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Abstract. In this work we show obstacles when constructing identity-
based encryption (IBE) from isogenies. We first give a modular descrip-
tion for IBEs, what we call a canonical IBE, that consists of two com-
ponents: an identity key derivation scheme and a public-key encryption
scheme. This allows us to investigate the identity key derivation scheme
(where the obstacles are rooted in) in isolation. We present several ap-
proaches, showing that they can either not be realized—extracting the
secret keys would require to solve the underlying hardness assumption—
or result in IBE schemes that are insecure—users can use their secret
keys to compute secret keys of other users. Finally, we identify proper-
ties for isogeny-based trapdoor functions that one would need in order
to overcome the identified obstacles.

1 Introduction

Encryption is one of the fundamental concepts of cryptography. Historically,
encryption required the two communicating parties—Alice and Bob—to have
some preshared key ahead of time, so-called symmetric encryption. In their sem-
inal paper, Diffie and Hellman [25] introduced the concept of asymmetric or
public-key encryption, where Alice has a key-pair consisting of a secret key, only
known to her, and a public key, known by everyone. Using Alice’s public key,
Bob can encrypt messages that only Alice, using her secret key, can decrypt.
The advantage of public-key encryption is that Alice and Bob no longer need
a preshared key in order to securely communicate. Nevertheless, public-key en-
cryption comes with the challenge that Bob needs an authentic copy of Alice’s
public key—something that is typically achieved via a public-key infrastructure.

A few years after Diffie and Hellman, Shamir [56] introduced the concept of
identity-based encryption (IBE). Here, the identity of a user, say, Alice’s email
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address, is used instead of a public key. While the concept of identity-based
encryption was around for several years, the first efficient construction is due to
Boneh and Franklin [10]. On a high-level, IBE relies on a trusted party holding
a master key-pair (mpk, msk). Instead of using a public key of Alice, Bob can
encrypt a message using the master public key mpk and Alice’s identity id 4.
When Alice joins the system—which might in fact take place after Bob has
already encrypted messages under her identity—the trusted party will provide
Alice with her secret key sk;q, which it derives from its master secret key msk
and Alice’s identity id4. The fact that Alice might join the system later, also
reveals one of the main challenges for constructing IBE: the trusted party needs
to be able to generate Alice’s secret key after Bob computed her public key.?

Since the Boneh-Franklin IBE scheme is not based on quantum-hard assump-
tions, it will no longer be secure once large-scale quantum computers exist. A
general question is therefore to construct IBE from quantum-hard assumptions.
Clearly, hash-based cryptography does not work as it is limited to signature
schemes. Multivariate cryptography seems less appealing as secure construc-
tions tend to be signature schemes while proposed encryption schemes are often
broken*. There are IBE constructions from lattices such as the one by Gentry et
al. [38], which have also explicit security proofs against quantum adversaries [61].
Regarding code-based IBE constructions, we are only aware of the construction
by Gaborit et al. [34], though this one was broken soon after [24]. The only
isogeny-based IBE scheme was proposed by Fouotsa and Marco [33], which was
also quickly shown to be insecure®.

Isogeny-based IBE schemes, in particular, are appealing for another reason.
Recently, Boneh et al. [11] gave a lower bound for the length of Fiat-Shamir
signatures based on group actions. Although many compact isogeny-based sig-
nature schemes that are not based on group actions exist [3,5, 20, 23, 28, 50],
the lower bound is restrictive. On the other hand, it is known that short signa-
tures can be obtained from certain IBE schemes—as pointed out by Boneh and
Franklin [10], and later treated formally in [19]. This transform can indeed be an
alternative way of bypassing the aforementioned lower bound. Therefore, it re-
mains an alluring open question whether secure IBE schemes can be constructed
from isogenies.

3 Strictly speaking, there is no explicit public key of Alice in this setting. Looking
ahead, though, we show in this work that the existing IBE constructions can actually
be viewed as those where Bob can generate Alice’s public key before her secret key
is generated.

4 An early example is the Matsumoto-Imai scheme [45] which got broken by
Patarin [53]. In the recent NIST standardization process [51], all multivariate public-
key encryption schemes were broken at the beginning of the first round.

