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Abstract. HPPC is a multivariate signature scheme submitted to the
NIST PQC standardization process in response to the recent call for
additional signature schemes. We show that, despite some non-standard
notational choices in the submission document, HPPC can be viewed as a
special case of the well-studied, but broken for all practical parameters,
HFE signature scheme. We further show that the HPPC construction
introduces additional structure that further weakens the scheme. For
instance, the central map has Q-rank 2 independently from the degree D
of the central polynomial that is used.
Using these observations, we show that HPPC is weaker against the di-
rect attack than claimed in the submission document and more crucially
that all parameter sets can be practically broken using MinRank tech-
niques. For instance, with a very naive implementation, we have been
able to recover an equivalent key in approximately 8 minutes for security
level 2, an hour and a half for security level 4, and slightly more than 7
hours for security level 5.

1 Introduction

After selecting the first post-quantum standards for encryption and signature
schemes, see [1], the National Institute of Standards and Technology (NIST)
announced an expansion to their post-quantum cryptography standardization
project and released a call for additional signature proposals [19].

The HPPC scheme [25,26] is one of the 10 multivariate submissions to this
new call. It is in fact the only one that can be classified as a multivariate “big-
field” scheme (other candidates such as SNOVA [29] use field extensions but in
different ways or for different purposes). Its signature size is barely the smallest
among all candidates, even though the public key is quite large compared to
most of the other multivariate proposals. From a security point of view, HPPC
was claimed to be as resistant as an HFE scheme [23] with a central polynomial
of maximal degree. In the HFE case, it has been known for a long time that both



the direct attack [10] and rank attacks [17] have a complexity which is essentially
an increasing function of the degree of this central polynomial. This relationship,
ultimately because the degree of an HFE map gives an upper bound on the Q-
rank of its central map, has remained consistent, although rank attacks have
progressed significantly at the end of NIST’s previous call for encryption and
signature schemes [28,2]. Finally, it must be noted that the description of HPPC
uses the same tensor representation of quadratic forms as the one employed in
the other candidate 3WISE [24], recently broken in [27].

Contributions. Although it is compared to an HFE scheme over F2 of maximal
degree in the submission document, the HPPC scheme is actually constructed
from a central polynomial of degree as small as 210 +1 = 1025, in all parameter
sets. Despite the unusual tensor representation, we show that all these parameter
sets can be interpreted to have the structure of HFE over F2 with the same degree
bound 1025. We further show that HPPC keys form an especially structured
subclass of HFE keys, having Q-rank equal to 2 rather than 10, as would be
expected for generic HFE keys with degree bound 1025.

As a result of this structure, we show that the polynomial system used in the
direct attack exhibits degree fall polynomials of degree 3 and cannot be analyzed
as a Boolean semi-regular system, as initially claimed. This analysis may be
viewed as analogous to the results of [21,20,22] elucidating connections between
properties of the extension field map and degree falls in the direct attack. Even
though the study of degree falls in higher degrees seems more complicated, our
tests suggest that the HPPC direct system is even easier to solve than a generic
quadratic system with the same number of degree falls of degree 3 added.

More importantly, we show that all parameter sets can be practically broken
with a key recovery attack based on a rank-2 MinRank problem. Our instance
has matrices over F2 but solutions over F2n , as in the rank attacks on HFE sub-
sequent to [17], i.e., [6,28]. To solve this instance, we follow the strategy of [2],
where an overdefined quadratic system in n − 1 variables is obtained from the
Support-Minors modeling [4]. This method is slightly more efficient than rely-
ing on Kipnis-Shamir [17] or Minors, but the efficiency of our attack is mainly
because the MinRank instance is not particularly hard. From the MinRank so-
lutions, we finish the key recovery by solving linear equations. In that respect,
the last step is much simpler than the one proposed by [6, §6.3.1] for even-rank
HFE in characteristic 2. This is because our MinRank problem does not have the
spurious solutions of [6, §6.3.1] (the same linear combinations produce matrices
of rank 4 and not 2). For instance, our last step turns out to be much closer to
that of [6] for HFE in odd characteristic, see [6, Theorem 9].

Navigation. The article is organized as follows. In Section 2, we establish
notation for the paper, introduce the HPPC scheme, and discuss the relevant
concepts for the attacks we develop. In Section 3, we present an analysis of a
direct forgery attack on HPPC, proving that the claims of semi-regularity of the
HPPC polynomial system are in error while extending the recent line of work on
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the direct attack in application to big-field multivariate schemes. In Section 4,
we establish the Q-rank property of HPPC that forms the basis for a rank attack
and illustrate how the solution of the MinRank instance can be used to perform
a full key recovery. Our solving method based on Support-Minors is described in
Section 5, where we briefly establish its complexity and present the performance
of our implementation.

2 Preliminaries

2.1 Field extension in HPPC

Let F2n be a degree-n extension of F2. The HPPC scheme constructs this ex-
tension explicitly as F2n = F2[x]/⟨f(x)⟩, where f ∈ F2[x] is an irreducible poly-
nomial of degree n. Let ϕ : F2[x]/⟨f(x)⟩ → Fn

2 be the isomorphism that maps a
polynomial residue class to its coefficient representation as a column vector, i.e.,

ϕ :

n−1∑
i=0

gix
i 7→ g = (g0, . . . , gn−1)

T.

