv. Inf. Secur. 1(2/3),
140–160 (2011)

20

8. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
CCS. pp. 185–194. ACM (2007)

9. Chandran, N., Chase, M., Liu, F., Nishimaki, R., Xagawa, K.: Re-encryption,
functional re-encryption, and multi-hop re-encryption: A framework for achieving
obfuscation-based security and instantiations from lattices. In: Public Key Cryp-
tography. LNCS, vol. 8383, pp. 95–112. Springer (2014)

10. Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and
collusion-resistant obfuscation. In: TCC. LNCS, vol. 7194, pp. 404–421. Springer
(2012)

11. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: AFRICACRYPT. LNCS, vol. 6055, pp. 316–332. Springer (2010)

12. Cohen, A.: What about bob? the inadequacy of CPA security for proxy reencryp-
tion. In: Public Key Cryptography (2). LNCS, vol. 11443, pp. 287–316. Springer
(2019)

13. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded cca2-secure encryption. In: ASIACRYPT. LNCS,
vol. 4833, pp. 502–518. Springer (2007)

14. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications (2nd
Edition), Series on Applied Mathematics, vol. 12. World Scientific (2000)

15. Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G.: Faster lattice-
based kems via a generic fujisaki-okamoto transform using prefix hashing. In: CCS.
pp. 2722–2737. ACM (2021)

16. Fan, X., Liu, F.: Proxy re-encryption and re-signatures from lattices. In: ACNS.
LNCS, vol. 11464, pp. 363–382. Springer (2019)

17. Fuchsbauer, G., Kamath, C., Klein, K., Pietrzak, K.: Adaptively secure proxy
re-encryption. In: Public Key Cryptography (2). LNCS, vol. 11443, pp. 317–346.
Springer (2019)

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC. pp. 169–
178. ACM (2009)

19. Grubbs, P., Maram, V., Paterson, K.G.: Anonymous, robust post-quantum public
key encryption. In: EUROCRYPT (3). LNCS, vol. 13277, pp. 402–432. Springer
(2022)

20. Huguenin-Dumittan, L., Vaudenay, S.: On ind-qcca security in the ROM and its
applications - CPA security is sufficient for TLS 1.3. In: EUROCRYPT (3). LNCS,
vol. 13277, pp. 613–642. Springer (2022)

21. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: NDSS. The Internet Society
(2003)

22. Liang, X., Weng, J., Yang, A., Yao, L., Jiang, Z., Wu, Z.: Attribute-based condi-
tional proxy re-encryption in the standard model under LWE. In: ESORICS (2).
LNCS, vol. 12973, pp. 147–168. Springer (2021)

23. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Public Key Cryptography. LNCS, vol. 4939, pp. 360–379. Springer
(2008)

24. Lyubashevsky, V.: Basic lattice cryptography: The concepts behind kyber (ML-
KEM) and dilithium (ML-DSA). IACR Cryptol. ePrint Arch. p. 1287 (2024)

25. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: TCC. LNCS, vol. 4948, pp. 37–54. Springer (2008)

26. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. J. Cryptol. 31(3), 774–797 (2018)

27. Maram, V., Xagawa, K.: Post-quantum anonymity of kyber. In: Public Key Cryp-
tography (1). LNCS, vol. 13940, pp. 3–35. Springer (2023)

21

28. Miao, P., Patranabis, S., Watson, G.J.: Unidirectional updatable encryption and
proxy re-encryption from DDH. In: Public Key Cryptography (2). LNCS, vol.
13941, pp. 368–398. Springer (2023)

29. Polyakov, Y., Rohloff, K., Sahu, G., Vaikuntanathan, V.: Fast proxy re-encryption
for publish/subscribe systems. ACM Trans. Priv. Secur. 20(4), 14:1–14:31 (2017)

30. Tessaro, S., Wilson, D.A.: Bounded-collusion identity-based encryption from
semantically-secure public-key encryption: Generic constructions with short cipher-
texts. In: Public Key Cryptography. LNCS, vol. 8383, pp. 257–274. Springer (2014)

31. Xagawa, K.: Anonymity of NIST PQC round 3 kems. In: EUROCRYPT (3). LNCS,
vol. 13277, pp. 551–581. Springer (2022)

32. Yoneyama, K.: Compact authenticated key exchange from bounded cca-secure
KEM. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98-A(1), 132–
143 (2015)

33. Zhou, B., Jiang, H., Zhao, Y.: Cpa-secure kems are also sufficient for post-quantum
TLS 1.3. In: ASIACRYPT (3). LNCS, vol. 15486, pp. 433–464. Springer (2024)

34. Zhou, Y., Liu, S., Han, S.: Multi-hop fine-grained proxy re-encryption. In: Public
Key Cryptography (4). LNCS, vol. 14604, pp. 161–192. Springer (2024)

35. Zhou, Y., Liu, S., Han, S., Zhang, H.: Fine-grained proxy re-encryption: Definitions
and constructions from LWE. In: ASIACRYPT (6). LNCS, vol. 14443, pp. 199–231.
Springer (2023)

A Bounded CCA2 secure PRE from CPA secure PRE

In this section, we propose a generic construction of bounded CCA2-secure PRE,
which starts from any CPA secure PRE and strongly unforgeable OTS, and then
give a security proof for this construction.

