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Abstract. The Iterated Even-Mansour (IEM) construction was intro-
duced by Bogdanov et al. at EUROCRYPT 2012 and can be seen as
an abstraction or idealization of blockciphers like AES. IEM provides
insights into the soundness of this blockcipher structure and the best
possible security for any number of rounds. IEM with r permutations on
n-bit blocks is secure up to q ≈ 2rn/(r+1) queries to the cipher and each
permutation.
Forkciphers, introduced at ASIACRYPT 2019 as expanding symmetric
ciphers, have since found applications in encryption, authenticated en-
cryption and key derivation. Kim et al. (ToSC 2020) proposed the first
IEM-style forkcipher, FTEM, but their security proof is limited to a
2-round design with tweak processing based on XORing AXU hashes.
This offers limited insight into practical forkciphers like ForkSkinny, which
use 40 to 56 rounds and a different tweak schedule. No security results
currently exist for forked IEM constructions with more than two rounds.
We propose a generalized forked IEM construction called GIEM which
integrates any tweakey schedule (including tweak-dependent round keys
or constant keys) and thus encompasses IEM, FTEM and similar IEM-
related constructions.
We define three forkcipher-related instantiations, FEM (2 branches and
no tweaks), FTEM-ITS (2 branches and idealized tweakey schedule) and
MFTEM (unlimited branches and AXU-based tweakey schedule). We
prove that each construction achieves security similar to the respective
non-forked construction. This shows the soundness of the forking design
strategy and can serve as a basis for new constructions with more than
two branches.
In their work, Bogdanov et al. also propose an attack against IEM using
q ≈ 2rn/(r+1) queries, which is used in a number of follow-up works
to argue the tightness of IEM-related security bounds. In this work,
we demonstrate that the attack is ineffective with the specified query
complexity. To salvage the purported tightness results, we turn to an
attack by Gaži (CRYPTO 2013) against cascading block ciphers and
provide the necessary parameters to apply it to IEM. This validates the
tightness of the known IEM security bound.
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1 Introduction

Blockciphers are a fundamental building block in cryptography. Their design
has been an important research focus in the last decades. In 1997 Even and
Mansour [EM97] introduced the concept of building a blockcipher based on a
public permutation P and a secret key k = (k1, k2) as

c = P (m⊕ k1)⊕ k2 .

The Even-Mansour cipher (EM) [EM97] is provably secure up to roughly 2n/2

adversarial queries against adversaries that do not exploit the specific instantiation
of the permutation. To formally model this, the permutation is randomly drawn
from the set of all permutations and the adversary can query it arbitrarily. The
security proof of the Even-Mansour cipher gives a generic security guarantee
that shifts the difficulty of designing a secure blockcipher to the arguably simpler
concept of designing a secure permutation. In 2012, Bogdanov et al. [BKL+12]
extended the EM design to multiple rounds as

c = Pr(...P2(P1(m⊕ k1)⊕ k2)...)⊕ kr+1 ,

where P1, . . . , Pr are independently and randomly sampled permutations. This
construction is referred to as a Key Alternating Cipher (KAC) or Iterated Even-
Mansour cipher (IEM) in the literature. While the original EM design is the basis
for creating new blockciphers, IEM has an additional relevance, as it follows the
internal (permute-round key XOR) alternating structure of popular ciphers, such
as AES. Bogdanov et al. first provably analyzed the IEM structure. Since practical
ciphers with a similar structure do not use independent random permutations,
the security of existing ciphers does not surpass that of IEM. Hence the results
on IEM give the minimum number of rounds of any secure key-alternating cipher.

In terms of provable security, the added rounds allow IEM to achieve be-
yond birthday bound security as a pseudo-random permutation. Bogdanov et
al. [BKL+12] proved the security of IEM for information theoretic adversaries up
to roughly q ≈ 22n/3 queries when the number of rounds r ≥ 2, and conjectured
a security of q ≈ 2rn/(r+1) in general.

The IEM work of Bogdanov et al. [BKL+12] sparked a broad body of follow-
up works. In 2014, Chen and Steinberger [CS14] proved the IEM conjectured
security up to about 2rn/(r+1) queries for any number of rounds r. Later, Hoang
and Tessaro [HT16] confirm this asymptotic bound with a proof in their new
framework called the expectation method. This method both enables a simpler
proof and an improved final bound. While asymptotically the same, the bound
by Hoang and Tessaro gives better concrete security. For AES-like parameters
(n = 128 and r = 10) and q = 2110 queries to the cipher and each primitive, it
gives still a reasonable bound on the maximum advantage of 2−50 whereas Chen
and Steinberger’s bound is already vacuous. Further, the expectation method
gives a bound on the multi-user security of IEM. Multi-user security assumes
each user to have independent keys but the same permutations, which better
captures how blockciphers are deployed in the real world.
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In a different line of work, Cogliati et al. [CLS15] proposed a tweakable variant
of IEM called Tweakable Even-Mansour (TEM). Tweakable block ciphers (TBCs)
are a generalization of traditional block ciphers that, aside from the message and
key, take an additional tweak input, which may be adversarially controlled. For
each distinct tweak, the tweakable cipher is supposed to behave like an inde-
pendent random permutation. TBCs are used for length-preserving encryption
modes [HR03, HR04], message authentication codes [LRW02, LST12] and au-
thenticated encryption modes [RBBK01,LRW02,Rog04]. Cogliati et al. [CLS15]
generate the round keys of TEM with almost XOR-universal (AXU) functions
on input the current tweak. They proved security up to roughly q ≈ 2rn/(r+1)

queries in a dedicated proof for the 1- and 2-round construction, and security up
to q ≈ 2rn/(r+2) queries when r ≥ 3, which is equivalent to the expected security
of (regular) IEM with half as many rounds.

A number of works on IEM-like constructions [BKL+12,LPS12,Ste12,CS14,
CLS15] argue about the tightness of their security bounds. Their arguments
appear to be rooted in the attack by Bogdanov et al. [BKL+12] which uses
2rn/(r+1) queries to each permutation and the cipher. However, to the best of our
knowledge, a detailed analysis of this attack is missing in the existing literature.

In 2020, Kim et al. [KLL20] proposed FTEM, a novel key-alternating structure
similar to a forkcipher. Forkciphers were introduced by Andreeva et al. [ALP+19].
They are expanding tweakable ciphers, that produce 2n-bit ciphertext out-
puts from an n-bit input message. Intuitively, their output can be seen as
the result of the application of two distinct tweakable blockciphers over the
same input message. Forkciphers are used to build robust authenticated encryp-
tion schemes [ALP+19, ADP+20, ABV21, BAV24, BPA+23, BBDL23], general-
ized CTR mode encryption [ABPV21], tweakable enciphering scheme [BVA24],
pseudorandom number generators [AW23, BDA+24], message authentication
codes [BAMV24] and efficient PRFs [DGL22]. The work of Kim et al. [KLL20]
follows the idea of Cogliati et al. [CLS15] and uses AXU functions to derive round
keys from the tweak. They specify FTEM for 2 branches and any number of rounds.
Although FTEM prescribes a way to build new forkciphers, it does not capture
existing forkciphers with a different key schedule such as ForkSkinny [ALP+19].
The mismatch stems from an optimization in FTEM to reduce the necessary
number of AXU functions, which is not present in ForkSkinny. Widening the
gap even further, the FTEM security proof is limited to two rounds whereas
ForkSkinny variants have 40 to 56 rounds. This brings up the question of how one
can achieve a maximally secure “forked” TEM, that also encompasses ForkSkinny.
Kim et al. [KLL20] prove the security of FTEM up to roughly q ≈ 22n/3 queries,
thus matching IEM with the same number of rounds and gaining tweakability
and forking “for free”. They conclude their work with two open questions:

“What is the security of this construction with more than 2 rounds and can
it be extended to a multiforkcipher with more than 2 branches?”
A multiforkcipher [ABPV21] is an expanding cipher with more than two output
branches. Multiforkciphers have immediate applications, for example, in CTR-
style encryption where already b = 2 branch (multi)forkciphers have been shown



4 Elena Andreeva1, Amit Singh Bhati2,3, Andreas Weninger1

to be approximately 20% more efficient than the regular blockcipher-based CTR
encryption mode [ABPV21].

Name r b Tweakable Security (Queries)
IEM [CS14,HT16] any 1 no 2rn/(r+1)

TEM, r ≤ 2 [CLS15] 2 1 yes (AXU) 22n/3

TEM [CLS15] any 1 yes (AXU) 2rn/(r+2)

FTEM [KLL20] 2 2 yes (AXU) 22n/3

FEM (this work) any 2 no 2rn/(r+1)

FTEM-ITS (this work) any 2 yes (ideal) 2rn/(r+1)

MFTEM (this work) any any yes (AXU) 1
b2 2rn/(r+2)

Fig. 1. Comparison of Iterated Even-Mansour variants. r denotes the number of rounds
and b the number of (multiforkcipher) branches. For tweakable ciphers, we distinguish
based on the tweakey schedule, using AXU (almost XOR universal) functions or an
idealized tweakey schedule. Security is given in the number of adversarial queries that
are roughly needed to attack successfully, so a higher number is better.

1.1 Contribution and Related Work

In support of additional analysis of forkciphers and similar iterative expanding
structures, we introduce GIEM. GIEM is a generalization of IEM that allows an
arbitrary choice for tweakey schedule functions, rounds and branches. As such
GIEM can be instantiated to EM [EM97], IEM [BKL+12], TEM [CLS15] and
FTEM [KLL20]. We provide 3 novel instantiations of GIEM, FEM (2 branches
and no tweaks), FTEM-ITS (2 branches and idealized tweakey schedule) and
MFTEM (unlimited branches and AXU-based tweakey schedule).