The canonical basis of Fn
2 , denoted by (e1, . . . , en), is such that ei = ϕ(xi−1)

for all i ∈ {1..n}. Finally, let Cf ∈ Fn×n
2 be the companion matrix of f . By

definition, we have

∀A ∈ F2[x]/⟨f(x)⟩, Cf · ϕ(A) = ϕ(xA),

where the notation “ · ” refers to a matrix-vector product.
For convenience, we will refer to elements of the quotient ring F2n [X]/⟨X2n−

X⟩ as polynomials throughout this article. A linearized polynomial is a polyno-
mial that induces an F2-linear map F2n → F2n , i.e., all its monomials are of

the form X2j for j ∈ {0..n − 1}. A linearized permutation polynomial is a lin-
earized polynomial that permutes F2n , or equivalently, whose unique root in F2n

is zero. The HPPC scheme heavily relies on matrix representations of linearized
polynomials, as defined below.

Definition 1. Let ℓ ∈ F2n [X]/⟨X2n −X⟩ be a linearized polynomial and let ϕ
be a fixed F2-isomorphism between F2nand Fn

2 . We define the matrix M ℓ ∈ Fn×n
2

as the unique matrix such that

∀A ∈ F2n , M ℓ · ϕ(A) = ϕ(ℓ(A)).

This matrix is explicitly given by

M ℓ =
[
ϕ(ℓ(1)) . . . ϕ(ℓ(xn−1))

]
.

Conversely, we will sometimes write ℓN for the linearized polynomial associated
to the matrix N ∈ Fn×n

2 by the equation above.
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The core operation in HPPC is to realize the product between two elements
in F2n . For that purpose, the scheme considers the matrix

M =
[
In Cf . . . C

n−1
f

]
∈ Fn×n2

2 . (1)

Lemma 1. Let A, B represent arbitrary elements in F2n = F2[x]/⟨f(x)⟩ and

let M ∈ Fn×n2

2 be the matrix defined by Equation (1). We have

M · ϕ(A)⊗ ϕ(B) = ϕ(AB).

Proof. By Fq-linearity, it is sufficient to prove the statement for A = xi−1, i ∈
{1..n} and for an arbitrary element B ∈ F2[x]/⟨f(x)⟩. In this case, we have just
seen that ϕ(A) = ei, so that the vector ϕ(A) ⊗ ϕ(B) is the column vector of
length n2 with a non-zero block at position i equal to ϕ(B). Thus

M · ϕ(A)⊗ ϕ(B) = Ci−1
f · ϕ(B) = ϕ(xi−1B) = ϕ(AB),

where the first equality comes from the definition of M and the second one is
by definition of the companion matrix. ⊓⊔

2.2 Polynomials

In this paper, the total degree (also referred to as the standard degree) of a
polynomial P ∈ F2n [X] will be denoted by deg(P ). We will also make use of the
notion of “F2-degree”, as named in [10, §2.1], although the terminology is not
standard. For instance, the same concept is referred to as the “q-degree” in [12].

Definition 2 (F2-degree). The F2-degree of a polynomial P ∈ F2n [X]/⟨X2n −
X⟩, denoted degF2

(P ), is defined as

degF2
(P ) = max{wt2(e) | Xe appears in P with a non-zero coefficient},

where wt2(e) is the Hamming weight of the base-2 representation of e.

In the context of big-field schemes, the public key or the secret key can be rep-
resented either as a univariate polynomial in F2n [X]/⟨X2n −X⟩ (the univariate
representation), or as a set of Boolean multivariate polynomials (the multivari-
ate representation). This latter view is enabled by the following isomorphism
derived from ϕ:

F2n [X]/⟨X2n −X⟩ → (F2[x1, . . . , xn]/⟨x21 − x1, . . . , x
2
n − xn⟩)n. (2)

This map induces a bijection between univariate polynomials P over F2n of F2-
degree d and n-tuples of multivariate polynomials pi over F2 of degree d, and we
refer to [12, §4] for more details.

We will consider polar forms of multivariate homogeneous quadratic polyno-
mials in characteristic 2, either over F2 or over F2n . The definition of the polar
form in this case is recalled below.
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Definition 3 (Polar form). Let q be a homogeneous quadratic polynomial in
characteristic 2. The polar form of q is the bilinear map q′ defined by

q′(x,y) = q(x+ y) + q(x) + q(y).

The main difference with the odd characteristic case is that there is no longer
1-to-1 correspondence between quadratic forms and symmetric bilinear forms in
characteristic 2.

We will finally use the notion of Q-rank, whose relevance will become clearer
when discussing rank attacks. An explicit definition of Q-rank can be found in
[11, Definition 2], although this concept was already implicit in earlier works – for
example, in [16] and [12, §4.4]. In this paper, we adopt the following formulation.

Definition 4 (Q-rank). Let P (X) ∈ F2n [X]/⟨X2n−X⟩ be a polynomial whose
monomials are all of F2-degree 2 and let Q(P ) ∈ F2n [X0, . . . , Xn−1] be the

quadratic form obtained by setting X0 = X,X1 = X2, . . . , Xn−1 = X2n−1

in
this polynomial. The Q-rank of P is defined as the rank of the skew-symmetric
matrix representing the polar form of Q(P ).

2.3 Description of HPPC

This section gives the multivariate and the univariate representation of the
HPPC scheme, and we refer to [25,26] for a more detailed description. We also
include a discussion on equivalent keys. This concept was not discussed in [25,26]
but is common in the analysis of big-field multivariate schemes.

Multivariate representation. The HPPC public key consists of n homo-
geneous quadratic polynomials (p1, . . . , pn), where each pi belongs to F2[x] =
F2[x1, . . . , xn]. In the following, we will write P(x) for the column vector in
F2[x]

n whose entries correspond to these polynomials. In other words, there is a

public matrix A ∈ Fn×n2

2 such that P(x) = A(x⊗x). The private key contains
the following data:

– two invertible matrices S and T in Fn×n
2 ;

– two invertible matrices L1 and L2 in Fn×n
2 that represent linearized permu-

tation polynomials. The matrix L1 = M ℓ1 ∈ Fn×n
2 represents an arbitrary

linearized permutation polynomial ℓ1 while L2 = M ℓ2 ∈ Fn×n
2 is picked

as the representation of a monic linearized permutation polynomial ℓ2 with
maximal exponent 2d;

– the matrix M ∈ Fn×n2

2 defined by Equation (1).