A.1 Building Blocks

We describe the definitions of CPA security and all-or-nothing transforms, which
are used for presenting a generic construction of bounded CCA2-secure PRE.

Definition 13 (CPA security). For a security parameter λ, let n = poly(λ)
be a positive integer. A unidirectional PRE scheme ΠPRE = (Setup,KeyGen,Enc,
Dec,ReKeyGen,ReEnc) is CPA-secure if for any PPT adversary A = (A0,A1,A2)

against ΠPRE, its advantage Advcpa
ΠPRE,A,n(λ) :=

∣∣∣Pr[Exptcpa
ΠPRE,A,n(λ) = 1]− 1/2

∣∣∣ is
negligible in λ, where the experiment Exptcpa

ΠPRE,A,n(λ) is defined as follows:

Exptcpa
ΠPRE,A,n(λ) :

Generate pp← Setup(1λ) and set Trk ← ∅; ;
∀i ∈ [n], generate (pki, ski)← KeyGen(pp);
(LCorrupt, state0)← A0(pp, {pki}i∈[n]);

(i∗,m∗
0,m

∗
1, state1)← A

O.ReKeyGen
1 (state0, {ski}i∈LCorrupt

);

Sample b
$← {0.1} and run ct∗ ← O.Challengeb(i

∗,m∗
0,m

∗
1);

b′ ← AO.ReKeyGen
2 (state1, ct

∗);
Return 1 if b = b′; otherwise, return 0,

where LCorrupt is a subset of [n], and (state0, state1) is internal state information.

22

All-or-Nothing Transform. An all-or-nothing transform (AONT) splits a mes-
sage X into v secret shares x1, . . . , xv and a public share z and recovers X from
the shares (x1, . . . , xv, z).

Definition 14 (AONT). A PPT algorithm Trans is (µ, µ̄, v)-AONT if the fol-
lowing conditions hold:

1. Given X ∈ {0, 1}µ, Trans outputs v+ 1 blocks (x1, . . . , xv, z) ∈ ({0, 1}µ̄)v+1,
where for i ∈ [v], xi is a secret share, and z is a public share.

2. There exists a polynomial-time inverse function Inverse which, on input (x1,
. . . , xv, z) ∈ ({0, 1}µ̄)v+1, outputs X ∈ {0, 1}µ.

3. Trans satisfies indistinguishability, as follows: For any PPT algorithm A against
Trans, its advantage

Advind
Trans,A(λ) :=

∣∣∣∣Pr [b = b′ | b $← {0, 1}; b′ ← AO.LR(1λ)
]
− 1

2

∣∣∣∣
is negligible in λ, where O.LR is the left-or-right oracle which, on input (j,X0, X1) ∈
[v]× ({0, 1}µ)2, returns (x1, . . . , xj−1, xj+1, . . . , xv, z).

A.2 Construction from CPA secure PRE

We present a bounded CCA2-secure PRE scheme ΠB-PRE which is based on
a generic construction [13] of bounded CCA2-secure PKE. To ensure the re-
encryption functionality, we use CPA secure PRE while the PKE scheme of [13]
uses CPA secure PKE. For simplicity, we employ disjunct matrices while the
bound CCA2-secure PKE [13] uses cover-free families. Notice that the notion of
disjunct matrices is identical to that of cover-free families. In order to construct
the proposed PRE scheme, we use the following building blocks:

– a CPA-secure PRE scheme Π′
PRE = (Π′

PRE.Setup,Π
′
PRE.KeyGen,Π

′
PRE.Enc,

Π′
PRE.Dec,Π

′
PRE.ReKeyGen,Π

′
PRE.ReEnc) with the message spaceM′ = {0, 1}µ̄,

where µ̄ = µ̄(λ) is a positive integer for a security parameter λ;
– a strongly unforgeable OTS scheme ΠOTS = (ΠOTS.KeyGen,ΠOTS.Sign,ΠOTS.Vrfy);
– a (µ, µ̄, v)-AONT Trans with an efficient inverse function Inverse, where µ =

µ(λ) and v = v(λ) are positive integers for a security parameter λ.