FEM is the forked version of IEM [BKL+12]. As mentioned, IEM starts from
the message and then alternates between XORing the round key and applying
a permutation, and after r rounds (i.e. permutations) gives a single ciphertext
block as output. FEM also follows the IEM structure for r/2 rounds, after which
the current state is used as the starting point for two branches, each of which
performs the IEM structure for r/2 rounds again (with independent keys and
permutations), resulting in two ciphertext blocks. We prove FEM to have security
similar to IEM, i.e. up to q ≈ 2rn/(r+1) queries. Due to the structural similarity
to IEM, FEM gives direct insight into the security impact of the forking design
strategy. Current forkciphers additionally take a tweak input, which is not the
case for FEM.

This leads us to our second construction, MFTEM (Multi-Forked Tweakable
iterated Even-Mansour), which is tweakable and answers the open questions of
Kim et al. [KLL20]. MFTEM is a generalization of FTEM [KLL20], and is the first
provably secure IEM-style construction with an arbitrary number of branches. In
the two-branch case, MFTEM is similar to FEM, but MFTEM derives its round
keys from the tweak input using AXU (almost XOR universal) functions. We
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prove the security of MFTEM for any number and rounds, unlike the two-round
proof by Kim et al. For b branches, we prove security up to q ≈ 1

b2 2rn/(r+2)

queries. Here any small constant b has a negligible impact, and in particular for
b = 1, MFTEM matches the best known bounds for TEM [CLS15]. Similar to
FTEM, the tweakey schedule MFTEM is incompatible with ForkSkinny [ALP+19].
Yet, MFTEM can serve as the basis for new multiforkciphers with more than 2
branches.

Finally, we propose FTEM-ITS (2 branches and idealized tweakey schedule) as
our third instantiation of GIEM and as an idealization of ForkSkinny. FTEM-ITS
requires a stronger assumption than MFTEM (idealized tweakey schedule) but
provides better security, up to roughly q ≈ 2rn/(r+1) queries.

Overall, our results show that the security impact of the forking design
strategy on the constructions we analyzed results in only a negligible security
loss. At the same time, the forked constructions can provide two output blocks
at the cost of only 1.5 times as many permutation calls. When we add tweaking
based on AXU functions (MFTEM with b = 2 branches), the security up to
q ≈ 2rn/(r+2) is worse than that of IEM (q ≈ 2rn/(r+1)), but this loss is the
same as for (single-branch) TEM [CLS15] versus IEM. When tweaking is done
with an idealized key schedule, i.e. FTEM-ITS, we achieve security close to IEM
(asymptotically up to q ≈ 2rn/(r+1) queries). Compared to prior work, our results
bring tweaking and forking to IEM (with idealized key schedule) and forking to
TEM (with AXU-based key schedule) without weakening the asymptotic security.

In terms of security proofs, our single proof for FEM and FTEM-ITS provides
the largest novelty. Our proof strategy follows the expectation method by Hoang
and Tessaro [HT16], as well as their proof approach of creating a graph. We
define a forked version of this graph. At the heart of our proof we provide a novel
argument to bound the difference between sampling in this forked graph versus
the regular graph. Combining this with results from the Chen and Steinberger
proof for IEM [CS14] gives the final asymptotically tight bound. On the other
hand, our MFTEM security proof is based on the proof by Cogliati et al. [CLS15]
and has the benefit of being very concise compared to our proof for FEM and
FTEM-ITS. The proof uses the probability distribution of IEM with half as many
rounds to find the probability of producing a specific state in the middle layer.
As a result the asymptotic security of our tweaked construction only matches
the security of IEM with half as many rounds, similar to Cogliati’s proof.

To answer whether our security bounds are tight, we take a detailed look
at the attack by Bogdanov et al. [BKL+12]. Surprisingly, our analysis reveals a
problem that renders the attack ineffective. Our analysis relies on the number of
queries that Bogdanov et al. defined. While the concrete problem we describe
does not apply if the number of queries is multiplied by some constant, the attack
by Bogdanov et al. remains without a formal proof. In order to rely on proven
results, we instead show that the generic attack by Gaži [Gaž13] against cascades
of block ciphers applies to IEM. We describe how to use the attack by providing
the necessary parameters.
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2 Preliminaries

Notation. For any bitstring X, |X| denotes its length and X[a:b] denotes the
bitstring which is comprised of the bits of X at indices a to b. X[1:|X|] = X. n
is the security parameter, N = 2n. For any set S, let 2S denote the power set
of S and |S| the size of S. For a set S, min S denotes the minimum element
of S, for a tuple (or finite sequence) I = (ib)b∈B, min I denotes min{ib|b ∈ B},
similarly max S the maximum element. For two bitstrings A, B, let A||B denote
their concatenation. We write x←$ X to denote uniformly randomly sampling
an element x from the set X.

Distributions. Given a finite event space Ω and probability distributions
µ, ν defined on Ω, the total variation distance between µ and ν is ||µ − ν|| =
1
2

∑
x∈Ω |µ(x)− ν(x)|.

Function Families. Let Perm(n) be the set of all permutations from {0, 1}n

to {0, 1}n, and Func(n) be the set of all functions from {0, 1}n to {0, 1}n. Let
H be a family of functions from some set T to {0, 1}n. H is uniform if for any
t ∈ T and any y ∈ {0, 1}n, Pr[H ←$ H : H(t) = y] = 2−n. H is ϵ-almost
universal (ϵ-AU) if for any distinct t, t′ ∈ T, Pr[H ←$H : H(t) = H(t′)] ≤ ϵ. H is
ϵ-almost XOR-universal (ϵ-AXU) if for any distinct t, t′ ∈ T and any y ∈ {0, 1}n,
Pr[H ←$H : H(t)⊕H(t′) = y] ≤ ϵ.

Multiforkcipher. We slightly adapt the multiforkcipher notion [ABPV21] to
allow an arbitrary key K and tweak T spaces and fix each function to always
produce the maximum number of outputs. We define a multiforkcipher (MFC) Fb

(with b branches) as a pair of deterministic algorithms, the forward Fb : K × T×
{0, 1}n → {0, 1}bn (i.e. from the key, tweak and message it produces b blocks of n
bits each), and the backward (or inverse) F −1

b : K × T× {0, 1}n × [b]→ {0, 1}bn.
The extra F −1

b input is called the input indicator. The MFC is said to be correct,
if for every call F −1

b (k, t, y), where y is one of the output blocks of a Fb(k, t, x)
call, the F −1

b output is x followed by the other output blocks of the Fb call. We
write Fb[P] to denote an MFC F that is based on a tuple of permutations P.

The advantage of an adversary A in distinguishing Fb from a random multi-
forked permutation P̃ (c.f. Section 3.2 [ABPV21]) is defined as

Advprtmfp
Fb

(A) = |Pr[Aprtmfp-realFb ⇒ 1]− Pr[Aprtmfp-idealFb ⇒ 1]|.

where prtmfp-realFb
allows A to access Fb(k, ·, ·), F −1

b (k, ·, ·, ·), k is a random
secret key. prtmfp-idealFb

gives access to P̃ : K×T×{0, 1}n → {0, 1}bn, which
is equivalent to a randomly drawn permutation for each tweak t ∈ T and each
branch 1, . . . , b. When F is based on some internal permutations P, then they
are drawn randomly at the start of both games and can be queried by A directly
as well. A more detailed MFC definition is given in Appendix A.

H-coefficient Technique [Pat09]. We consider the interactions of a distin-
guisher A with an abstract system S that answers A’s queries. The resulting
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interaction then generates a transcript τ = ((X1, Y1), ..., (Xq, Yq)) of query-
response pairs. S is entirely described by the probabilities ps(τ) that correspond
to the system S responding with answers as indicated by τ when queries in τ
are made. We will generally describe systems informally, or more formally in
terms of a set of oracles they provide, and only use the fact that they define
corresponding probabilities ps(τ) without explicitly giving these probabilities.
We say that a transcript is valid for system S if ps(τ) > 0.

For any systems S1 and S0, let ∆A(S1, S0) denote the distinguishing advantage
of the adversary A against the “real” system S1 and the “ideal” system S0.

We now describe the H-coefficient technique of Patarin [Pat09]. Generically, it
considers a deterministic distinguisher A that tries to distinguish a “real” system
S1 from an “ideal” system S0. The adversary’s interactions with those systems
define transcripts X1 and X0, respectively, and a bound on the distinguishing
advantage of A is given by the statistical distance SD(X1, X0).

Lemma 1 (see [Pat09]). Suppose we can partition the set of valid transcripts
for the ideal system into good and bad ones. Further, suppose that there exists
ϵ ≥ 0 such that 1− ps1(τ)

ps0(τ) ≤ ϵ for every good transcript τ . Then,

SD(X1, X0) ≤ ϵ + Pr[X0 is bad].

Expectation Method. For the expectation method by Hoang and Tessaro
[HT16], assume an adversary plays against a single-user security game su-game
for a keyed construction Π that is built from some primitive P . The adversary
is allowed q queries to the construction and p queries to each primitive, and
shall output 0 if the construction queries were answered with the real Π or 1 if
the queries where answered by the idealized system. Let S0 the system of the
adversary interacting with the real system and S1 the random system. Further,
let mu-game the multi-user security game corresponding to su-game, where each
user has its own key but the same primitive P . In mu-game, the adversary has
access to the same oracles as in su-game (e.g. for encryption and decryption),
but each oracle has an additional input to select the index of the user whose
key is used. A more detailed description of admissible security games is given by
Hoang and Tessaro [HT16]. Let random variable S capture the key of Π (which
we sample uniformly both in S0 and S1). pS(τ, s) denotes the probability that
S = s and S behaves according to τ .

Lemma 2 (Lemma 2, Definition 1 and Lemma 3 in [HT16]). If for any
transcript τ for which pS1(τ) > 0 there exists a partition Γgood, Γbad of the range
U of S, as well as a function g : U → [0,∞) such that Pr[S ∈ Γbad] ≤ δ and for
all s ∈ Γgood,

1− pS0(τ, s)
pS1(τ, s) ≤ g(s).