The public key is obtained by the composition of these private components,
namely

P(x) = TM(L1 ⊗L2L1)(S ⊗ S)(x⊗ x).

For all security levels, the value of d used in the definition of ℓ2 is chosen as equal
to 10. The provided parameter sets simply differ according to the value of n, i.e.,
n = 128 for HPPC128, n = 192 for HPPC192, and n = 256 for HPPC256.
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Univariate representation. To interpret all operations over F2n , we fix X =
ϕ−1(x) ∈ F2n . Using the above notation, there exists a linearized polynomial
ℓS such that Sx = ϕ(ℓS(X)). Then, we see that L1Sx = ϕ(ℓ1 ◦ ℓS(X)) and
L2L1Sx = ϕ(ℓ2 ◦ ℓ1 ◦ ℓS(X)). From there, Lemma 1 applied to A = ℓ1 ◦ ℓS(X)
and B = ℓ2 ◦ ℓ1 ◦ ℓS(X) shows that

P(x) = T ◦ ϕ ◦ (F ◦ ℓS(X)) =
(
T ◦ ϕ ◦ F ◦ ϕ−1 ◦ S

)
(x),

where F (X) ∈ F2n [X]/⟨X2n −X⟩ is the product ℓ1 × (ℓ2 ◦ ℓ1).
Signing with the private key boils down to computing the roots of a polyno-

mial of the form G−Z, where the scalar Z ∈ F2n is related to the message and
where G(X) = X × ℓ2(X). This operation can be done efficiently because this
polynomial is of small standard degree 2d+1. In the following, the term “central
polynomial” will mostly refer to the polynomial G. We have

P(x) =
(
T ◦ ϕ ◦G ◦ ℓ1 ◦ ϕ−1 ◦ S

)
(x) =

(
T ◦ ϕ ◦G ◦ ϕ−1 ◦L1S

)
(x)

=
(
T ′ ◦ ϕ ◦G ◦ ϕ−1 ◦ S′) (x), (3)

where S′ = L1S and T ′ = T .

Equivalent keys. Equivalent keys are a standard concept in the cryptanaly-
sis of multivariate schemes. Two private keys are said to be equivalent if they
correspond to the same public key. In the context of HPPC, equivalent keys
will contain a univariate polynomial G̃ that has the same “shape” – see [30] for
the origin of this terminology – as the genuine central polynomial G, i.e., whose
standard degree is as small as that of G. Since the construction of the scheme
and the constraints on an equivalent central map are similar to those in HFE, we
will estimate the number of HPPC equivalent keys by [30, Theorem 4.2] which
we restate (adapted to our notation) here:

Theorem 1. (Theorem 4.2 in [30]) For (S, F,T ) ∈ Fn×n
2 × F2n [X]× Fn×n

2 an
HFE private key, we have

n · 22n(2n − 1)2

equivalent private keys.

This result will allow us to keep the same degrees of freedom as in the HFE case
for our key recovery attack.

2.4 Attacks on big-field schemes

We study both the direct attack and rank attacks on HPPC. The direct attack is
an algebraic attack that is generic to any multivariate scheme. In the context of
digital signatures, the direct attack is used for forgery. In contrast, rank attacks
are scheme-specific key recovery attacks. Both attacks employ Gröbner basis
algorithms as a subroutine.
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Direct attack. Direct attacks attempt to solve the affine system P(x) = t,
where P is the public key and t is a public vector related to the message, by
employing Gröbner basis algorithms. A critical concept in this context is that of
degree fall polynomials, as this notion is often used to estimate the complexity
of Gröbner basis methods.

Definition 5 (Degree fall, degree fall polynomial). A degree fall on a set
of polynomials {f1, . . . , fm} ⊂ Fq[x1, . . . , xn] is a relation of the form

n∑
i=1

gifi = h,

for which deg(h) < max
i

(deg(gifi)). The polynomial h in such a relation will be

called a degree fall polynomial and we will say that it is obtained as a degree fall
from degree max

i
(deg(gifi)) to degree deg(h).

It is easy to see that degree falls are the relations in Fq[x1, . . . , xn] corresponding
to syzygies in the graded module generated by the homogeneous components of
the fi’s of highest degree. In particular, Definition 5 includes degree fall polyno-
mials that correspond to trivial syzygies in this module. However, these degree
falls play no role in the complexity analysis. In Proposition 1 below, the term
“‘non-trivial” will refer to degree falls that do not correspond to trivial syzygies.
We caution the reader that, in certain exceptional cases, such degree falls may
still be redundant for the computation.

Early attempts to estimate the complexity of solving the direct system P(x) =
t in the case of HFE tried to grasp the behavior of the Gröbner basis algo-
rithm from certain (univariate) polynomial combinations over the extension field
with low F2-degree. This method was initiated in [16, §4] and formalized in [12,
§4]. Since then, the same type of analysis has been applied to other big-field
schemes [21,20,22]. The key observation is that, via the isomorphism defined in

Equation (2), two-powerings P 2j correspond to n-tuples of linear combinations
of the pi’s, and that any product H(X)P (X) corresponds to n polynomial com-
binations (indexed by j) of the form

∑
i hi,jpi, where deg(hi,j) = degF2

(H). In
Section 3, we will use the following lemma.