The proposed PRE scheme ΠB-PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc)
is constructed as follows:

– Setup(1λ)→ pp:
• Generate pp′ ← Π′

PRE.Setup(pp).
• Let µ = µ(λ), µ̄ = µ̄(λ), and v = v(λ) be positive integers.
• LetM = {0, 1}µ be the message space.
• Let n̄ = n̄(λ), u = u(λ) be positive integers, and let [n̄] be the verification

key-space of ΠOTS.
• Let M = (mi,j) ∈ {0, 1}u×n̄ be a t-disjunct matrix, where the hamming

weight of each column vector is v.

23

Output pp = (pp′, µ, µ̄, v, n̄, u,M).
– KeyGen(pp)→ (pk, sk): Parse pp = (pp′, µ, µ̄, v, n̄, u,M) and generate (pk′i, sk

′
i)←

Π′
PRE.KeyGen(pp

′) for i ∈ [u]. Output pk = (pk′i)i∈[u] and sk = (sk′i)i∈[u].
– Enc(pk,m)→ ct:

1. Parse pk = (pk′i)i∈[u].
2. Generate (vk, sigk)← ΠOTS.KeyGen(1

λ).
3. Compute {τ1, . . . , τv} ← ϕM (vk), where all τ1, . . . , τv ∈ [u] are distinct.
4. Compute (x1, . . . , xv, z)← Trans(m).
5. Compute ct′i ← Π′

PRE.Enc(pkτi , xi) for every i ∈ [v].
6. Compute σ ← ΠOTS.Sign(sigk, (ct

′
1 ∥ · · · ∥ ct′v ∥ z)).

7. Output ct = (vk, (ct′i)i∈[v], z, σ).
– Dec(sk, ct)→ m/⊥:

1. Parse sk = (sk′i)i∈[u] and ct = (vk, (ct′i)i∈[v], z, σ).
2. Output ⊥ if ΠOTS.Vrfy(vk, (ct

′
1 ∥ · · · ∥ ct′v ∥ z), σ) = ⊥ holds.

3. Compute {τ1, . . . , τv} ← ϕM (vk).
4. Compute x′

i ← Π′
PRE.Dec(sk

′
τi , ct

′
i) for every i ∈ [v].

5. Output m′ ← Inverse(x′
1, . . . , x

′
v, z) if x′

i ̸= ⊥ holds for every i ∈ [v];
otherwise, output ⊥.

– ReKeyGen(skA, pkB)→ rkA→B : Parse skA = (sk′A,i)i∈[u] and pkB = (pk′B,i)i∈[u],
and compute rk(A,i)→(B,j) ← Π′

PRE.ReKeyGen(sk
′
A,i, pk

′
B,j) for i ∈ [u] and

j ∈ [u].Output rkA→B = (rk(A,i)→(B,j))i∈[u],j∈[u].
– ReEnc(rkA→B , ctA)→ ctB :

1. Parse rkA→B = (rk(A,i)→(B,j))i∈[u],j∈[u] and ctA = (vkA, (ct
′
A,i)i∈[v], z, σA).

2. Output ⊥ if ΠOTS.Vrfy(vkA, (ct
′
A,1 ∥ · · · ∥ ct′A,v ∥ z), σA) = ⊥ holds.

3. Generate (vkB , sigkB)← ΠOTS.KeyGen(1
λ).

4. Compute {α1, . . . , αv} ← ϕM (vkA) and {β1, . . . , βv} ← ϕM (vkB).
5. For every i ∈ [v], compute ct′B,i ← Π′

PRE.ReEnc(rk(A,αi)→(B,βi), ct
′
A,i).

6. Compute σB ← ΠOTS.Sign(sigkB , (ct
′
B,1 ∥ · · · ∥ ct′B,v ∥ z)).

7. Output ctB = (vkB , (ct
′
B,i)i∈[v], z, σB).

The correctness of ΠB-PRE follows that of the underlying primitives Π′
PRE, ΠOTS,

and (µ, µ̄, v)-AONT. Because this is proven in the straightforward way, we omit
the proof.

A.3 Security Proof

Theorem 3 shows the bounded CCA2 security of the proposed scheme ΠB-PRE.

Theorem 3 ((t, t)-CCA2 security of ΠB-PRE). Suppose that the matrix M ∈
{0, 1}u×n̄ is a t-disjunct matrix, and nh is the number of honest users in the
(t, t)-CCA2 game. If the PRE scheme Π′

PRE is CPA-secure, the OTS scheme
ΠOTS is strongly unforgeable, and the algorithm Trans is (µ, µ̄, v)-AONT, then
the resulting PRE scheme ΠB-PRE is (t, t)-CCA2-secure.