Then, for ϵ(p, q) := δ + E[g(S)],

Advsu-game
Π (p, q) ≤ϵ(p, q),

Advmu-game
Π (p, q) ≤2ϵ(p + qm, q) .
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3 The GIEM Construction
We now describe our r-rounds b-branches GIEM (Generalized Iterated Even-
Mansour) construction, where r ≥ 2 is even, and b ≥ 1.
Definition 1. We define
I = {(0, 1), . . . , (0, r/2), (1, r/2 + 1), . . . , (1, r), (2, r/2 + 1), . . . , (b, r)},
J = {(0, 1), . . . , (0, r/2), (1, r/2 + 1), . . . , (1, r + 1), (2, r/2 + 1), . . . , (b, r + 1)}.

Let T denote the tweakspace. For all i ∈ I, let Pi : {0, 1}n → {0, 1}n be a
permutation. For all j ∈ J, let hj : T→ {0, 1}n be some function, and H = (hj)j∈J.
GIEMb,r

H is defined in Figure 2, and an example with r = 4 and b = 2 is given in
Figure 3. When we want to make the internally used permutations explicit we
write GIEMb,r

H [P], where P = (Pi)i∈I.

GIEMb,r
H (t, m)

S ← m

for j = 1 to r/2 do
S ← P0,j(S ⊕ h0,j(t))

for i = 1 to b :
Si ← S

for j = r/2 + 1 to r do
Si ← Pi,j(S ⊕ hi,j(t))

Si ← Si ⊕ hi,r+1(t)
return S1|| . . . ||Sb

(GIEM−1)b,r
H (t, c, β)

S ← c⊕ hβ,r+1(t)
for j = r to r/2 + 1 do

S ← P −1
β,j (S)⊕ hβ,j(t)

for j = r/2 to 1 do

S ← P −1
0,j (S)⊕ h0,j(t)

Y1|| . . . ||Yb ← GIEMb,r
H .Enc(t, S)

return S||Y1|| . . . ||Yβ−1||Yβ+1|| . . . ||Yb

Fig. 2. GIEMb,r
H algorithms.

Related Constructions. If b = 2 and H = (h0,1, h0,2 ⊕ h0,1, . . . , hb,r−1 ⊕ hb,r, hb,r)
where all hj are sampled randomly and independently from a uniform AXU-
family, then GIEM2,r

H is equivalent to FTEM by Kim et al. [KLL20]. Contrary to
the idea of Kim et al., we fix the branching point to after the r/2-th permutation,
instead of allowing the common initial part to have a different length than the
branches. The reason is that the security appears to be limited by the shortest
path from the message to one ciphertext block or from one ciphertext block to
another. Our proof strategy requires having at least r/2 permutations after the
branching point.

If b = 1 instead, then GIEM1,r
H is equivalent to TEM by Cogliati et al. [CLS15].

If b = 1, |T| = 1 and H = (k0,1, . . . k1,r+1) where each ki is a random value from
{0, 1}n (or more precisely, and to match our notation, a constant function pointing
to this value) then GIEM1,r

H is equivalent to the original IEM by Bogdanov et
al. [BKL+12].
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Fig. 3. GIEMb,r
H with r = 4, b = 2.

4 FEM and FTEM-ITS

We describe instantiations FEM and FTEM-ITS of GIEM. Let FEM = GIEMb,r
H ,

with b = 2 and each hi,j ∈ H being a randomly sampled constant function,
i.e. ∀x : hi,j(x) = ki,j for some ki,j ∈ {0, 1}n. Let the tweakspace T = {0}. Since
all queries must use the same tweak 0, FEM acts as a forkcipher with randomly
sampled round keys and no tweaks, making it the 2-branch forked variant of
IEM.

Let FTEM-ITS = GIEMb,r
H with b = 2 and each h ∈ H being a randomly

sampled function from an arbitrary tweakspace to {0, 1}n. Thus FTEM models a
forkcipher with ideal tweakey schedule, giving independent round keys for each
tweak.

Theorem 1. For any adversary A making at most q ≤ N/2r+2 queries to each
permutation and the cipher, we have

Advprtmfp
FEM (q) ≤ 2 · 10rqr+1/Nr,

Advmu-prtmfp
FEM (q) ≤ (3r/2 + 1)r+1 · 4 · 10rqr+1/Nr.

The proof is provided in the next section.

Relation to tweaked forkciphers. Since the multi-user security assumes indepen-
dent keys for each user, our above bound for multi-user security of untweaked
forkciphers also applies to the (single-user) security of forkciphers where the
tweakey schedule is assumed to be ideal. Concretely,

Advprtmfp
FTEM-ITS(q) ≤ (3r/2 + 1)r+1 · 4 · 10rqr+1/Nr .

Bound interpretation. First, note that the restriction to q ≤ N/2r+2 has little
impact, for more queries q and AES-like parameters (n = 128, r = 10) the right-
hand sides of the inequalities are larger than 1 anyways. The single-user advantage
of FEM in Theorem 1 is similar to the bound for IEM of Hoang and Tessaro
(Theorem 1 in [HT16]) with q primitive queries, except having 2 ·10r instead of 4r

as factor. Asymptotically, both bounds give security up to q ≈ Nr/(r+1) queries.
The concrete security is also similar, an adversary attacking FEM with q queries
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to the cipher and each permutation has less advantage than attacking IEM with
4q queries. Our multi-user security of FEM is obtained from the expectation
method and holds for any number of users. Comparing multi-user to single-user
security, our FEM bound has a similar loss as is the case for IEM (Theorem 2
in [HT16]) based on the number of permutations, which is larger in FEM, i.e. 3r/2.
Again, the asymptotic security of both is q ≈ Nr/(r+1) and attacking FEM in the
multi-user setting with q queries has less advantage than the corresponding IEM
bound [HT16] with 8q queries.4 Thus the single-user and multi-user security of
FEM is similar to that of regular IEM.

For FTEM-ITS there is no construction that is the direct equivalent without
forking. The only tweakable IEM construction, TEM by Cogliati et al. [CLS15],
has security up to q ≈ N

r
r+2 queries. For FTEM-ITS we have security up to

q ≈ N
r

r+1 queries, which is better. However TEM is based on a specific key
schedule with AXU functions, which is a weaker assumption than what we use
for FTEM-ITS. Compared to regular IEM, the single-user security of FTEM-ITS
for q queries is better than the single-user security of IEM [CS14,HT16] with 8rq
queries, while FTEM-ITS provides additional tweaking and forking capabilities.

4.1 Proof of Theorem 1

We follow the IEM security proof by Hoang and Tessaro [HT16] in the expectation
method (Lemma 2), adapted to our forked IEM structure. Let S0, S1 be the
systems associated to the real and ideal game for prtmfp security. I, J were defined
in Definition 1. Transcripts τ contain two types of entries: For any (i, j) ∈ I,
y = Pi,j(x) and x = P −1

i,j (y) queries result in entry (Perm, i, j, x, y), c = Enc(m)
and Dec queries result in entry (Enc, m, c), where c = (c1, c2) contains the
ciphertext blocks of branch 1 and 2. (To maintain the same format, for forkcipher
decryption queries of a ciphertext block at index β ∈ {1, 2}, put the query input
in the position of cβ and the output blocks in the position of the message and
the other ciphertext block.) We note that the direction of the queries does not
impact the probabilities pS0(τ), pS1(τ) of a transcript occurring in S0 or S1. Let
f = r/2, i.e. the final round after which the construction forks into two branches.
In the above definitions, i corresponds to the branch (0 for the initial part before
forking) and j to the round. For notational convenience we will also use indexing
as described in the following definition.

Notation 1. Throughout this proof, whenever we use an index (i, j) with j ≤ f
and i ∈ {1, 2} it should be treated as (0, j).

Thus P0,1 = P1,1 = P2,1, and we can always specify the permutation “to the
left” of permutation Pi,j as Pi,j−1.

4 In our multi-user security bound, the factor (3r/2 + 1)r+1qr+1 matches the (p + qt)t

term in Theorem 2 in [HT16] (for t = r permutations and p = q queries), except for
having 3r/2 rather than r permutations.
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Overview, defining G(s). Define N = 2n. We have q ≤ N/4 from the assumption
in the theorem statement. Fix a transcript τ . We will use the expectation method
(Lemma 2). Let S be the random variable for the key of FEM in S0. Let K be the
keyspace, then S is uniformly distributed over K. For each key s = (Lj)j∈J ∈ K,
define graph G(s) as follows: Let I0 = I∪{(0, 0)}. Its set of vertices is partitioned
into sets Vγ , γ ∈ I0 each of 2n elements which are labelled (γ, 0) . . . (γ, 2n − 1).
For each entry (Perm, i, j, x, y) in τ , add an edge between ((i, j − 1), x⊕ Lj−1)
and ((i, j), y). For a path F in G(s), let |F | be the number of edges in F . An
example of such a graph is given in Figure 4.

2n-1
...
1
0
V0,0

2n-1
...
1
0
V0,1

2n-1
...
1
0
V0,2

2n-1
...
1
0
V1,3

2n-1
...
1
0
V2,3

2n-1
...
1
0
V1,4

2n-1
...
1
0
V2,4

Fig. 4. Graph G(s) for FEM with r = 4. Here the transcript τ contains exactly the
Perm queries that would be needed to evaluate the encryption of m = 0, the edges thus
form a “forked” path.
In the example, τ contains queries (Perm, 0, 1, 0, 1), (Perm, 0, 2, 5, 0), (Perm, 1, 3, 0, 0),
(Perm, 1, 4, 0, 1), (Perm, 2, 3, 2, 1) and (Perm, 2, 4, 4, 0). s0,1 = 0, s0,2 = 4, s1,3 = 0, s1,4 =
0, s2,3 = 2, s2,4 = 5. (s1,5 and s2,5 are irrelevant for the graph.)

Following the expectation method, we now classify the keys as good or bad.
Intuitively, for bad keys the adversary made the necessary Perm queries to verify
if encrypting message m can result in c for at least one (Enc, m, c) in τ .

Definition 2 (Good and bad keys). We say a key s is bad if τ contains
an entry (Enc, m, c) such that in G(s), there are paths F0, F1 starting from two
distinct elements in {(0, 0, m), (1, r, c1 ⊕ L1,r+1), (2, r, c2 ⊕ L2,r+1)} and some
γ ∈ I0 such that F0 contains some vertex in Vγ and F1 contains some vertex in
Vγ. If a key is not bad then we say it is good. Let Γbad be the set of bad keys,
and Γgood = K \ Γbad.