Lemma 2 (Lemma 1 in [22]). Let P (X) ∈ F2n [X]/⟨X2n − X⟩ be the uni-
variate representation of the public key of a big-field scheme, and let H(X) ∈
F2n [X]/⟨X2n −X⟩ be such that

degF2
(HP ) < degF2

(H) + degF2
(P ).

Then, in the public system ϕ(P ) = (p1, . . . , pn), there are n degree falls from
degree degF2

(H) + degF2
(P ) to degree degF2

(HP ).

Rank attacks. In these attacks, the main step is to solve an instance of the
MinRank problem [8]. The MinRank problem consists in finding a linear combi-
nation, over a finite field, of a given collection of matrices such that the resulting
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matrix has rank at most r, the specified target rank. In the context of big-field
schemes, this target rank is often related to the notion of Q-rank, as given in Def-
inition 4. In the case of HFE without any modifiers, the central polynomial with
standard degree D can be represented by a skew-symmetric matrix whose unique
non-zero block lies in the top-left corner and has size d× d, with d ≤ ⌈log2(D)⌉.
As a result, the Q-rank is upper bounded by ⌈log2(D)⌉, and this bound has been
adopted as the target rank in rank attacks. In particular, in HPPC, the central
polynomial is designed to mimic an HFE polynomial with maximal Q-rank, with
the hope of resisting MinRank attacks.

3 Direct attack

As been explained above, a sequence of recent results [21,20,22] has been able
to tie algebraic relations among univariate polynomials over the extension field
to degree fall relations in the Gröbner basis computation on the system over the
small field that is used for forgery. This line of work can be viewed as the natural
extension of the analysis of the direct attack on HFE of [16,12] in the context of
lower Q-rank maps, see [9,18]. We found that these techniques may be directly
applied to HPPC. Even though the direct attack still seems less efficient than
the practical key recovery attack that we present afterward, it is important to
note its existence, especially when considering the initial security claims.

The HPPC submission document [25] seems to indicate that the HPPC public
key equations behave as a semi-regular system based on experiments in Sage-
Math. Before moving on to our analysis, we want to point out some inaccuracies
of [25, §7] regarding the notion of semi-regularity. A first issue is that the sub-
mission treats the field equations x2i +xi = 0 as an extra set of n equations added
to the system P(x) = t and adopts the generating series (1− t2)2n/(1− t)n for
the whole, see [25, §7.1.3]. This implicitly assumes that the field equations have
a generic behavior, which is not true. For instance, the correct generating series
for a Boolean semi-regular system with n quadratic equations in n variables is
(1+t)n/(1+t2)n [5]. At this stage, we stress that the HPPC system has no reason
to behave as such. A second issue is related to the SageMath experiments. To
estimate the degree at which the system is solved, [25, §7.1.3] computes dreg, the
index of the first non-positive coefficient of the generating series. In [25, §7.2],
this theoretical value is compared to an experimental degree dexp obtained using
the degree of semi regularity() command. However, this command assumes
that the input equations are semi-regular, which means that dexp is not the re-
sult of an experiment. In particular, it is not a surprise that dexp = dreg, but
this equality does not tell anything about the behavior of the equations.

It turns out that the public equations of HPPC cannot be analyzed as a semi-
regular system, even a Boolean one. In the next subsection, we exhibit degree
fall polynomials that tend to suggest that these public equations are much easier
to solve than comparable semi-regular equations.
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3.1 Degree fall polynomials

Our partial analysis of degree fall polynomials is presented in Propositions 1
and 2 below, which are stated with Faugère’s F4 algorithm [14] in mind. This
algorithm proceeds through a sequence of steps, each processing a selected set
of polynomial pairs. As F4 follows the so-called normal strategy, which always
selects pairs of minimal degree, degree fall polynomials are incorporated into the
next step immediately upon discovery.

Proposition 1 There are 2n non-trivial degree falls from degree 3 to degree 2
at the first step in degree 3.

Proof. Without loss of generality, we can apply Lemma 2 to F = ℓ1 × (ℓ2 ◦ ℓ1)
instead of P = ℓT ◦F ◦ℓS because the composition with ℓS and ℓT does not affect
the degree of the polynomials. Then, in characteristic 2, both ℓ21 and (ℓ2 ◦ ℓ1)2
are linearized polynomials. Therefore, we can use Lemma 2 twice with H = ℓ1
and H = ℓ2 ◦ ℓ1 respectively, which yields n + n = 2n degree fall polynomials
from degree 3 = 1 + 2 to degree 2. ⊓⊔

These initial degree falls trigger another set of 2n degree falls at the next step
of the algorithm that we can still understand.

Proposition 2 There are 2n degree falls from degree 3 to degree 2 at the second
step in degree 3.

Proof. We apply the same reasoning to G1 = ℓ21×(ℓ2◦ℓ1) and G2 = ℓ1×(ℓ2◦ℓ1)2
which are the result of the first step. Then, as above, the polynomials ℓ21G1 and
(ℓ2 ◦ ℓ1)2G2 are products of one polynomial of F2-degree 1 and one of F2-degree
2 but they have F2-degree 2. Lemma 2 then gives n + n = 2n degree falls.
Finally, note that the polynomial (ℓ2 ◦ ℓ1)×G1 = ℓ1 ×G2 is also of F2-degree 2.
However, as it is equal to F 2, it will trigger polynomials that are redundant to
the computation1. ⊓⊔

Remark 1 (Dependency with respect to d) The number of linearly inde-
pendent degree falls at step 2 degree 3 may differ from the number of degree falls
predicted by Proposition 2 if the value of d is much smaller than 10. Intuitively,
we cannot square the polynomial ℓ1 endlessly because we will get redundancy,
i.e., extra linear relations, coming from the polynomial ℓ2 ◦ ℓ1.