5 As declared in https://lauranemarco.github.io/research. Last accessed: 13th
January 2025.
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1.1 Owur Contribution

In this work, we explore different variants of constructing IBE from isogenies,
showing several limitations yielding either insecure constructions or construc-
tions that we cannot instantiate (yet). We focus on what we call a canonical
IBE definition. This definition decomposes into a “normal” public-key encryp-
tion scheme and an identity key derivation (IKD) scheme. The latter is a primi-
tive that we introduce—though it implicitly appears already in prior works—and
captures the gist of IBE: enabling the trusted party to extract the secret key of
a user. The extraction requires the master secret key, where the public keys are
derived from the master public key and the identity of a user. We claim that all
IBE schemes can be put in the canonical form.

We then focus on constructing IKD schemes from isogenies. For the under-
lying PKE scheme, we first investigate the setting where the secret key sk is an
isogeny between two elliptic curves which form the public key pk. The challenge
for the IKD scheme is then to extract that secret isogeny from the two ellip-
tic curves that are generated publicly based on the identity ¢d and the master
public key mpk. We cover various variants, depending on how the public key
elliptic curves are computed. Looking at CSIDH (or also FESTA, M-SIDH, etc.), for
instance, the starting curve would be the same for all users while the end curve
would be different for each user. Unfortunately, we show that all these vari-
ants suffer from problems. Several constructions—for which the trusted party
can extract the secret keys of users—turn out to be insecure: a malicious user
Eve can leverage its own secret key skg to compute an isogeny equivalent to
the secret key ska of another user Alice, allowing her to decrypt messages en-
crypted under Alice’s public key. For constructions which do not suffer from
the aforementioned insecurities, the problem lies in the construction of the IKD
scheme. Extracting a secret key of the user essentially requires the trusted party
to solve the underlying hardness assumption. Although this seems attainable
with a trapdoor information included in msk—which will have the necessary
power to invert the public key curve generated with mpk to compute the secret
isogeny—the current state of isogeny-based trapdoor functions falls behind what
is required. In addition to the limitations of isogeny-based trapdoor functions,
another potential building block, i.e., random sampling of Supersingular Ellip-
tic Curves of Unknown Endomorphism Rings (SECUER), is also missing in the
literature. We further discuss the setting where the secret key is the knowledge
of the endomorphism ring of the public key curve—which suffers from similar
problems, and also covers the problem of the IBE proposal in [33].

Our results hold for all prominent isogeny settings (CSIDH, SQISign, etc.)
since the obstacles and insecurities are indifferent to the setting. We only make
the restriction that the secret key is an isogeny or the endomorphism ring of a
supersingular elliptic curve which is prevalent in all the settings to the best of
our knowledge. In light of these limitations, we conclude with a potential con-
struction that requires a stronger trapdoor function than existing constructions
and a SECUER generator.



1.2 Related Work

The concept of identity-based encryption was introduced by Shamir [56]. The
first efficient constructions were given in [10, 18]. Further constructions of IBE
are given, e.g., in [1,47].

The first lattice-based instantiation is due to Gentry et al. [38], followed by
more lattice-based constructions [2,14,31,42,59,60]. Ji et al. [40] give construc-
tions based on NTRU lattices, as do Lu et al. [44] in concurrent work to ours.
The first code-based IBE scheme was given in [34], which was based on the code-
based signature scheme RankSign [35], but broken in [24]. Tree-based approaches
for IBE schemes were given in [13,26,27].

Quantum-resistant identity-based signatures are given in [41,54,57].

2 Preliminaries

We now recall the necessary background for this work. We start with the pre-
liminaries on isogenies, and then continue with the definition of IBE schemes.

Throughout this work, we will be denoting random sampling with <s, e.g.,
x <—s X will be interpreted as sampling an element x from a set X. A negligible
function will be denoted as negl(\), and an algorithm A, with access to an oracle
0, as A°. Unless stated otherwise, all the algorithms take the security parameter
A as an implicit input. With double square brackets we will denote the boolean
value of the statement, e.g., [b =] is true (or 1) if and only if b =¥'.