We will show
Pr[S ∈ Γbad] ≤ 1

2 · 10r · qr+1

Nr
. (1)

To see this, let S = (Sj)j∈J. First treat the case that F0 starts from (0, 0, m) and
F1 in (1, r, c1 ⊕ Lr). S ∈ Γbad means that τ contains entries

(Enc, m, c), (Perm, 1, 1, u1, v1), . . . , (Perm, 1, r, ur, vr)

(indexing as in Notation 1) such that one of the following happens:
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1. u1 = m⊕ S1,1 and uj = vj−1 ⊕ S1,j for every j ∈ {2, . . . , r}, or
2. vr = ci ⊕ S1,r+1 and uj = vj−1 ⊕ S1,j for every j ∈ {2, . . . , r}, or
3. u1 = m ⊕ S1,1, vr = ci ⊕ S1,r+1 and there is an ℓ ∈ {2, . . . , r} such that

uj = vj−1 ⊕ S1,j for every j ∈ {2, . . . , r} \ {ℓ}.

There are q choices for the query (Enc, m, c) in τ and q choices for (Perm, 1, j, uj , vj)
for each j, i.e. qr+1 choices in total for the list of queries. For each choice, there
is only one S1,j for each j ∈ {1, . . . , r} to fulfill condition (1). Since all Si,j are
uniform in {0, 1}n, the chance for condition (1) is at most qr+1/Nr. For condition
(2) and (3) for any ℓ the same is true, giving (r + 1)qr+1/Nr in total. For the
other 2 pairs of elements in {(0, 0, m), (1, r, c1 ⊕ Lr), (2, r, c2 ⊕ Lr)}, the bound
is analogous, resulting in Pr[S ∈ Γbad] ≤ 3(r + 1)qr+1/Nr ≤ 1

2 · 10r · qr+1

Nr .

Lemma 3. There is a non-negative function g : K → [0,∞) such that for any
s ∈ Γgood, it holds that

1− pS0(τ, s)
pS1(τ, s) ≤ g(s) and E[g(s)] ≤ 3

2 · 10r · qr+1

Nr
.

The proof is given in Section 4.2. Using Lemma 2 with Lemma 3 and Equa-
tion (1) proves Theorem 1.

4.2 Proof of Lemma 3

Defining α, β, Zi
s(a, b). Fix some s = (Lj)j∈J. Let Zi

s(a, b) be the number of
paths from vertices Vi,a to vertices in Vi,b of G(s). Let the Enc entries of τ be
(Enc, m1, c1) . . . (Enc, mq, cq). For k ∈ {1, . . . , q} let αk[s] be the length of the
longest path starting from (0, 0, mk) and for i ∈ {1, 2}, let r − βi

k[s] be the
length of the longest path ending at (i, r, ci

k ⊕Li,r+1). Note that if s is good then
αk[s] ≤ βi

k[s] for every k ∈ {1, . . . , q}, i ∈ {1, 2}.

Defining Gk, PathSample. Let G0 be G(s). For each k ∈ {1, . . . , q}, let Gk be
defined from Gk−1 by running the following procedure, which we refer to as
PathSamplek. Intuitively, PathSamplek simulates the evaluation of the cipher on
input mk, represented as a forkpath through the graph Gk.

Definition 3. PathSamplek: Let z0,0 ← mk⊕L0,1, z0,1 ← P0,1(z0,0) and for each
(i, j) ∈ I \ {(0, 1)}, let zi,j ← Pi,j(zi,j−1 ⊕Li,j). For all (i, j) ∈ I connect vertices
((i, j − 1), zi,j−1) and ((i, j), zi,j) if this edge is not yet in graph Gk−1.

Defining mk →∗ ck, mk →i ck. Fix some k ∈ {1, . . . , q}. Let G be a graph in the
support of random variable Gk−1. We define a forkpath F as a triple of paths
F0, F1, F2 that have a common endpoint in V0,r/2 and otherwise each path contains
only vertices from branch 0, 1 or 2, respectively. F is said to connect vertices x
and y if x, y ∈ F0∪F1∪F2. We say that G is well-formed if there is a forkpath in
G connecting ((0, 0), mj) to ((r, 1), c1

j ⊕L1,r+1) and ((r, 2), c2
j ⊕L2,r+1) for every

j ∈ {1, . . . , k − 1}. If G is well-formed then let Pr[mk →i ci
k] (for i ∈ {1, 2}) be
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the probability that in S0, if S agrees with s, and the permutation oracles behave
according to G for every j ∈ {1, . . . , k − 1}, then querying mk to Enc results in
the block ci

k in branch i. Let Pr[mk →∗ ck] = Pr[mk →1 c1
k ∧mk →2 c2

k], i.e. the
probability that mk results in both blocks of ck. Then from the definition of
PathSample, Pr[mk →i ci

k] is equal to the probability that the corresponding
vertices are connected in Gk, i.e. ((0, 0), mk⊕L0,1) connected to ((i, r), ci

k⊕Li,r+1).

Defining Ūi
G(a, b). Let G∗ be the graph obtained from G by deleting the paths

connecting ((0, 0), xj) to ((r, 1), c1
j) and ((0, 0), xj) to ((r, 2), c2

j) for every j ∈
{1, . . . , k − 1}. Let U i

G(a, b) be the number of paths F from vertices in Vi,a to
Vi,b in G∗, such that there is no vertex in Vi,a−1 connected to the first vertex
in F . Let Ūi

G(a, b) be the vertices of such paths F in Vi,a (i.e. the endpoints of
these paths). We have

U i
G(a, b) ≤ Zi

s(a, b), (2)

since all paths contributing to U i
G(a, b) also contribute to Zi

s(a, b).

Preparing the expectation method. We turn to establishing a bound on 1− pS0 (τ,s)
pS1 (τ,s) .

Lemma 4. We have

1− pS0(τ, s)
pS1(τ, s) ≤

q∑
k=1

(
1− (N − k + 1)2 Pr[mk →∗ ck]

)
.

The proof is given in Appendix A.2, and follows similar steps to Hoang and
Tessaro [HT16]. To continue, we define

Θk = Pr[mk →∗ ck]− Pr[mk →1 c1
k] Pr[mk →2 c2

k] .

Intuitively, this is the difference between receiving the correct ciphertext from
FEM (which has a single set of permutations before forking) versus two IEM
instances that use independent permutations (from the set of permutations that
are consistent with the permutation queries in the transcript). Then,

Pr[mk →∗ ck] = Pr[mk →1 c1
k] Pr[mk →2 c2

k] + Θk . (3)

We will bound Pr[mk →i ci
k] using existing results on (non-forked) IEM.

The main challenge lies in establishing a lower bound for Θk. Note that event
mk →∗ ck happens when the forkpath F that is created from following the
permutations P connects mk to c1

k ⊕ L1,r+1 and c2
k ⊕ L2,r+1. Since mk →∗ ck

is conditioned on the permutations agreeing with the Perm queries, F must
contain the paths associated to αk[s], β1

k[s], β2
k[s]. Consider some graph G with

a = αk[s], b1 = β1
k[s], b2 = β2

k[s]. Since we fixed the transcript τ and the key s,
the remaining randomness lies in the unqueried permutation inputs. In the case
that a > f , the path F must contain the path associated to αk[s]. mk →1 c1

k

therefore only depends on sampling the permutations of branch 1, and mk →2 c2
k
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only on permutations in branch 2, making them independent. Thus Θk = 0. In
the case that f ≥ b1, F again contains the path for b1 = β1

k[s], mk →1 c1
k now

depends only on permutations in branch 0 and mk →2 c2
k only on permutations

in branch 2, again Θk = 0. The case of f ≥ b2 is analogous. The rest of this proof
is on proving a bound for Θk in general, which is worse than Θk = 0. Thus from
this point on we restrict our focus to

a ≤ f < min{b1, b2} .

Defining ui,j , wi,j. Fix any k ∈ {1, . . . , q} and a = αk[s], b1 = β1
k[s], b2 =

β2
k[s]. We now define an alternative algorithm PathSample′

k to obtain Gk from
Gk−1, and will show that it is equivalent to PathSamplek. Let M = {(0, a +
1), . . . , (0, f), (1, f + 1), . . . , (1, b1), (2, f + 1), . . . , (2, b2)}. For (i, j) ∈M we define
ui,j to be a randomly sampled vertex among the vertices in Vi,j , that do not
have an edge to Vi,j−1. Then define w0,a as the endpoint of the path associated
to αk[s] in V0,a (recall our assumption a ≤ f). For (i, j) ∈M, if there is an edge
between wi,j−1 and some vertex v ∈ Vi,j , then wi,j := v. Otherwise, wi,j := ui,j .
Note the vertices wi define a forkpath F that has the same distribution as the
original sampling algorithm, the first condition captures when Pi,j was queried
on the relevant input already, and the second condition captures lazy sampling
of the unqueried permutation inputs. Similar to PathSamplek, the edges of F are
added to the graph Gk−1 to obtain Gk.

Defining ⊙,⊗, ∆. For (i, x) ∈ M, y ∈ {x + 1, . . . , r}, let ⊙i
xy = Pr[ui,x ∈ Ūi

x,y]
and ⊗i

xy = Pr[wi,x ∈ Ūi
x,y]. Intuitively, ⊙i

xy is the probability that PathSample′

“tries” to select a path from Vi,x to Vi,y, whereas ⊗i
xy is the probability that such

a path is in fact selected.5 We sometimes write ⊙i
x,y instead of ⊙i

xy for clarity.
For pairs X = (x1, x2), Y = (y1, y2), we define the following symbols.