3.2 Experiments on the direct system

We present the earliest steps of the F4 algorithm and the associated degree fall
polynomials on the direct system for several values of d and n in Appendix A. In
our tests, we always ensure that the equations have a solution. The last step of

1 Such polynomials would be counted as degree falls according to Lemma 2, since the
definition used in [22], from which the lemma is taken, does not take into account
their usefulness.
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the algorithm that we give yields sufficiently many degree 1 polynomials so that
Magma’s default F4 restarts from there and the subsequent steps are cheaper.

We note that Propositions 1 and 2 accurately predict the number of degree
falls in degree 3 observed in our experiments. However, estimating the number
of degree falls in higher degrees appears to be more complex. In particular,
this quantity seems to depend not only on the degree d but also on the specific
monomials present in ℓ2. Our results correspond to a dense linearized polynomial
ℓ2 of standard degree 2d, but different behavior was observed when using a
sparser polynomial. We have not pursued this estimation further, as rank attacks
seemed more efficient at this stage of our work. Still, we want to mention that
a deeper analysis of such degree fall polynomials in higher degrees has already
led to better attacks on other big-field schemes [21,20,22].

The rest of the paper presents our efficient rank attack to recover an equiv-
alent key. In Section 4, we give the MinRank problem that we consider and we
show how a solution to this problem can be used to complete the attack. In
Section 5, we solve this MinRank problem using the Support-Minors modeling.

4 Rank attack

The simple observation behind our rank attack is that the Q-rank of the HPPC
polynomial F = ℓ1 × (ℓ2 ◦ ℓ1) is equal to 2, regardless of the value of d. Indeed,
both ℓ1 and ℓ2 ◦ ℓ1 are linear forms in F2n [X0, . . . , Xn−1] with the identification
of Definition 4, and the quadratic form Q(F ) is the product of these two linear
forms. This leads us to considering a rank-2 MinRank problem that is pretty
similar to the one proposed by [6] to cryptanalyze HFE.

Our description will closely follow [6]. Let (θ1, . . . , θn) be an F2-basis of F2n

and let Mn ∈ Fn×n
2n be the Moore matrix defined by

Mn =


θ1 θ

2
1 . . . θ

2n−1

1

θ2 θ
2
2 . . . θ

2n−1

2
...

...
. . .

...

θn θ
2
n . . . θ

2n−1

n

 . (4)

We consider the more convenient isomorphism ψ : F2n → Fn
2 given by this

matrix, namely
F2n → Fn

2

ψ : X 7→ (M−1
n )T

 X
...

X2n−1

 .
Its inverse is given by

Fn
2 → F2n

ψ−1 :

x1...
xn

 7→

(Mn)
T

x1...
xn


 [1],

10



where v[1] refers to the top coordinate of the column vector v [6, Proposition
2]. Coming back to HPPC, there exists an invertible matrix N ∈ Fn×n

2 such
that the isomorphism ϕ used in the scheme is ϕ = N ◦ ψ. The expression of N
depends on the polynomial f appearing in the definition of ϕ but we will not
need it in our attack. Moreover, we see in the univariate representation of the
public key given by Equation (3) that the L1 matrix can be “absorbed” into S′.
Therefore, we may proceed as if S′ and T ′ were random invertible matrices and
reason on the equation

P = T ′N ◦ ψ ◦G ◦ ψ−1 ◦N−1S′

= T ◦ ψ ◦G ◦ ψ−1 ◦ S,

where S = N−1S′ and T = T ′N . From this new equation, the rest follows as
in [6]. We havep1(v)...
pn(v)

 = T (M−1
n )T


G20(ψ−1(Sv))

...

G2n−1

(ψ−1(Sv))

 = T (M−1
n )T


vTS

T
MnG

∗0MT
nSv

...

vTS
T
MnG

∗n−1MT
nSv



= T (M−1
n )T


vTS

T
MnG

∗0MT
nSv

...

vTS
T
MnG

∗n−1MT
nSv

 ,
where G∗i is at this stage any matrix that represents the quadratic form Q(G2i)
for i ∈ {0..n− 1}. This matrix is not unique and to proceed further we need to
consider symmetric representations (or equivalently skew-symmetric ones in the

even characteristic case). As in [17,6], we take A+AT instead of A+AT

2 since we
are in characteristic 2 (this is basically the matrix representing the polar form of
the quadratic form). Assuming such a representation, the relevant matrix G∗0

is given in Lemma 3.

Lemma 3. The skew-symmetric matrix G∗0 such that Q(G)(X, . . . ,X2n−1

) =

(X, . . . ,X2n−1

)G∗0(X, . . . ,X2n−1

)T can be defined from its first row, which con-
tains non-zero entries only in position (1, j) for j ∈ {2..d+1} and such that the
entry in position (1, d+ 1) is equal to 1.

Proof. Recall that G(X) = X× ℓ2(X), where ℓ2 =
∑d−1

j=0 ciX
2i +X2d is a monic

linearized polynomial of standard degree 2d. Thus, the quadratic form

Q(G) =
∑

1≤i≤j≤n bi,jX
2i−1

X2j−1

is such that b1,j = cj−1 for j ∈ {1..d}, b1,d+1 = 1 and bi,j = 0 if i ≥ 2 and/or
j ≥ d+ 2. The expression of G∗0 can be easily deduced from that of Q(G). ⊓⊔

If we now let G∗0 = (gi,j)i,j , where row and columns indexes range from 0 to

n− 1, we have G∗k = (g2
k

i−k,j−k)i,j for any k ∈ {0..n− 1}, where all differences
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i−k or j−k must be understood modulo n (see for example [28, Proposition 1]).
In the following, we will write Frobk for the Fq-linear map that maps the matrix

with entries mi,j to the one with entries m2k

i−k,j−k, so that G∗k = Frobk(G
∗0).