2.1 Isogeny-Based Cryptography

An elliptic curve E is an algebraic smooth curve defined by the equation 3% =
234 az + b over a field K. We denote the points defined on an elliptic curve F as
a set F(K), which contains all the (z,y) pairs over K that satisfy the equation,
along with a special point Op, called point at infinity. This point set forms a
group where the point at infinity is the identity of the group operation. This
operation is called point addition denoted with 4, and induces scalar multipli-
cation, i.e., repetitive additions of points, e.g., [k]P means P added to itself k
times.

We denote the m-torsion subgroup with E[m], which is the set of points over
K that give O when multiplied by m. If this subgroup is generated by two points
P and @, we denote it as E[m| = (P, Q). For a field K with characteristic p, and a
positive integer r, if E[p"](K) is isomorphic to {0}, then we call E supersingular;
if it is isomorphic to Z/p"Z, then we call it ordinary. In the remainder of this
work, we will always refer to supersingular elliptic curves, even if we omit the
word supersingular.

An isogeny ¢ is a non-constant rational map between two elliptic curves, i.e.,
¢: E — E’, with the condition that ¢(Ofg) = Op/. The degree of an isogeny ¢ is
denoted with deg(y), and a degree [ isogeny is often referred as an l-isogeny. For
an isogeny ¢: E — E’, we call the set of points P € E such that ¢(P) = Op,



the kernel of ¢, i.e., ker(y). An isogeny is separable if and only if the cardinality
of its kernel is equal to its degree. We are only interested in separable isogenies,
as they are determined by their kernels up to isomorphism.

The fundamental hardness assumption in isogeny-based cryptography is the
isogeny path problem defined below.

Problem 1 (I-Isogeny Path Problem) Given a prime p, and two supersin-
gular elliptic curves E and E' defined over Fp2, compute an l-isogeny path for a
prime | # p, i.e., a sequence of degree | isogenies, from E to E’.

This problem is assumed to be hard, and has different variations [8,37] which
are in use of well-known isogeny-based schemes.

An isogeny ¢ : E — FE is called an endomorphism of E. All endomorphisms
defined on E constitute a ring called endomorphism ring, denoted End(E), with
the operations being pointwise addition and composition. Computing the endo-
morphism ring of a supersingular elliptic curve is a hard problem that underlies a
few isogeny-based cryptographic protocols, for instance [23,36]. Below we recall
the definition of the problem.

Problem 2 (Endomorphism Ring Problem) Given a prime p, and a su-
persingular elliptic curve E defined over Fp2, compute four endomorphisms that
generate the endomorphism ring End(F) of E as a Z-module.

The endomorphism ring problem was thoroughly investigated in [46,52]—where
Page and Wesolowski [52] showed that the problem is easy given access to a spe-
cial oracle that reponds with independent non-scalar endomorphisms. Moreover,
the endomorphism ring problem is also shown to be equivalent to the isogeny
path problem [30, 58].

We call the endomorphism ring of an elliptic curve known if it is efficiently
computable, and unknown otherwise. Extending the nomenclature in [4], we
will refer to Supersingular Elliptic Curves of Unknown Endomorphism Ring as
SECUERs, and Supersingular Elliptic Curves of Known Endomorphism Ring as
SECKERsS.

It is often required in cryptographic protocols to generate supersingular el-
liptic curves, or hash into the supersingular isogeny graph on input a bit string.
We now continue investigating such generators in the form of hash functions.

Random Supersingular Elliptic Curve Generation. We define supersingular el-
liptic curve generators in regard to the output being a SECUER, a SECKER,
and a codomain of a random isogeny walk.

There is no efficient algorithm proposed in the literature that can efficiently
generate SECUERs in the absence of a trusted party or a distributed protocol,
as investigated in [4,12,43,48]. Nevertheless, we give a definition to use in our
constructions for a comprehensive analysis.

Definition 3. Let £l be the set of supersingular elliptic curves defined over a
field K. A SECUER generator is a function HZ;,: {0,1}" — €Il such that, there
exists no polynomial-time algorithm which, given E «+ HZ (x) for uniformly
chosen x € {0,1}"™, computes End(E) with probability more than negligible.