⊙̄XY = Pr[u1,x1 ∈ Ū1
x1,y1

∧ u2,x2 ∈ Ū2
x2,y2

]
⊗̄XY = Pr[w1,x1 ∈ Ū1

x1,y1
∧ w2,x2 ∈ Ū2

x2,y2
]

⊙̇XY = ⊙1
x1,y1
⊙2

x2,y2

⊗̇XY = ⊗1
x1,y1
⊗2

x2,y2

∆XY = ⊗̄XY − ⊗̇XY

To give an intuition, one may interpret ⊙̄XY , ⊗̄XY as related to our forked
graph, unlike the single-branch ⊙i

xy,⊗i
xy. Then ⊙̇XY , ⊗̇XY could be thought of

as relating to two IEM instances with independent permutations. Indeed, if for
i ∈ {1, 2}, x ≤ f < yi, then u1,x = u2,x = u0,x and thus for X = (x, x), Y =
(y1, y2), ⊙̄XY > 0 requires the existence of a joint path through V0,x, . . . , V0,f

which then splits into paths for each branch, whereas ⊙̇XY > 0 is possible if
there are two separate paths from a vertex in V0,x to V1,y1 and V2,y2 , respectively.
5 This notation resembles the one by Chen and Steinberger [CS14] in their Lemma 1

proof. However they defined ⊙,⊗ as the corresponding events, i.e. our ⊙1
xy is equal

to Pr[⊙xy] in their notation. They use unconventional arithmetic notation (+,−, . . . )
for operations on these events, we chose our different definition to avoid this.
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Characterizations and defining M, B, R. Recall we fixed a = αk[s], b1 = β1
k[s], b2 =

β2
k[s]. For natural number x, define [x] = {a+1, . . . , x−1}. For X = (x1, x2), Y =

(y1, y2) define X ≺ Y ⇔ x1 < y1 ∧ x2 < y2, X ⪯ Y ⇔ x1 ≤ y1, x2 ≤ y2. For no-
tational convenience, we consider G with additional vertices Vi,r+1 for i ∈ {1, 2},
with a single edge from ci

k in Vi,r to vertex ((i, r+1), 0). Let M := N−k+1. Then
for all γ ∈ I0, we have M = |Vγ | in G∗. Let B = (b1, b2). Let R = (r + 1, r + 1).
Let X = (x1, x2) ∈ [b1 + 1]× [b2 + 1], Y = (y1, y2) with X ≺ Y ⪯ R. We now give
a list of equations to characterize our ⊙,⊗ expressions, and prove all of them
below. The following first equations allow us to translate our prior probabilities.

Pr[mk →i ci
k] = ⊗i

bi,r+1 (4)
Pr[mk →∗ ck] = ⊗̄BR (5)

The next equations will help us to compute the concrete values for ⊗i
bi,r+1, ⊗̄BR

by deconstructing the ⊗ expressions step-by-step.

⊗i
xy = ⊙i

xy(1−
∑
j∈[x]

⊗i
jx) (6)

⊗̇XY = ⊙̇XY

1−
∑

i∈{1,2}

∑
j∈[xi]

⊗i
j,xi

+
∑

J∈[x1]×[x2]

⊗̇JX

 (7)

⊗̄XY = ⊙̄XY

1−
∑

i∈{1,2}

∑
j∈[xi]

⊗i
j,xi

+
∑

J∈[x1]×[x2]

⊗̄JX

 (8)

⊗̄XY ≤ ⊙̄XY (9)
⊙̇XY = ⊙̄XY if max X > f (10)

⊙̇XY ≤ 4Z1
s (x1, y1)Z2

s (x2, y2)
N2 (11)

⊙̇BR ≤
2

M2 (12)

We justify the equations in Appendix A.2.

Continuing the proof. For the above characterizations, we fixed some arbitrary
k. To continue the proof, we make this fixed k explicit by writing ⊙̇BR[k].
Comparing the definitions, we find Θk = ∆BR[k] due to Equations (4) and (5).
Using Lemma 4 and eq. (3) with Equation (4) results in

1− pS0(τ, s)
pS1(τ, s) ≤ g(s) with g(s) =

q∑
k=1

[
1− (N − k + 1)2(⊗̇BR[k] + ∆BR[k])

]
.

(13)

To apply the expectation method, what is left is to compute an upper bound
for E[g(S)]. From the linearity of expectation,

E[g(S)] =
q∑

k=1

[
1− (N − k + 1)2(E[⊗̇BR[k]] + E[∆BR[k]])

]
. (14)
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Bounding ⊗̇BR[k]. We turn to ⊗̇BR[k] = Pr[mk →1 c1
k] · Pr[mk →2 c2

k].

Lemma 5. We have

E[⊗̇BR[k]] ≥ 1
(N − k + 1)2

(
1− 24rqr

Nr

)
.

The proof is given in Appendix A.2 and utilizes results by Chen and Stein-
berger [CS14] and Hoang and Tessaro [HT16].

Bounding ∆BR[k]. We now turn to ∆BR[k]. For notational convenience, we
fix an arbitrary k ∈ {1, . . . , q} for now and omit the [k]. Let X = (x1, x2) ∈
[b1 + 1]× [b2 + 1], Y = (y1, y2) with X ≺ Y ⪯ R. By Equations (7) and (8),

∆XY = ⊗̄XY − ⊗̇XY

= ⊙̄XY

1−
∑

i∈{1,2}

∑
w∈[xi]

⊗i
w,xi

+
∑

W ∈[x1]×[x2]

⊗̄W X


− ⊙̇XY

1−
∑

i∈{1,2}

∑
w∈[xi]

⊗i
w,xi

+
∑

W ∈[x1]×[x2]

⊗̇W X

 .

We make two observations. (1) In general, ∆XY ≥ −⊗̇XY ≥ −⊙̇XY (by Equa-
tion (9)). (2) Additionally, if max X > f then ⊙̄XY = ⊙̇XY (Equation (10))
and

∆XY = ⊙̇XY

∑
W ∈[x1]×[x2]

(⊗̄W X − ⊗̇W X) = ⊙̇XY

∑
W ∈[x1]×[x2]

∆W X .

We utilize these two rules to lower bound ∆. Define

∆̃XY :=
{
−⊙̇XY if max X ≤ f,

⊙̇XY

∑
W ∈[x1]×[x2] ∆̃W X else.

∆̃ is well defined, since applying the “else” case lowers the first index, i.e. W ≺ X,
meaning that eventually the first case is applied. We have ∆XY ≥ ∆̃XY . The
explicit form for ∆̃XY is quite unwieldy, so instead we show several properties to
characterize ∆̃XY . Firstly, there is a set S which contains sets σ ∈ S, which in
turn contain pairs (C, D) ∈ σ, such that C = (c1, c2), D = (d1, d2) are pairs, and

∆̃XY = −
∑
σ∈S

∏
(C,D)∈σ

⊙̇CD .

To see that this set exists, note that applying the ∆̃ definition to unwrap ∆̃XY

repeatedly multiplies ⊙̇ expressions, with one final negative −⊙̇ expression,
making any ∆̃XY negative. Furthermore, after writing out all sum expressions
explicitly and applying the distributive law, results in a sum of ⊙̇ · ⊙̇ · · · · ⊙̇
products.



Multiforked IEM and a Note on IEM Tightness 17

Lemma 6. For any X, Y , there is a set S such that

∆̃XY = −
∑
σ∈S

∏
(C,D)∈σ

⊙̇CD

where all σ ∈ S are of the form σ = {(C1, C2), (C2, C3), . . . (Cℓ−1, Cℓ)} (for some
ℓ, C1, . . . , Cℓ) and

∀i : Ci ≺ Ci+1, (15)
max C1 ≤ f, max C2 > f (16)
Cℓ−1 = X, Cℓ = Y (17)
|σ| ≤ max X − f + 1 (18)
|S| ≤ f2x1+x2−f−1 (19)

Proof. To see that σ follows the form (C1, C2), (C2, C3), . . . , note that the second
case in the ∆̃XY definition always uses X as the second index for the inner ∆̃W X

expressions. Equation (15) is due to taking W ∈ [x1]× [x2], Equation (16) since
unfolding ∆̃ only stops with the first case of the ∆̃ definition and Equation (17)
is justified because ∆̃XY always resolves to a ⊙̇XY expression when applying
the definition of ∆̃ the first time. For Equation (18), note that for any σ ∈ S,
Equation (15) implies that each Ci must have both elements smaller than Ci+1.
Now max Cℓ−1 = max X, max Cℓ−2 ≤ max X − 1, . . . , in general max Cℓ−1−z ≤
max X − z. Thus max Cℓ−1−(max X−f) ≤ f if it exists and from Equation (16)
Cℓ−1−(max X−f) = C1. Comparing the C indices gives 1 ≥ ℓ− 1− (max X − f),
hence ℓ−1 ≤ 1+max X−f . Since |σ| = ℓ−1 this proves the Equation (18). We will
use a similar argument for Equation (19). Let Π1((a, b)) = a, Π2((a, b)) = b. Fix
any σ ∈ S, let Ci the sets as in Lemma 6. From Equation (16), consider Π1(C1) ≤
f < Π1(C2) as case (1). Let E1 = {f + 1, . . . , x1 − 1}, E2 = {1, . . . , x2 − 1}.
Note that {Π1(C2), . . . , Π1(Cℓ−2)} ⊆ E1, due to Cℓ−1 = X. Further Π1(C1) ∈
{1, . . . , f}. Similarly {Π2(C1), . . . , Π2(Cℓ−2)} ⊆ E2. Therefore each σ ∈ S where
case (1) applies can be represented as an element from E = {1, . . . , f}×2E1×2E2 .
With |E1| = x1 − f − 1, |E2| = x2 − 1, we have |E| ≤ f2x1+x2−f−2. Case (2),
i.e. Π2(C1) ≤ f < Π2(C2), is analogous. Each such σ ∈ S can be mapped into set
E′ with |E′| ≤ f2x1+x2−f−2. The sum over both cases gives Equation (19).