Finally, we set U = (T
T
)−1Mn and W = S

T
Mn. Overall, we obtain[

P 1 . . . P n

]
(U ⊗ In) =

[
WG∗0W T . . . WG∗n−1W T

]
. (5)

Here we use the fact that the matrices WG∗kW T all have rank 2. As in [6], we

will retrieve one column of a matrix denoted by Ũ that plays the same role as
U in Equation (5) but which is part of a possibly different equivalent key by
solving a rank-2 MinRank problem with matrices over F2 but solutions over F2n .

Our approach is to solve MinRank first to find such a Ũ and then to solve
linear equations to recover the rest of the private key components. This method
is similar to the ones proposed by [17,6] to attack HFE in odd characteristic. In
particular, it highly differs from the key recovery technique devised in [6, §6.3.1]
for HFE in characteristic 2. In [6, §6.3.1], the two attack steps could not be
separated. There, MinRank was solved at the same time as retrieving the rest
of the private key, which is both less natural and less efficient.

4.1 Recovering Ũ

From Equation (5), we obtain

Proposition 3 Let U ∈ Fn×n
2n be the secret matrix (T

T
)−1Mn. The columns

of U are solutions (over F2n) to the MinRank problem defined by the matrices
P i ∈ Fn×n

2 for i ∈ {1..n}, with target rank 2.

In Section 5, MinRank will be solved using the Support-Minors modeling. Before
moving on, let us mention that the instance does not admit spurious solutions
comparable to those of the form λG∗i + µG∗i+1 for even rank HFE (we refer
to [15] and [6, §6.3] for more details). Indeed, such matrices are here of expected
rank 4 so that they are not problematic (this can be easily seen from the expres-
sion of G∗i that may be derived from Lemma 3). This is what explains that our
attack method is close to the one employed for HFE in odd characteristic and
deviates from the one of [6, §6.3.1] for HFE in characteristic 2.

The next subsection details how to finish the key recovery from an arbitrary
rank 2 solution Z =

∑n
i=1 uiP i ∈ Fn×n

2n . This solution is expected to correspond

to a unique Frobenius power of G and thus to a column of a matrix Ũ equivalent
to U . Finally, it is standard how to reconstruct the full matrix Ũ from such a
column, using [6, Proposition 6] or equivalently the special form of Mn.

4.2 Recovering the rest of the equivalent key

As announced above, we will recover the rest of the private key components by

solving linear equations. We consider the permutation matrix P =

[
0n−1 1
In−1 0

]
.

12



For an arbitrary matrix A ∈ Fn×n
2n and for any index k ∈ {0..n− 1}, we have

Frobk(A) = P kA[k]P−k = P kA[k](P k)T,

where the matrix A[k] is obtained from A by raising each entry to the power 2k.
Coming back to Equation (5), we will assume without loss of generality and

to clarify the description that our rank 2 matrix Z is equal to WG∗0W T. For
any index k ∈ {0..n− 1}, we have W [k] = WP k by definition of W and by the
special shape of Mn. Therefore,

Z [k] = W [k]
(
G∗0)[k] (W−1)[k]

= WP k
(
G∗0)[k] P−kW−1

= WFrobk(G
∗0)W−1.

We will use this equality for k ∈ {1..n− d− 1} to derive a linear system in the
n variables that constitute the first row w of W−1. Indeed, for such an index
k, the first row of the matrix Frobk(G

∗0) and thus the one of Frobk(G
∗0)W−1

is the zero vector. This follows once again from Lemma 3 and then from the

expression of Frobk(G
∗0) = G∗k = (g2

k

i−k,j−k)i,j in function of G∗0 = (gi,j)i,j .

For each index k, the equality wZ [k] = 0n gives n equations but only two of
them are linearly independent since the rank of Z [k] is 2. Overall, we get at most
2(n− d− 1) linearly independent equations by using all the k indices.

Note that any vector proportional to the first row of W−1 will also yield
solutions. If the parameters n and d satisfy n ≥ 2d + 1, which is the case in
HPPC, these will be the only solutions. Thus, we solve the equations by fixing

one variable to eventually recover a matrix W̃ equivalent to W . Finally, we

complete the key recovery by computing the matrix G̃∗0 = W̃
−1

ZW̃ . This
matrix is necessarily associated with a central polynomial of HPPC shape.

5 Solving the MinRank instance with Support-Minors

In this section, we solve the MinRank problem presented in Proposition 3. First,
as in the HFE case, we are still able to recover an equivalent key by fixing one
variable. For instance, we will fix the last variable to 1 and target a rank 2 matrix
of the form

Z =
∑n−1

i=1 uiP i + P n,

where the ui’s are the remaining variables. Since the P i’s have entries in F2, we
expect essentially n solutions in Fn−1

2n obtained from one another by applying
the Frobenius map on each component.

Standard algebraic modelings to solve the MinRank problem are the Minors
modeling, the Kipnis-Shamir modeling, and the Support-Minors (SM) modeling.
We will present a solving method based on Support-Minors. We obtained similar
results with Kipnis-Shamir, which should not be surprising given the proximity
between the two modelings [3].

13



We will now briefly describe the SM system. The starting point is a factor-
ization Z = DC with unknown full-rank factors D ∈ Fn×2

2n and C ∈ F2×n
2n . For

ℓ ∈ {1..n}, let rℓ be the ℓ-th row of Z viewed as a vector of degree 1 forms in
the ui variables and let

Cℓ =

[
rℓ
C

]
.