There are efficient SECKER generator constructions as mentioned in [12,48]. On
the other hand, they have a vulnerability, namely the isogeny problem becomes
easy when the domain and codomain curves are SECKERs. Nevertheless, we
describe them as follows.

Definition 4. Let £l be the set of supersingular elliptic curves defined over a
field K, and End = {End(E): E € £ll}. A SECKER generator is a function
HEE - {0,1}" — &1l x End such that the output is a pair in the form (E,End(FE))
for an E € El.

We often do not need the endomorphism ring explicitly, in which case we drop
the second output, i.e., instead of (E,End(E)) < Hg,(z) we simply write E <

One other way to generate random supersingular elliptic curves is to take a
random walk on the isogeny graph, which was first observed by Pizer [55], and
then found a use in cryptographic applications [17], i.e., CGL hash function. It
can be formally described as follows.

Definition 5. Let £Il be the set of supersingular elliptic curves defined over a
field K, and ®g p be the set of all isogenies of degree® D starting from E € EIL.
An isogeny walk (CGL) generator is an injective function S5y : (E, x) — ¢ that
on input a starting curve E € Ell, and a bit string x € {0,1}™, generates an
isogeny walk ¢ € @g p such that ¢ : E — E'.

The CGL generator can behave like a SECKER/SECUER generator depend-
ing on the domain curve E. If F has unknown endomorphism ring, then the
codomain E’ is conjecturally a SECUER. Similarly, if End(E) is known, then the
codomain E’ is again a SECKER, as End(E’) is efficiently computable through
the isogeny . However, this is not the case if the party that calls the CGL
generator keeps the random walk secret, or if the walk is computed via a dis-
tributed protocol as described in [4]. Although we can treat the CGL generator
as a SECUER in this case, there is a nuance here: the random walk can be a
valuable information to the party that keeps it secret. This is especially rele-
vant in an IBE construction since there exists a trusted party which can use the
CGL as a SECUER and keep the random walk as a trapdoor. We will indeed
investigate this approach in the following sections.

2.2 Identity-Based Encryption
Below we define identity-based encryption (IBE) schemes and its security.

Definition 6. An identity-based encryption scheme consists of four efficient al-
gorithms:

KGen(1*): The key generation takes as input a security parameter 1* and outputs
a master key-pair consisting of a master secret key msk and a master public
key mpk,

5 The degree is usually a power of a small prime.



Enc(mpk,id, m): The encryption algorithm takes as input a master public key
mpk, an identity id, and a message m, and it outputs a ciphertext c,

Ext(msk,id) : The extract algorithm takes as inpul a master secret key msk
and an identity id, and outputs a secret key sk;q,

Dec(sk,c): The decryption algorithm takes as input a secret key sk and a ci-
phertext ¢, and it outputs a message m,

where, by the correctness of the scheme, the following holds
Dec(skiq, Enc(mpk,id,m)) = m,
such that (msk, mpk) +sKGen(1"), and sk;q + Ext(msk,id).

Similarly to PKE schemes, IND-CPA security is a standard security notion
for IBE schemes, which ensures that an adversary learns nothing from the ci-
phertext, about the plaintext. The difference is that the adversary can choose the
target identity under which one of the two messages is encrypted and can further
obtain the secret keys from any identity different from the target identity. The
IND-CPA security can be defined as follows.

Definition 7. An IBE scheme IBE = (KGen, Enc, Ext,Dec) is IND-CPA-secure,
if for any efficient adversary A = (Ao, A1) (where Ay and Ay are assumed to
share state),

Pr [IND-CPA{L’EO(Y\) - 1} - ;‘ < negl()\),

where IND-CPALC (N is the game defined in Fig. 1.

IND-CPAZL (1) O(id;)
C+ 0 C + CU{id;}

(msk, mpk) <s IBEKGen(1")  Skia, < IBE.Ext(msk,id;)
return sk;q,

(id, mo,m1) < Aoom(mpk)
b+«+s{0,1}

¢ < IBE.Enc(mpk,id, mp)
b — A% (¢)

if id € C then return L
return [b = b']

Fig. 1: Definition of IND-CPA security for IBE schemes.

We note that, in the remainder of this work, we will be only focusing on key
recovery attacks against IBE schemes, which trivially breaks IND-CPA security.