We use this bound to derive a lower bound of ∆BR. Since S depends on
β∗ = (β1

k[s], β2
k[s]), we write it as S(β∗). When fixing β∗ to a specific value

B = (b1, b2), we write S(B). Let Ri
B,k[s] = 1 if β1

k[s] ≤ b1 and β2
k[s] ≤ b2,

and let Ri
a,b,k[s] = 0 otherwise. Let B̄ = {f + 1, . . . , r} × {f + 1, . . . , r}. From

∆BR ≥ ∆̃BR ≥ −
∑

σ∈S(β∗)
∏

(C,D)∈σ ⊙̇CD,

∆BR ≥ −
2

M2

∑
σ∈S(β∗)

∏
(C,D)∈σ\{(B,R)}

4Z1
s (c1, d1)Z2

s (c2, d2)
N2 (20)

≥ − 2
M2

∑
B∈B̄

RB,k[s] ·
∑

σ∈S(B)

∏
(C,D)∈σ\{(B,R)}

4Z1
s (c1, d1)Z2

s (c2, d2)
N2 (21)
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where the first line follows from Equation (11), the fact that (B, R) ∈ σ (Equa-
tion (17)) allowing us to factor out ⊙̇BR and apply Equation (12). For the second
line it suffices that Ri

B,k[s] = 1 if β1
k[s] = b1 and β2

k[s] = b2. For any c < c′ < d,

Zi
s(c, d) ≤ Zi

s(c′, d) (22)

because any path that is counted by Zs(c, d) also contributes to Zi
s(c, k), Zi

s(k, d).
Take any σ ∈ S(B) from Equation (21). Let (C1, . . . , Cℓ) according to Lemma 6,
i.e. σ = {(C1, C2), . . .}. Let (c1

1, c2
1) := C1, (c1

2, c2
2) := C2. From Equation (16),

there is an i ∈ {1, 2} s.t. ci
1 ≤ f < ci

2. Without loss of generality, assume i = 2.
We will now prune branch 2, specifically we create ϕ(σ) as copy of σ \ {(B, R)},
except that c2

1 := f . We then use ϕ inside Equation (21). Due to Equation (22),

∆BR ≥ −
2

M2

∑
B∈B̄

RB,k[s] ·
∑

σ∈S(B)

∏
(C,D)∈ϕ(σ)

4Z1
s (c1, d1)Z2

s (c2, d2)
N2 (23)

As a result, for any fixed σ ∈ S(B), the
∏

(C,D)∈ϕ(σ) 4Z1
s (c1,d1)Z2

s (c2,d2)
N2 ex-

pression only contains independent random variables Zi
s(ci, di). This is because

the Perm queries are fixed in the transcript and thus Zi
s(ci, di) depends only on

the subkeys si,ci+1, . . . , si,d1−1 (di − ci − 1 subkeys). We have

E[Zi
s(ci, di)] = qdi−ci/Ndi−ci−1 (24)

since there are q edges in G(s) that can start the path from Vi,ci
and each will

be connected to one of the q subsequent edges if the subkey is one of the q
corresponding keys out of N keys. Due to pruning one of the branches for ϕ,
the relevant subkeys for different Zi

s(ci, di) expressions do not overlap. Further,
for any fixed B, RB,k[s] is independent from the Zi

s(ci, di), as RB,k depends on
subkeys (i, bi + 1), . . . , (i, r + 1) for i ∈ {1, 2}, which are not part of any ϕ(σ) due
to removing (B, R). Since RB,k[s] depends on 2r − b1 − b2 subkeys,

E[RB,k[s]] = (q/N)2r−b1−b2 . (25)

Starting from Equation (23),

E[∆BR] ≥ − 2
M2

∑
B∈B̄

E [RB,k[s]] · E

 ∑
σ∈S(B)

∏
(C,D)∈ϕ(σ)

4Z1
s (c1, d1)Z2

s (c2, d2)
N2


≥ − 2

M2

∑
B∈B̄

E [RB,k[s]] ·
∑

σ∈S(B)

∏
(C,D)∈ϕ(σ)

4
E

[
Z1

s (c1, d1)
]
E

[
Z2

s (c2, d2)
]

N2

due to linearity of expectation, and RB,k[s] and the Zs depending on different
subkeys. Now fix some σ ∈ S(B), and let (C1, . . . , Cℓ) := ϕ(σ).

∏
(C,D)∈ϕ(σ)

4
E

[
Z1

s (c1, d1)
]
E

[
Z2

s (c2, d2)
]

N2 = 4|ϕ(σ)|
∏

(C,D)∈ϕ(σ)

E
[
Z1

s (c1, d1)
]
E

[
Z2

s (c2, d2)
]

N2
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Without loss of generality, assume we pruned branch 2 for ϕ. Either (a)
C1 = (f, f) or (b) C1 = (h, f) with h < f (Equation (16)). In case (a), we have
|ϕ(σ)| ≤ min B− f . Using Equation (24), since the C1 = (f, f) and Cℓ = (b1, b2),

4|ϕ(σ)|
∏

(C,D)∈ϕ(σ)

E
[
Z1

s (c1, d1)
]
E

[
Z2

s (c2, d2)
]

N2 ≤ 4min B−f (q/N)b1+b2−2f

In case (b), using Equations (18) and (24),

4|ϕ(σ)|
∏

(C,D)∈ϕ(σ)

E
[
Z1

s (c1, d1)
]
E

[
Z2

s (c2, d2)
]

N2 ≤ 4max B−f+1(q/N)b1+b2−f−h .

Using h ≤ f − 1 and max B − f + 1 ≤ (min B − f) + f + 1,

4max B−f+1(q/N)b1+b2−f−h ≤ 4min B−f (q/N)b1+b2−2f (4f+1q/N) .

From assuming 4f+1q/N ≤ 1, both case (a) and (b) have the same bound. Thus,

E[∆BR] ≥ − 2
M2

∑
B∈B̄

E [RB,k[s]] ·
∑

σ∈S(B)

4min B−f (q/N)b1+b2−2f

Then,

E[∆BR] ≥ − 2
M2

∑
B∈B̄

(q/N)2r−b1−b2 ·
∑

σ∈S(B)

4min B−f (q/N)b1+b2−2f

≥ − 2
M2

∑
B∈B̄

(q/N)2r−b1−b2 · f2b1+b2−f−14min B−f (q/N)b1+b2−r

≥ − 2
M2

∑
B∈B̄

(q/N)r · f25r/2−1 ≥ − 1
M2 (r/2)325r/2(q/N)r

E[∆BR] ≥ − 1
(N − k + 1)2 10r(q/N)r

where the first line is obtained using Equation (25), the second using Equation (19),
the third from min B, b1, b2 ≤ r, f = r/2, |B| = (r/2)2 and the final line from the
definition of M . Thus with Equation (14) and lemma 5, and Mk = N − k + 1,

E[g(S)] ≤
q∑

k=1

[
1− (N − k + 1)2(E[⊗̇BR[k]] + E[∆BR[k]])

]
≤

q∑
k=1

[
1−M2

k

(
1

M2
k

(1− 24rqr

Nr
)− 1

M2
k

10r(q/N)r

)]
E[g(S)] ≤ 3

2 · 10r · qr+1

Nr

This proves Lemma 3.
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5 The MFTEM Construction

We define MFTEM (multi-forked tweakable iterated Even-Mansour) as a specific
instantiation of GIEM. It is the b-branch generalization of FTEM by Kim et
al. [KLL20] (which has 2 branches) and TEM by Cogliati et al. [CLS15] (which
has 1 branch).

Let H = (h0,1, . . . , hb,r) where all hj are functions from T to {0, 1}n. Let H′ =
(h0,1, h0,1⊕h0,2, . . . , hb,r−1⊕hb,r, hb,r). Then define MFTEMb,r

H [P] := GIEMb,r
H′ [P].

5.1 Security of MFTEM

Let qe denote the number of queries by the adversary to the cipher and q the
number of queries to each oracle.

Theorem 2. Let MFTEMb,r
H as defined above and r ≥ 2 be an even number. Let

all hi ∈ H be sampled from a uniform and ϵ-AXU function family.

Advprtmfp
MFTEMb

r
(qe, q) ≤ 2(b + 1)

√
q(2qϵ + 2qe

N
)r/2

Hence if we set q = qe and H to an ϵ-AXU function family with ϵ ≈ 1
N then

MFTEM achieves security up to roughly q ≈ N
r

r+2

b2 queries.

Proof Sketch. We use a strategy similar to Cogliati et al. [CLS15] (specifically
their Theorem 4), and are able to reuse some of their lemmas. Thus we only
sketch the proof idea here. Our full proof is given in Appendix A.3.

The r round MFTEM can be seen as r/2 rounds of TEM, and each branch
then as inverse call of the corresponding r/2 round TEM. We reuse Lemma 10
by Cogliati et al. [CLS15], which gives us the distribution of the internal state of
MFTEM at the branching point when the inputs from the transcript are used.
Similarly for the ciphertext blocks in the transcript, we obtain the distribution of
previous internal MFTEM states. From this we derive a set of internal states, that
have a high probability of (a) occurring from the input and (b) resulting in the
ciphertext blocks from the transcript, and thereby probability of the transcript
occurring in the real world.

6 Attacks against IEM

We show that the attack by Bogdanov et al. (Section 3.1 in [BKL+12]) is
ineffective, i.e. succeeds with probability less than 1

N/2 when using the specified
number of queries. For completeness, Bogdanov et al. noted: “To get a better
reduction on key-candidates, a bit more [...] queries are sufficient”. We argue
that the way they presented their attack could at least make readers assume
that the attack already works decently for q as specified. Indeed, the follow-up
literature [LPS12,Ste12,CS14,CLS15] treated it as such, and we suspect it was
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also what the authors assumed. Furthermore, only slightly increasing the number
of queries, say by adding a constant, does not fix the problem. It remains unclear
if multiplying the number of queries by a constant solves the problem (and which
constant would be needed), due to the lack of a proof.

We instead point to a similar attack by Gaži [Gaž13] (Section 5). Both attacks
make random queries at the start and then iterate over all possible keys to output
the first candidate. The main difference is that the Bogdanov et al. attack accepts
the first key candidate where no inconsistencies were found, which includes keys
for which we cannot evaluate even a single message-ciphertext pair. On the other
hand the Gaži attack only accepts a key if it has a minimum number of verifiable
message-ciphertext pairs. This minimum number is given as a parameter. To
achieve our desired asymptotic query complexity and success probability, we need
to use slightly more queries than the Bogdanov et al. attack (a multiplicative
factor depending on the number of rounds). Gaži provides a security proof, which
aids to preserve the asymptotic tightness of IEM proofs.