In particular, if there exists a PPT algorithm A against the (t, t)-CCA2-secure
PRE ΠB-PRE, then there exist PPT adversaries B1 against the CPA-secure PRE
Π′

PRE, F against the strongly unforgeable OTS ΠOTS, and B2 against (µ, µ̄, v)-
AONT Trans such that

Adv
(t, t)-cca2
ΠB-PRE,A,n(λ) ≤ n3

hu
2 · Advcpa

B1,Π′
PRE,nu

(λ) + Advsuf-ot
ΠOTS,F (λ) + n3

hu
2 · Advind

B2,AONT(λ).

24

Proof. Let A be a PPT adversary against the PRE scheme ΠB-PRE. Let ct∗ =
(vk∗, (ct′∗i)i∈[v], z

∗, σ∗) denote the challenge ciphertext under pki∗ . To prove The-
orem 3, we consider security games Game0,Game1.

Game0: This game is the same as the (t, t)-CCA2 security game.

Game1: This game is the same as Game0 except for the following procedures of the
decryption oracle O.Dec and the re-encryption oracle O.ReEnc: For a decryption or
re-encryption query on cti = (vki, (ct

′
i,j)j∈[v], zi, σi), the oracle O.Dec or O.ReEnc

checks whether it holds that vki = vk∗, cti ̸= ct∗, and ΠOTS.Vrfy(vki, (ct
′
i,1∥

· · · ∥ct′i,v∥zi), σi) = ⊤ (this event is denoted by Bad). If so, the experiment aborts;
otherwise, O.Dec computes m′ ← Dec(ski, cti) and returns m′ ∈M∪ {⊥}.

Game0 and Game1 are identical unless Bad occurs. In order to estimate the
upper bound of the probability that Bad occurs, we construct a PPT algorithm
F breaking the strongly unforgeable OTS scheme ΠOTS.

On input a verification key vk∗ of ΠOTS, F gives (pp, {pki}i∈[n], {ski}i∈LCorrupt
)

to A by generating (pp, {(pki, ski)}i∈[n]) by itself. By using the generated key-
pairs, F simulates O.ReKeyGen. Additionally, the oracle O.Dec (resp., O.ReEnc) is
simulated as follows: For a decryption query (i, cti) (resp., (i, j, cti)) (where cti =
(vki, (ct

′
i,j)j∈[v], zi, σi)), F aborts and outputs a forgery ((ct′i,1∥ · · · ∥ct′i,v∥zi), σi)

in the strong unforgeability game of ΠOTS, if it holds that vki = vk∗, cti ̸=
ct∗, and ΠOTS.Vrfy(vki, (ct

′
i,1∥ · · · ∥ct′i,v∥zi), σi)) = ⊤ (i.e., Bad occurs); other-

wise, the algorithm computes m′ ← Dec(ski, cti) and returns m′ ∈ M ∪ {⊥}
(resp., computes ctj ← ReEnc(rki→j , cti) and returns ctj). Furthermore, when

A submits a challenge query (i∗,m∗
0,m

∗
1), F chooses b

$← {0, 1}, computes
((ct′∗i)i∈[v], z

∗) by following the procedure of Enc(pki∗ ,m
∗
b). Then, this algo-

rithm issues (ct′∗1 ∥ · · · ∥ct′∗v ∥z∗) to the signing oracle in the strong unforgeabil-
ity game and obtains σ∗. And then, F returns the challenge ciphertext ct∗ =
(vk∗, (ct′∗i)i∈[v], z

∗, σ∗). Finally, when A outputs b′ ∈ {0, 1} and Bad has not
occurred, F halts and outputs 0.

We analyze the algorithm F . It is clear that the output of F is a valid forgery
in the strong unforgeability game if Bad occurs. Hence, the probability Pr[Bad] is
at most the advantage Advsuf-ot

ΠOTS,F (λ) of F , and the two games are distinguishable
with probability at most Advsuf-ot

ΠOTS,F (λ).

Simulation of Game1. To bound the winning probability of A in Game1, we
consider the following experiment B: At the beginning of the game, B generates
(pp, {(pki, ski)}i∈[n]) in the same way as Game1, and gives (pp, {pki}i∈[n]) to A.