The SM modeling follows from the fact that the rank of Cℓ is at most 2 because
the vector rℓ belongs to the row space of C. More precisely, the relevant system
contains the set of all 3× 3 minors of Cℓ for ℓ ∈ {1..n}, i.e.,

FSM = {|Cℓ|∗,J , J ⊂ {1..n}, #J = 3, ℓ ∈ {1..n}}. (6)

By Laplace expansion along the first row of Cℓ, it is known that all the equations
of FSM are bilinear in the ui’s and in the 2 × 2 minors of C. The crux was in
fact to consider the latter as new variables cT = |C|∗,T for T ⊂ {1..n}, #T = 2,
called minor variables.

Modeling 1 (Support-Minors) The Support-Minors modeling is the system
obtained from Equation (6) by Laplace expansion along the first row of the ma-
trices and by setting as new unknowns cT = |C|∗,T for T ⊂ {1..n}, #T = 2.
The system is affine bilinear in the ui’s and in these new minor variables.

As in previous works, see [4,7,28,2], it will be convenient to restrict ourselves to
SM subsystems. This is done by considering the minors constructed from only
κ ≤ n columns of the Cℓ matrices. We still want the Cℓ submatrices to be of
full-rank 2 so we include the 2 columns of the identity block I2 that is usually
part of C. In this way we obtain an SM subsystem containing n

(
κ
3

)
affine bilinear

equations in nu = n−1 linear variables ui but only ncT =
(
κ
2

)
−1 minor variables

(we fix to 1 the 2× 2 minor which is the determinant of I2 exactly as in [4,2]).

5.1 “Big-field” Support-Minors

Our method is to solve a simpler quadratic system in the ui variables derived
from the (affine) Support-Minors modeling, following the strategy presented
in [2] for the big-field MinRank problem of Tao, Petzoldt and Ding [28]. Our
description will entirely follow [2]. Here, the total number of monomials in SM
is equal to

nuncT + nu + ncT + 1 = (nu + 1)(ncT + 1) = n
(
κ
2

)
.

We have more equations than the number of monomials if and only if n
(
κ
3

)
≥

n
(
κ
2

)
, say κ ≥ 5. Under this condition, the rank of the system is necessarily

smaller than n
(
κ
2

)
because we have a solution. As we have seen, the solution set

is stable by the action of the Frobenius map on each variable. Based on this
observation, [2, Assumption 1] stated that this rank was equal to n

(
κ
2

)
− n in

the case of HFE. We will rely on the same assumption in the HPPC case.
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The first step of the solving process is to perform linear combinations between
the SM equations. Under the above assumption and by saturating the set of
bilinear monomials, this will produce a total of

n
(
κ
2

)
− n− nuncT = ncT =

(
κ
2

)
− 1

linearly independent equations of degree 1 (recall that nuncT refers to the number
of monomials of exact degree 2). These equations necessarily involve one cT
variable from an argument similar to [2, Lemma 1], and we may use them to
eliminate all the minor variables present in SM, by substitution. We can in fact
directly apply [2, Lemma 1]. Indeed, the proof of this lemma simply exploits the
special shape of the matrix U used in HFE, and we have the same matrix in
HPPC. Overall, this step yields the announced quadratic system in the ui’s.

The second step is to solve the quadratic system using Gröbner bases. We
note that this system can be made very overdefined by choosing a large value for
κ. More precisely, it contains (n−1)(

(
κ
2

)
−1) equations in n−1 unknowns. In the

case of HFE, the argument of [2, Proposition 1] stated that a grevlex Gröbner
basis could be obtained in degree 2 when

(
κ
2

)
≥ n− 1.

In our experiments on HPPC, the very same assumption as [2, Assumption
1] on the rank of SM did not hold when the value κ was too small (for instance
κ = 5), but it was satisfied for a larger value. In Section 5.3, we present our results
for the least value of κ such that

(
κ
2

)
≥ n − 1. For this number of columns, the

number of linear polynomials produced at the first step was the expected one
and the resulting quadratic system in the ui’s was already solved in degree 2.

5.2 Complexity analysis

The cost of solving MinRank can be derived from the results of [2] as we use the
same approach. For instance, the first step can be estimated by [2, Eq. (8)] or [2,
Eq. (9)] and the second step by [2, Eq. (10)] if the resulting quadratic system is
solved in degree 2, with nu = n − 1 and ncT =

(
κ
2

)
− 1. Noting that these two

values are polynomial in n and using these estimates, we deduce that both steps
have polynomial complexity in the case of HPPC.

The overall attack is, in fact, practical, and we have been able to complete
a key recovery for all security levels. We could recover an equivalent key in a
bit less than 8 minutes for security level 2 (n = 128), about 1 hour and a half
for security level 4 (n = 192), and a bit more than 7 hours for security level 5
(n = 256). A more detailed breakdown of the running time is given in Table 1
of the next subsection.

5.3 Concrete running times

Table 1 presents the time spent on each of the steps of the key recovery. The
time given in “Step 1” corresponds to the cost of generating the degree 1 polyno-
mials by linear algebra on the SM system. The time given in “Step 2” is the cost
of solving the final quadratic system. This includes the cost of computing the
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grevlex Gröbner basis (Gaussian elimination and checking that no new polyno-
mials appear in degree 3) and the cost of the FGLM algorithm [13] to compute
the variety of size n. For the sake of completeness, we also give the time spent
to construct the SM system (“Build SM”) and the one of the substitution of
the degree 1 polynomials in SM to construct the final quadratic system (“Build
quadratic”). These constructions were not detailed in Section 5.1, but they have
no reason to be costly from a theoretical perspective (their rather high cost in
Table 1 might be due to poor implementation).