6.1 Attack by Bogdanov et al.
Below we first describe the attack by Bogdanov et al. [BKL+12]. We denote
N = 2n. For consistency with the notation by Bogdanov et al., we use t as the
number of rounds in the construction, rather than r as in our constructions.

Definitions. IEM is defined as Ek = Pt(. . . P1(m⊕ k0)⊕ k1 . . . )⊕ kt for random
public permutations P1, . . . , Pt. We define the following predicates.

– Connect: For key k, queried message m and integer r, 1 ≤ r ≤ t, Connect(m, r)
is true if and only if we have made queries (see attack below) of the form

c := E(m), y1 := P1(m⊕ k0), y2 := P2(y1 ⊕ k1), ..., yr := Pr(yr−1 ⊕ kr−1).

In other words, there are some c, y1, y2, . . . s.t. (m, c) ∈ M, (m ⊕ k0, y1) ∈
P1, . . . (see set definitions in the attack below).

– Path: For key k and queried message m, Path(k, m) :⇔ Connect(k, m, t)
(i.e. all relevant queries including to the final permutation have been made).

– ConsistentPath: For key k and queried message m, ConsistentPath(k, m) :⇔
Path(k, m)∧ yt⊕kt = c (i.e. the cipher query result matches the permutation
query results).

– InconsistentPath: For key k and queried message m, InconsistentPath(k, m) :⇔
Path(k, m) ∧ yt ⊕ kt ̸= c.

IEM Attack.
1. For each oracle P1, . . . Pt and E, make q random queries. (Bogdanov et

al. [BKL+12] use q = N t/(t+1).) The results are stored in Pi,M as input
output pairs, e.g. if (x, y) ∈ P1, then this means we queried P1(x) and
received y.

2. For each key candidate k = (k0, k1, . . . , kt) ∈ {0, 1}n(t+1) do:
(a) For each message m: If InconsistentPath(k, m): Continue to the next key

candidate (since this key is definitely wrong).
(b) If for no message InconsistentPath(k, m) holds, output k as the key guess.
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Analysis on the IEM Attack. Note that in the IEM attack the first key candidate
without an inconsistent path is output. Given the number of such candidates,
the probability that the attack succeeds is thus 1 divided by the number of
candidates.

Lemma 7. The above attack, when executed with q = N t/(t+1), has probability
of less than 1

N/2 of success.

Proof. For all k0, let Mk0 denote the set of messages m, ∃c : (m, c) ∈ M, for
which we have ∃(x, y) ∈ P1 : m ⊕ k0 = x. Note that if any Mk0 = ∅, then any
key k containing partial key k0 will not have Connect(k, m, 1) for any message
m, let alone have Path(k, m) or InconsistentPath(k, m) for any message m. Thus,
the attack would give at least N t candidates.

Observe that any m from M will be in Mk0 for exactly q different k0 (k0 =
m ⊕ x for each (x, y) ∈ P1). Thus, the q elements of M cause a total of q2

elements spread over some or all Mk0 . How they are distributed depends on the
randomly selected queries of step 1 of the attack. If they are distributed evenly,
then every Mk0 contains q2/N elements, since k0 ∈ {0, 1}n. In any case, there
are at least N/2 sets Mk0 which have strictly less than 2q2/N elements. We will
show that each of these keys k0 can be extended into (at least) one key candidate,
which proves the lemma.

Let k0 s.t. |Mk0 | < 2q2/N elements. By a similar argument as above, there is a
subkey k1, such that strictly fewer than 2 q2

N
q
N messages m have Connect(k, m, 2)

by a key k containing k0, k1. Repeating this for each of t permutations, we
have a partial key k = (k0, . . . , kt−1), where there are less than 2 qt+1

Nt messages
m for which Connect(k, m, t) is true. Thus, for fewer than 2 qt+1

Nt = 2 messages
i.e. at most for one message m we have Path(k, m). If no such m exists, any final
subkey kt ∈ {0, 1}n can be used to complete the key k∗ = (k0, . . . , kt) without
having InconsistentPath(k∗, m). On the other hand, if a single such m exists, where
(m, c) ∈M, then we can set kt = yt⊕c which results in ConsistentPath(k∗, m).

6.2 Instantiating Gaži’s attack.

To apply Gaži’s attack [Gaž13] (Section 5) to IEM, fix k1 := 1, . . . , kℓ := ℓ
(independent of k′), which effectively extracts several public random permutations
from the ideal cipher. We define k′ as being comprised of all IEM round keys
k′ = (k′

0, . . . k′
ℓ) and define Qi,k′(x) := x ⊕ k′

i. To asymptotically match the
desired query number, we use the trade-off that Gaži described at the end of
Section 5.

7 Future Work

In this work we applied the IEM paradigm to study forkciphers and multiforkci-
phers. Future work may consider alternative expanding primitives, such as the
8-branch tweakable expanding pseudorandom function Butterknife [ACL+24].
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A Appendix (Supplementary)

A.1 Supporting Definitions

Multiforkcipher and Security A multiforkcipher (MFC) Fb (with b branches) is
a pair of deterministic algorithms, the forward Fb : K × T× {0, 1}n → {0, 1}bn,
and the backward (or inverse) F −1

b : K × T× {0, 1}n × [b]→ {0, 1}bn.
The forward evaluation algorithm takes a key k, a tweak T and an input

block X. It outputs the blocks Y1, . . . , Yb. The backward evaluation algorithm
F −1

b takes in a key k, a tweak T , a block Y and an input indicator β. It then
outputs blocks X, Y1, . . . , Yβ−1, Yβ+1, . . . , Yb. We omit b from the notation if it is
fixed and clear from the context, and we will also write Fk(T, X) for Fb(k, T, X)
(F −1

k analogously).
MFC is correct if for every k ∈ K, T ∈ T, X ∈ {0, 1}n and β ∈ [b] it satisfies:

F −1
k (T, Fk(T, X)[(β−1)n+1:βn], β) = X||Z

where Z is Fk(T, X)[1:(β−1)n]||Fk(T, X)[βn+1:bn]. We write F [P] to denote a
multiforkcipher F based on a tuple of permutations P = (Pi)i∈I for some index
set I.

https://eprint.iacr.org/2012/481
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The advantage of an adversary A at distinguishing Fb from a random multi-
forked permutation P̃ (c.f. Section [ABPV21]) is defined w.r.t. Figure 5 as

Advprtmfp
Fb

(A) = |Pr[Aprtmfp-realFb ⇒ 1]− Pr[Aprtmfp-idealFb ⇒ 1]|.

Note that for b = 1 branch (thus β fixed to 1) and |T| = 1 this game is
equivalent to the pseudorandom permutation (PRP) game as it is used for IEM
proofs [BKL+12,CS14].

Game prtmfp-realFb

k ← K

P←$ Perm(n)|I|

b← AE,D,P

return b

Oracle E(T, X)
return Fk[P](T, X)

Oracle D(T, Y, β)
return F −1

k [P](T, Y, β)

Game prtmfp-idealFb

for T ∈ T do πT,1, . . . , πT,b ←$ Perm(n)

P←$ Perm(n)|I|

b← AE,D,P

return b

Oracle E(T, X)
return πT,1(X)|| . . . ||πT,b(X)

Oracle D(T, Y, β)
X ← π−1

T,β(Y )
return X||πT,1(X)|| . . . ||πT,β−1(X)||

πT,β+1(X)|| . . . ||πT,b(X)

Fig. 5. Games prtmfp-realFb
and prtmfp-idealFb

defining security of the multifork-
cipher Fb. When P is made available to the adversary, the inverse permutations are
implicitly made available as well.

A.2 Details for the Proof of Theorem 1

Proof of Lemma 4 Let Primb be the event that Sb behaves according to Prim
entries in (τ, s). Then Pr[Prim0] = Pr[Prim1]. On the one hand

pS1(τ, s) = Pr[Prim1]
N |J| · (N(N − 1) . . . (N − q + 1))2

where 1
N |J| is from hitting the key s and 1

(N(N−1)...(N−q+1))2 from both construc-
tion branches outputting the correct ciphertexts. On the other hand, for S0 to
behave according to according to (τ, s), it means that (i) S must agree with s,
and the system must behave according to Prim entries in (τ, s), and (ii) for every
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k = 1, . . . , q − 1, if condition (i) holds and querying m1, . . . , mk−1 to Enc oracles
in S0 results in c1, . . . , ck−1, respectively, then querying mk results in ck. Then

pS0(τ, s) = Pr[Prim0]
N |J|

q∏
k=1

Pr[mk →∗ ck].

Thus,

1− pS0(τ, s)
pS1(τ, s) = 1−

q∏
k=1

(N − k + 1)2 Pr[mk →∗ ck].

We use the fact that for all reals ck ∈ [0; 1],
∏q

k=1(1−ck) ≥ 1−
∑q

k=1 ck, and hence
1−

∏q
k=1 ck = 1−

∏q
k=1(1− (1− ck)) ≤ 1− (1−

∑q
k=1(1− ck)) =

∑q
k=1(1− ck)

to obtain the claimed bound.

Proof of Lemma 5
Lemma 8 (Equation 21 in [HT16]). We have

Pr[mk →i ci
k] ≥ 1

N − k + 1

1−
∑

σ∈B(αk[s],βi
k

[s])

∏
(a,b)∈σ

Zi
s(a, b)

N − 2q

 .

For 0 ≤ a < b ≤ r, let Ri
a,b,k[s] = 1 if αk[s] ≥ a and βi

k[s] ≤ b, and let
Ri

a,b,k[s] = 0 otherwise. Similar to Hoang and Tessaro in their proof of Lemma 4
we use q ≤ N/4, to find

Pr[mk →i ci
k] ≥ 1

N − k + 1

1−
∑

0≤a<b≤r

Ri
a,b,k[s] ·

∑
σ∈B(a,b)

∏
(a,b)∈σ

2Zi
s(a, b)
N

 .