And then, B generates (vk∗, sigk∗) ← ΠOTS.KeyGen(1
λ), chooses indices i∗

$←
[nh], j∗

$← ϕM (vk∗), and simulates Game1 except for the following procedure: B
aborts and outputs a random bit if A issues a decryption or re-encryption query
on (i∗, (vki∗ , (ct

′
i∗,j)j∈[v], zi∗ , τi∗)) such that j∗ ∈ ϕM (vki∗); or a challenge query

(i′,m∗
0,m

∗
1) such that i∗ ̸= i′. When A finally outputs b′ ∈ {0, 1}, B also outputs

b′.
We estimate the probability that B outputs b′ such that b = b′ (this event is

denoted by WB). Let Abort be the event that B aborts in the above simulation

25

of oracles. Notice that Pr[WB | Abort] = 1/2. Due to the t-disjunct property of
M , it holds that Pr[¬Abort] ≥ 1/(n3

hu
2). Then, we have

Pr[WB] = Pr[Abort] · Pr[WB | Abort] + Pr[¬Abort] · Pr[WB | ¬Abort]

≥ 1

2

(
1− 1

n3
hu

2

)
+

1

n3
hu

2
· Pr[WB | ¬Abort]

=
1

2
+

1

n3
hu

2

(
Pr[WB | ¬Abort]−

1

2

)
.

The A’s advantage εA in Game1 is equivalent to |Pr[WB | ¬Abort]− 1/2|.
Hence, the B’s advantage εB = |Pr[WB]− 1/2| is at least εA/(n

3
hu

2). Here, let
ϕM (vk∗) := {τ∗1 , . . . , τ∗v } (where τ∗1 , . . . , τ

∗
v ∈ [u]). In order to bound εB, we

change the environment of A. In this modified environment, the j∗-th share
x∗
j∗ generated by Trans is replaced with the all-zero string 0µ̄, when producing

the challenge ciphertext. The probability Pr[WB] is defined as p(0), and the
probability that WB occurs in the modified environment is defined as p(1). Then
we have εB ≤ |p(0) − p(1)|+ |p(1) − 1/2|.
Reduction to CPA security. To bound |p(0) − p(1)|, we construct a PPT al-
gorithm B1 against the CPA security of Π′

PRE, as follows: On input the public
parameter (pp′, {pk′i,j}(i,j)∈[n]×[u]) in the CPA game, B1 generates pp by fol-
lowing the algorithm Setup and gives pp to A. When A submits LCorrupt, B1
generates (vk∗, sigk∗)← ΠOTS.KeyGen(1

λ), chooses i∗ $← [n], j∗
$← ϕM (vk∗), and

obtains {sk′i,j}(i,j)∈[n]×[u]\{(i∗,j∗)} by issuing L′
Corrupt = {(i, j)}\{(i∗, j∗)} in the

CPA game. Here, for simplicity, (i, j) ∈ [n] × [u] represents a user-index in the
CPA game. Then B1 returns {ski}i∈LCorrupt

, where let ski := (sk′i,j)j∈[u] for every
i ∈ [n]\{i∗}, and let ski∗ := (sk′i∗,j)j∈[u]\{j∗}. Furthermore, B1 simulates the
oracles O.ReKeyGen, O.Dec, O.ReEnc, O.Challengeb, as follows:

– O.ReKeyGen(A,B): If (A = i∗ ∧B ∈ LCorrupt) or A = B holds, B1 returns ⊥;
otherwise it does the following:
• (Case A = i∗): Obtain rk(i∗,j∗)→(B,j) by issuing a re-encryption query

((i∗, j∗), (B, j)) in the CPA game, for every j ∈ [u]. For every i ∈ [u]\{j∗}
and every j ∈ [u], compute rk(i∗,i)→(B,j) ← Π′

PRE.ReKeyGen(sk
′
i∗,i, pk

′
B,j).

• (Case A ̸= i∗): Compute rk(A,i)→(B,j) ← Π′
PRE.ReKeyGen(sk

′
A,i, pk

′
B,j)

for every i ∈ [u] and every j ∈ [u].
B1 returns rkA→B = (rk(A,i)→(B,j))i∈[u],j∈[u] and sets Trk[A,B]← rkA→B .

– O.Dec(A, ctA): For ctA = (vkA, (ct
′
A,i)i∈[v], z, σA), B1 does the following:

1. Return ⊥ if (A, ctA) is a derivative of (i∗, ct∗).
2. Abort and output a random bit if A = i∗ ∧ j∗ ∈ ϕM (vkA) holds.
3. Return ⊥ if it holds that vkA = vk∗, ctA ̸= ct∗ and ΠOTS.Vrfy(vkA,

(ct′A,1∥ · · · ∥ct′A,v∥z), σA) = ⊤.
4. Compute m′ ← Dec(skA, ctA) and return m′ ∈M∪ {⊥}.

– O.ReEnc(A,B, ctA): B1 parses ctA = (vkA, (ct
′
A,i)i∈[v], z, σA) and does the

following:
1. Return ⊥ if B ∈ LCorrupt holds and (A, ctA) is a derivative of (i∗, ct∗).