For n = 128 and n = 192, we picked the least value of κ such that
(
κ
2

)
≥ n−1

to apply the above reasoning. For n = 256, the least value of κ satisfying this
inequality is κ = 24. We have not been able to run Step 1 for this value of
κ because we were limited by memory. Therefore, we give timings for κ = 12
columns. In particular, in this case, the time spent in Step 2 suggests that the
quadratic system is solved in degree > 2.

Table 1. Attack running time on the HPPC security levels. All the numbers are in
seconds and they correspond to one trial (they are not an average over several samples).

n κ Build SM Step 1 Build quadratic Step 2 Total

128 17 11.320 76.540 82.490 271.160 464.819 (≈ 07′45′′)

192 21 49.570 655.700 627.130 4096.900 5552.319 (≈ 1◦32′32′′)

256 12 27.970 219.590 241.390 24405.100 25290.409 (≈ 7◦01′30′′)

Finally, we have not tried to find the value of κ for which Step 1 and Step 2
have roughly the same time complexity. This value will be larger than the one we
give here, and thus the memory demand for Step 1 will be even more important.

6 Conclusion

This paper fully breaks HPPC because the time complexity of our rank attack
is polynomial in n (we cannot simply increase the parameters). It is possible in
principle to repair the scheme by modifying the central map to increase its Q-
rank, but doing so would change the design and would not bring any advantage
compared to older HFE-like schemes. Moreover, as with HFE, increasing the
Q-rank enough to make the scheme secure (at least in any straightforward way)
would make signing by the honest party unacceptably slow.
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A Experiments for the direct attack

This appendix contains more details on the experiments of Section 3.2. The
column “F4 step degrees” gives the degree of the polynomials that are handled at
each step of the F4 algorithm as well as the possible degree fall polynomials. For
example, “3 (2:80)” means that 80 quadratic degree fall polynomials are found
at a step in degree 3. As stated in Section 3.2, the last step that is presented
always produces linear equations (we do not give their number here).

Our results are consistent with Proposition 1 and Proposition 2, with the
exception of the two underlined values in Table 2 (we refer to Remark 1 for a
possible explanation of this discrepancy).

While it seems feasible to conjecture the number of degree falls in degree 4,
we have not attempted to do it. In addition to experimental differences when
the polynomial ℓ2 was sparser pointed out in the main text, we also want to
stress that our results are given for one trial on a given set of parameters. In
some cases, two trials for the same parameter set have yielded different results
for the number of degree falls in degree 4.

Table 2. HPPC direct system with d = 5.

n F4 step degrees

40 3 (2:80), 3 (2:80), 3

50 3 (2:100), 3 (2:100), 3

60 3 (2:120), 3 (2:120), 3

70 3 (2:140), 3 (2:280), 3

80 3 (2:160), 3 (2:240), 3

Table 3. HPPC direct system with d = 7.

n F4 step degrees

40 3 (2:80), 3 (2:80), 3, 4

50 3 (2:100), 3 (2:100), 3, 4

60 3 (2:120), 3 (2:120), 3, 4

70 3 (2:140), 3 (2:140), 3, 4
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Table 4. HPPC direct system with d = 9.

n F4 step degrees

46 3 (2:92), 3 (2:92), 3, 4 (3:3772), 4

47 3 (2:94), 3 (2:94), 3, 4 (3:3854), 4

48 3 (2:96), 3 (2:96), 3, 4 (3:3936), 4

49 3 (2:98), 3 (2:98), 3, 4 (3:4018), 4

50 3 (2:100), 3 (2:100), 3, 4 (3:4050), 4

51 3 (2:102), 3 (2:102), 3, 4 (3:4182), 4

52 3 (2:104), 3 (2:104), 3, 4 (3:4264), 4

54 3 (2:108), 3 (2:108), 3, 4 (3:4428), 4

55 3 (2:110), 3 (2:110), 3, 4 (3:4510), 4

56 3 (2:112), 3 (2:112), 3, 4 (3:4592), 4

58 3 (2:116), 3 (2:116), 3, 4 (3:4756), 4

60 3 (2:120), 3 (2:120), 3, 4 (3:4920), 4

Table 5. HPPC direct system with d = 10.

n F4 step degrees

40 3 (2:80), 3 (2:80), 3, 4

45 3 (2:90), 3 (2:90), 3, 4 (3:2070), 4

46 3 (2:92), 3 (2:92), 3, 4 (3:736), 4

47 3 (2:94), 3 (2:94), 3, 4 (3:752), 4

48 3 (2:96), 3 (2:96), 3, 4 (3:768), 4

49 3 (2:98), 3 (2:98), 3, 4 (3:784), 4

50 3 (2:100), 3 (2:100), 3, 4 (3:800), 4

55 3 (2:110), 3 (2:110), 3, 4 (3:880), 4 (3:6050), 4

58 3 (2:116), 3 (2:116), 3, 4 (3:928), 4 (3:5859), 4

60 3 (2:120), 3 (2:120), 3, 4 (3:960), 4 (3:6061), 4

61 3 (2:122), 3 (2:122), 3, 4 (3:976), 4

65 3 (2:130), 3 (2:130), 3, 4 (3:2665), 4

70 3 (2:140), 3 (2:140), 3, 4 (3:2380), 4

Table 6. HPPC direct system with d = 11.

n F4 step degrees

40 3 (2:80), 3 (2:80), 3, 4

45 3 (2:90), 3 (2:90), 3, 4 (3:2070), 4

46 3 (2:92), 3 (2:92), 3, 4, 5

47 3 (2:94), 3 (2:94), 3, 4, 5

48 3 (2:96), 3 (2:96), 3, 4 (3:960), 4

Table 7. HPPC direct system with d = 20.

n F4 step degrees

40 3 (2:80), 3 (2:80), 3, 4

50 3 (2:100), 3 (2:100), 3, 4, 5
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