To see that the inequality holds, it suffices that Ri
a,b,k[s] = 1 if a = αk[s], b = βi

k[s].
Then from (1− c)(1− d) ≥ 1− c− d for all c, d ∈ [0; 1] and ⊗̇BR[k] = Pr[mk →1

c1
k] · Pr[mk →2 c2

k],

⊗̇BR[k] ≥ 1
(N − k + 1)2

1−
∑

i∈{1,2}

∑
0≤a<b≤r

Ri
a,b,k[s] ·

∑
σ∈B(a,b)

∏
(a,b)∈σ

2Zi
s(a, b)
N

 .

By linearity of expectation,

E[⊗̇BR[k]] ≥ 1
(N − k + 1)2

1−
∑

i∈{1,2}

E

 ∑
0≤a<b≤r

Ri
a,b,k[s] ·

∑
σ∈B(a,b)

∏
(a,b)∈σ

2Zi
s(a, b)
N

 .

(26)
Lemma 9 (Lemma 5 in [HT16]). We have

E

 ∑
0≤a<b≤r

Ri
a,b,k[s] ·

∑
σ∈B(a,b)

∏
(a,b)∈σ

2Zi
s(a, b)
N

 ≤ 4rqr

Nr
.

Using the above lemma and Equation (26) we obtain the claimed bound.
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Proof of characterizations We now justify equations 4 to 12. As discussed
before, PathSample′ is equivalent to PathSample. To justify Equation (4), note
that from bi = βi

k[s] we know there is a path from some vertex in Vi,bi to
(i, r + 1, ci

k ⊕Li,r+1), and from there the additional edge to Vi,r+2 that we added.
If the sampled path connects m to ci

k ⊕ Li,r+1, then it must follow that path,
i.e. wi,bi must select this path (which is the only path to Vi,r+2). The analogous
is true for Equation (5).

For Equation (6), the event corresponding to ⊗i
xy can only happen if the

event corresponding to ⊙i
xy happened (i.e. ui,x must be the start of a path to a

vertex in Vi,y) and wi,x was not “hijacked” by a previous path (thus probability
1−

∑
j∈[x]⊗i

jx). These two events are indeed independent, since the sampling of
ui,x is independent of what happened on previous layers. This result was also
used by Chen and Steinberger (Equation 30 in [CS14]). Equation (7) is the result
of ⊗̇XY = ⊗1

x1y1
⊗2

x2y2
and multiplying out Equation (6). For Equation (8) a

similar argument applies as for Equation (6), now the event corresponding to
⊙̄XY is a requirement. In this case, the expression in brackets is the result of
the inclusion exclusion principle on the hijacking paths. Specifically, any of the
events corresponding to ⊗i

j,xi
makes ⊗̄XY impossible, but the sum over all ⊗i

j,xi

counts the events twice, where any ⊗1
j1,x1

and ⊗2
j2,x2

happen at the same time.
Equation (9) is due to any wi,j only being able to choose a vertex from Ūi,j

if wi,j = ui,j (otherwise wi,j is the endpoint of an existing edge, which cannot be
in Ūi,j per definition of Ūi,j). For Equation (10), since i1, i2 > f , u1,i1 and u2,i2

are independent random variables, so the multiplication rule for independent
events applies. For Equation (11), we have

⊙̇XY = ⊙1
x1y1
⊙2

x2y2
=

∏
i∈{1,2}

U i
Gk−1

(xi, yi)
M − q

≤ 4
U1

Gk−1
(x1, y1)
N

·
U2

Gk−1
(x2, y2)
N

The first equation is the definition of ⊙̇XY , the second is from the fact that u1,x1

is sampled from the vertices without an edge to the left in Gk−1. From the N
total vertices, k − 1 are used from prior paths and up to q additional edges exist
due to Perm queries, so in total M − q possible choices. There are U i

Gk−1
(xi, yi)

such paths. The inequality follows from M − q = N − k + 1− q ≥ N − 2q and
q ≤ N/4. Together with Equation (2) this proves Equation (11). Equation (12)
uses a similar argument, and the fact that only the one edge we considered for
notational convenience exists to a vertex from Vi,r+2 for each i ∈ {1, 2}.

A.3 Proof of Theorem 2

Preliminaries. We also identify hi with ki. Before starting our proof, we recall
some lemmas from Cogliati et al. [CLS15].

Lemma 10 (Lemma 8 in [CLS15]). Let Ω be some finite event space and µ∗

be the uniform probability distribution on Ω. Let µ be a probability distribution
on Ω such that ||µ− µ∗|| ≤ ϵ. Then there is a set S ⊂ Ω such that:
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– |S| ≥ (1−
√

ϵ)|Ω|,
– ∀x ∈ S, µ(x) ≥ (1−

√
ϵ)µ∗(x).

Let TEMr
H[P] := MFTEM1,r

H [P]. For a given sequence of tweaks t = (t1, . . . , tqe),
let

Ωt = {(x1, . . . , xqe
) ∈ ({0, 1}n)qe |∀i ̸= j : (ti, xi) ̸= (tj , xj)}.

Definition 4. For a given set of tweaks t and cipher inputs x and any attainable
queries transcript QP, define the tuple of random variables

TEMr
H[P](t, x) := (TEMr

H[P](t1, x1), . . . , TEMr
H[P](tqe

, xqe
))

and let µt,x,QP
denote the distribution of the tuple conditioned on the event

P ⊢ QP (i.e. when the key H is uniformly random and the permutations P are
uniformly random among permutations that are consistent with QP).

Lemma 11 (Lemma 10 in [CLS15]). Let µ∗
t denote the uniform distribution

on Ωt. Fix any attainable queries transcript QP and any t ∈ Tqe , x ∈ Ωt

||µt,x,QP − µ∗
t || ≤ qe(2qeϵ + 2q

N
)r

of Theorem 2. We will follow a similar strategy to [CLS15] in order to separate
the full r-round forked construction into smaller, single branch parts with r/2
rounds each.

We use the H-coefficient technique, and there will be no bad transcripts. Let
the query transcript τ = (QC , QP0,1 , . . . , QPb,r

) be arbitrary from all attainable
transcripts but fixed. Let P0 = (P0,1, . . . , P0,r/2) and for all 0 < i ≤ b let
Pi = (Pi,r/2+1, . . . , Pi,r). Define P−1

i = (P −1
i,r , . . . , P −1

i,r/2+1). Similarly H0 =
(h0,1, . . . , h0,r/2) and for all 0 < i ≤ b let Hi = (hi,r/2+1, . . . , hi,r) and H−1

i =
(hi,r, . . . , hi,r/2+1).

Let γi = (TEM−1)r/2
H−1

i

[P −1
i ]. Note that MFTEMb,r

H [P](x) = γ1(z)|| . . . ||γb(z)

where z = TEMr/2
H0

(x).
From the transcript τ , let t = (t1, . . . , tqe

) be the tweaks in QC , m =
(m1, . . . , mqe

) the messages and for all 1 ≤ i ≤ b, ci = (ci
1, . . . , ci

qe
) the i-

th ciphertext blocks. Let µ0(z) = µ0
t,m,QP0

(z) be the distribution of tuple
TEMr/2

H0
[P0](t, m) like in Definition 4. Let µi(z) = µi

t,ci,Q−1
Pi

(z) be the distri-

bution of tuple TEMr/2
H−1

i

[P−1
i ](t, ci), where Q−1

Pi
is QPi with the elements in the

tuples in reverse order (to invert the permutations) and the permutations in
reverse order. Intuitively, each of the µi(z), with z = (z1, . . . , zqe

), gives the
“local” probability that, for 1 ≤ ℓ ≤ qe, the intermediate state zℓ occurred during
the ℓ-th execution of MFTEM.

Let r′ = r/2. We denote α = 2r′ qe(Nϵqe+qp)r′

Nr′ . We can apply the bound of
Lemma 11 to each µi. Hence by Lemma 10 for each 0 ≤ i ≤ b there exists a set
Si ⊂ Ωt of size at least (1−

√
α)|Ωt| such that for all z ∈ Si: µi(z) ≥ 1−

√
α

|Ωt| .
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Let S = S0 ∩ · · · ∩ Sb. Note that |S| ≥ (1 − (b + 1)
√

α)|Ωt|. Recall that
γi = (TEM−1)r/2

H−1
i

[P −1
i ] and we will again use the tuples m, ci of all messages

and ciphertext blocks. We will also use c0 to refer to m. Let γ0 = TEMr/2
H0

[P0].
Since the permutations and keys are uniformly random and independent, we have

Pr[Tre = τ ′] =
∑

z∈({0,1}n)qe

Pr[P ⊢ QP ∧ γ0(m) = z ∧
∧

1≤i≤b

γi(z) = ci]

≥
∑
z∈S

b∏
i=0

Pr[P ⊢ QP ∧ TEMr/2
Hi

[Pi](t, ci) = z]

≥
∑
z∈S

b∏
i=0

Pr[P ⊢ QP]µi(z) ≥ Pr[P ⊢ QP]
∑
z∈S

b∏
i=0

µi(z)

≥ Pr[P ⊢ QP]
∑
z∈S

(1−
√

α)b+1

|Ωt|b+1 ≥ Pr[P ⊢ QP] |S|(1− (b + 1)
√

α)
|Ωt|b+1

≥ Pr[P ⊢ QP] (1− (b + 1)
√

α)2

|Ωt|b
≥ Pr[P ⊢ QP] (1− 2(b + 1)

√
α)

|Ωt|b

Let us turn to Pr[Tid = τ ′]. Let P̃ be a random multiforked permutation. All
(multiforked) permutations are independent, thus we have Pr[Tid = τ ′] = Pr[P ⊢
QP] Pr[P̃ ⊢ QC ], Pr[P̃ ⊢ QC ] = 1

|(Ωt)b| . Finally, this results in Pr[Tre=τ ′]
Pr[Tid=τ ′] ≥

1− 2(b + 1)
√

α.
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