26

2. Abort and output a random bit if A = i∗ ∧ j∗ ∈ ϕM (vkA) holds.
3. If Trk[A,B] = ∅, compute rkA→B ← ReKeyGen(skA, pkB). If Trk[A,B] =

r̂kA→B (̸= ∅), set rkA→B ← r̂kA→B .
4. Return ctB ← ReEnc(rkA→B , ctA).

– O.Challengeb(i
′,m∗

0,m
∗
1):

1. Abort and output a random bit if i∗ ̸= i′.
2. Compute {τ∗1 , . . . , τ∗v } ← ϕM (vk∗), (x∗

1, . . . , x
∗
v, z

∗)← Trans(m∗
b).

3. Obtain ct′∗j∗ by submitting a challenge query (x∗
j∗ , 0

µ̄) to the CPA game.
4. For every j ∈ [v]\{j∗}, compute ct′∗j ← Π′

PRE.Enc(pk
′
τ∗
j
, x∗

j).
5. Compute σ∗ ← ΠOTS.Sign(sigk

∗, (ct′∗1 ∥ · · · ∥ct′∗v ∥z∗)).
6. Return ct∗ = (vk∗, (ct′∗i)i∈[v], z

∗, σ∗).

When A finally outputs the guessing bit b′ ∈ {0, 1}, B1 outputs 1 if b = b′;
otherwise, it outputs 0.

We analyze the algorithm B1. Unless A issues a decryption query or re-
encryption query on (A, (vkA, (ct

′
A,i)i∈[v], zA, σA)) such that A = i∗ ∧ j∗ ∈

ϕM (vkA), B1 can simulate O.Dec and O.ReEnc. The t-disjunct property of M en-
sures that A cannot issue such a query. Additionally, B1 wins the CPA game by
employing A’s output, in the straightforward way. Hence, we have

∣∣p(0) − p(1)
∣∣ ≤

Advcpa
Π′

PRE,B1,nu
(λ).

Reduction to AONT’s Indistinguishability. To bound |p(1)−1/2|, we con-
struct a PPT algorithm B2 against (µ, µ̄, v)-AONT Trans. Suppose that B2 is
given the oracle O.LR in the indistinguishability game of AONT: B2 generates all
n key-pairs {(pki, ski)}i∈[n] by itself and simulates the environment of A except
for the following procedure of the oracle O.Challengeb(i

′,m∗
0,m

∗
1):

1. Abort and output a random bit if i∗ = i′.
2. Obtain ((x∗

i)i∈[v]\{j∗}, z
∗) by issuing (j∗,m∗

0,m
∗
1) to O.LR.

3. Compute ct′∗j∗ ← Π′
PRE.Enc(pkτ∗

j∗
, 0µ̄) and ct′∗i ← Π′

PRE.Enc(pkτ∗
i
, x∗

i) for ev-
ery i ∈ [v]\{j∗}, where {τ∗1 , . . . , τ∗v } = ϕM (vk∗).

4. Compute σ∗ ← ΠOTS.Sign(sigk
∗, (ct′∗1 ∥ · · · ∥ ct′∗v ∥ z∗)).

5. Return ct∗ = (vk∗, (ct′∗i)i∈[v], z
∗, σ∗).

When A outputs the guessing bit b′ ∈ {0, 1}, B2 also outputs b′.
B2 simulates O.KeyGen, O.ReKeyGen, O.Dec, O.ReEnc completely since it has the

key-pairs of all users. O.Challenge is also simulated correctly since B2 can gen-
erate the challenge ciphertext without knowledge of x∗

j∗ . Hence, the B2’ advan-
tage Advind

Trans,B2
(λ) is at least

∣∣p(1) − 1/2
∣∣. Therefore, we have Advcpa

Π′
PRE,B1

(λ) +

Advind
Trans,B2

(λ) ≥ εA/(n
3
hu

2).
From the discussion above, we obtain

Adv
(t, t)-cca2
ΠPRE,A,n (λ) ≤ nhu

2 ·Advcpa
B1,Π′

PRE,nu
(λ)+n3

hu
2 ·Advind

AONT,B2
(λ)+Advsuf

ΠOTS,F (λ).

and complete the proof. ⊓⊔

27

B Omitted Proofs for Our Lattice-based PRE Scheme

In this section, we give proofs for the correctness and re-encryption key homomor-
phism of our scheme ΠL-PRE.

Proposition 4 (Correctness of ΠL-PRE). Let pp = (λ, µ,N,N ′, q, η, k, ℓ,A)
be a public parameter determined by running Setup(1λ) and let A,B be distinct
users. Then, the key-pairs of these users and a ciphertext under the user A ’s
public key are defined as follows:

– Let (pkA, skA) = ((tA, t̂A), (sA, ŝA)) and (pkB , skB) = ((tB , t̂B), (sB , ŝB))
be the key-pairs of the users A and B, respectively, where for i ∈ {A,B},
ti = Asi + ei and t̂i = Aŝi + êi.

– Let ctA := (uA, vA)← Enc(pkA,m) for an arbitrary message m ∈M.

Denote w := e⊤Ar + e2 − s⊤Ae1 and ŵ := w + ê⊤B · BitDecomp(uA) + r⊤A→B,3 ·
BitDecomp(uA)− ŝ⊤B ·RA→B,2 ·BitDecomp(uA), where r, e1, e2,RA→B,2, rA→B,3

are random values generated by running Enc(pkA,m) and ReKeyGen(skA, pkB).
Then, the proposed PRE scheme ΠL-PRE is correct with probability 1−Pr [∥ŵ∥∞ ≥ q/4].

Proof. We consider an arbitrary message m ∈M throughout the proof of Propo-
sition 4. First, we show the encryption-correctness of ΠL-PRE. Then, the public
value tA is represented as tA = AsA + eA. Additionally, the value uA of the
ciphertext ctA = (uA, vA) under pkA is uA = A⊤r + e1, and the value vA is
vA = t⊤Ar + e2 +

⌈
q
2

⌋
·m = (AsA + eA)

⊤r + e2 +
⌈
q
2

⌋
·m. Then, we have

vA − s⊤AuA = (AsA + eA)
⊤r + e2 +

⌈q
2

⌋
·m− s⊤A(A

⊤r + e1)

=
⌈q
2

⌋
·m+ e⊤Ar + e2 − s⊤Ae1.

By setting w = e⊤Ar + e2 − s⊤Ae1, m is correctly recovered by the algorithm
Dec, due to the assumption ||w||∞ < q/4. Hence, the proof of the encryption
correctness is completed.

Next, we show the re-encryption correctness of ΠL-PRE. For simplicity, we also
employ the above value of (tA,uA, vA). Then, a re-encryption key rkA→B =
(UA→B ,vA→B) generated by running ReKeyGen(skA, pkB) is

UA→B = A⊤RA→B,1 +RA→B,2 ∈ Rk×kℓ
q ; and

v⊤
A→B = t̂⊤BRA→B,1 + r⊤A→B,3 − Powersof2(s⊤A) ∈ Rkℓ

q .

Additionally, a re-encrypted ciphertext ctB = (uB , vB) is generated by using the
value of (UA→B ,vA→B), as follows:

uB =
(
A⊤

BRA→B,1 +RA→B,2

)
· BitDecomp(uA); and

vB = vA + (t̂⊤BRA→B,1 + r⊤A→B,3 − Powersof2(s⊤A)) · BitDecomp(uA).

28

Then, we have

vB − ŝ⊤BuB

= (vA − s⊤AuA) + t̂⊤BRA→B,1 · BitDecomp(uA) + r⊤A→B,3 · BitDecomp(uA)

− ŝ⊤B(A
⊤RA→B,1 · BitDecomp(uA) +RA→B,2 · BitDecomp(uA))

=
(
w +

⌈q
2

⌋
m
)
+ ê⊤B · BitDecomp(uA)

+ r⊤A→B,3 · BitDecomp(uA)− ŝ⊤BRA→B,2 · BitDecomp(uA).

The error-term ŵ of (vB − ŝ⊤BuB) is defined as

ŵ := w + ê⊤B · BitDecomp(uA)

+ r⊤A→B,3 · BitDecomp(uA)− ŝ⊤BRA→B,2 · BitDecomp(uA).

Due to the assumption ||ŵ||∞ < q/4, m is recovered correctly. Hence, the proof
of the re-encryption correctness is completed.

Therefore, we complete the proof of the correctness of ΠL-PRE. ⊓⊔

Proposition 5 (Re-encryption key homomorphism of ΠL-PRE). Suppose
that u, v be positive integers such that v ≤ u. Let pp = (λ, µ,N,N ′, q, η, k, ℓ,A)←
Setup(1λ), and let {α1, . . . , αv} ∈ [u]v and {β1, . . . , βv} ∈ [u]v be two sets of dis-
tinct user-indices. Then, users’ key-pairs and a ciphertext are defined as follows:

– For every i ∈ [u], let (pkA,i, skA,i) = ((tA,i, t̂A,i), (sA,i, ŝA,i)) (resp. (pkB,i,

skB,i) = ((tB,i, t̂B,i), (sB,i, ŝB,i))) be the key-pair of the user (A, i) (resp. the
user (B, i)), where tA,i = AsA,i + eA,i and t̂B,i = AŝB,i + êB,i;

– Let ctA := (uA, vA) ← Enc(tA,m) for an arbitrary message m ∈ M, where
tA =

∑
i∈[v] tA,αi , uA = A⊤r + e⊤1 and vA = t⊤Ar + e2 + ⌈ q2⌋ ·m.

Denote wA := e⊤Ar + e2 − s⊤Ae1 and

wB := wA +

∑
i∈[v]

r⊤(A,αi)→(B,βi),3

BitDecomp(uA)

+
(
ê⊤BRA→B,1 − ŝ⊤BRA→B,2

)
BitDecomp(uA),

where ŝB =
∑

i∈[v] ŝB,βi
, RA→B,1,RA→B,2, and r(A,αi)→(B,βi),3 for i ∈ [v] are

random values generated by running HReKeyGen((skA,i)i∈[u], (pkB,i)j∈[u]).
Then, the proposed PRE scheme ΠL-PRE is re-encryption key homomorphic

with probability 1− Pr [∥wB∥∞ ≥ q/4].

Proof. We consider an arbitrary message m ∈M throughout the proof of Propo-
sition 5. For every i ∈ [u], the values of tA,i and t̂B,i are tA,i = AsA,i+eA,i and
t̂B,i = AŝB,i+êB,i, respectively. Then, let tA :=

∑
i∈[v] tA,αi

= A
∑

i∈[v] sA,αi
+∑

i∈[v] eA,αi
= AsA+eA; and t̂B :=

∑
i∈[v] t̂B,βi

= A
∑

i∈[v] ŝB,βi
+
∑

i∈[v] êB,βi
=

29

AŝB + êB , where sA =
∑

i∈[v] sA,αi
, eA =

∑
i∈[v] eA,αi

, ŝB =
∑

i∈[v] ŝB,βi
, and

êB =
∑

i∈[v] êB,βi
.

Since ctA = (uA, vA) is an encryption of m under tA, we have uA = A⊤r+e1
and vA = t⊤Ar+e2+⌈q/2⌋·m. Let (rk(A,i)→(B,j))i∈[u],j∈[u] ← HReKeyGen((skA,i)i∈[u],
(pkB,j)j∈[u]). For i ∈ [u] and j ∈ [u], the values of (UA→B ,v(A,i)→(B,j)) are

UA→B = A⊤RA→B,1 +RA→B,2; and

v(A,i)→(B,j) = t̂⊤B,jRA→B,1 + r⊤(A,i)→(B,j),3 − Powersof2(s⊤A,i).

Then, the value vA→B for (UA→B ,uA→B)← ReKeyEval((rk(A,αi)→(B,βi))i∈[v]) is
vA→B :=

∑
i∈[v] v(A,αi)→(B,βi) =

∑
i∈[v] t̂

⊤
B,βi

RA→B,1+
∑

i∈[v] r
⊤
(A,αi)→(B,βi),3

−∑
i∈[v] Powersof2(s

⊤
A,αi

). Since ctB = (uB , vB) is a re-encrypted ciphertext gen-
erated by using (UA→B ,vA→B), we have

uB = (A⊤RA→B,1 +RA→B,2) · BitDecomp(uA); and

vB = vA +

∑
i∈[v]

t̂⊤B,βi
RA→B,1 +

∑
i∈[v]

r⊤(A,αi)→(B,βi),3
−

∑
i∈[v]

Powersof2(s⊤A,αi
)

BitDecomp(uA)

= vA − s⊤AuA +

(AŝB + êB)
⊤RA→B,1 +

∑
i∈[v]

r⊤(A,αi)→(B,βi),3

BitDecomp(uA).

Hence, it holds that

vB − ŝ⊤BuB = vA − s⊤AuA

+

(AŝB + êB)
⊤RA→B,1 +

∑
i∈[v]

r⊤(A,αi)→(B,βi),3

BitDecomp(uA)

− ŝ⊤B
(
A⊤RA→B,1 · BitDecomp(uA) +RA→B,2 · BitDecomp(uA)

)
= vA − s⊤AuA +

∑
i∈[v]

r⊤(A,αi)→(B,βi),3

BitDecomp(uA)

+
(
ê⊤BRA→B,1 − ŝ⊤BRA→B,2

)
BitDecomp(uA).

The error-term wB of vB − ŝ⊤BuB is defined as

wB := wA +

∑
i∈[v]

r⊤(A,αi)→(B,βi),3

BitDecomp(uA)

+
(
ê⊤BRA→B,1 − ŝ⊤BRA→B,2

)
BitDecomp(uA),

where wA is the error-term of vA − s⊤AuA, i.e., wA = e⊤Ar + e2 − s⊤Ae1.
Therefore, Dec correctly recovers m due to the assumption ∥wB∥∞ < q/4,

and this completes the proof. ⊓⊔

30

	Bounded CCA2-Secure Proxy Re-encryption from Lattices