3 Isogeny-based IBE: Pitfalls of a Seemingly
Straightforward Approach

In this section, we present the potential ways of an isogeny-based IBE construc-
tion, along with the problems of each approach. First, in Section 3.1, we introduce
the concept of canonical IBE—which relies on a PKE scheme as one of its under-
lying components, and additionally an identity key derivation (IKD), a primitive
which we introduce. Section 3.2 and 3.3 discuss the problems of isogeny-based
IKD constructions in two different settings; the former relies on Problem 1 where
the secret key is an isogeny, and the latter relies on Problem 2 where the secret
key is the knowledge of an endomorphism ring. Finally, Section 3.4 investigates
the usage of trapdoor functions in IKD constructions. We defer the discussion
on how to construct an IBE from isogenies—in light of our negative results in
this section—to Appendix A.

3.1 Canonical Identity-Based Encryption

We now introduce a modular IBE definition, what we call a canonical IBE. What
makes a difference here is that we isolate the key derivation operations—both
for the keys of the trusted party, and the users—in a separate scheme, namely
an IKD scheme. Below we first recall the definition of PKE schemes, followed by
the definition of IKD schemes.

Definition 8. A public-key encryption scheme (PKE) consists of three efficient
algorithms:

KGen(1*) The probabilistic key generation algorithm takes as input a security
parameter A and outputs a key-pair consisting of a secret key sk and a public
key pk.

Enc(pk,m) The probabilistic encryption algorithm takes as input a public key pk
and a message m, and it outputs a ciphertext c.

Dec(sk,c) The deterministic decryption algorithm takes as input a secret key sk
and a ciphertext c, and it outputs a message m.

Definition 9. An identity key derivation (IKD) scheme consists of three effi-
cient algorithms:

KGen(1*) The probabilistic key generation algorithm takes as input a security
parameter 1* and outputs a master key-pair consisting of a master secret
key msk and a master public key mpk.

Ext-pk(mpk,id) The deterministic public key extraction algorithm takes as input
a master public key mpk and an identity id, and outputs a public key pk;q.

Ext-sk(msk,id) The deterministic secret key extraction algorithm takes as input
a master secret key msk and an identity id, and outputs a secret key sk;q.

We introduce the IKD as a component of canonical IBEs for the sake of
modularity, and easier analysis of the isogeny-based constructions. In particular,



the security notions an IKD should satisfy—so that the canonical IBE is secure—
is indeed an interesting question. However, it falls out of the scope of this work.
Therefore, we will only mention its one-wayness, and compatibility with the
PKE. The one-wayness is strictly necessary for the security against key-recovery
attacks.

Definition 10. Let IKD = (KGen, Ext-pk, Ext-sk) be an IKD scheme We call
the IKD one-way if, for a master key-pair (msk, mpk) <—s IKD.KGen(1%), given
mpk, id, and pk <sIKD.Ext-pk(mpk,id), no polynomial-time adversary can find
a sk', such that sk’ = sk < s IKD.Ext-sk(msk,id), with probability more than
negligible.

Our definition of an IKD scheme captures the concept of preimage sampleable
function (PSF) defined by Gentry et al. [38]—a PSF can be used to instantiate
the trapdoor mechanism of our IKD definition.”

Furthermore, we need compatibility of the IKD and PKE as defined below.
This property ensures that key pairs generated by the IKD are distributed like
key pairs from the PKE scheme and is necessary to ensure the functionality of
the (canonical) IBE scheme.

Definition 11. Let IXKD = (KGen, Ext-pk, Ext-sk) be an IKD scheme, and PKE =

(KGen,Enc,Dec) be a PKFE scheme. We call IKD and PKE compatible, if for all

id, the key pairs (sk, pk) <—s (IKD.Ext-sk(msk,id), IKD.Ext-pk(mpk,id)) are dis-

tributed identically to key pairs PKE.KGen(1*), where (msk, mpk) <sIKD.KGen(1*).
The first distribution is taken over the random coins used to generate the master

key-pair.

Now, incorporating the components, i.e., PKE and IKD, the definition of a
canonical IBE scheme can be given as follows.

Definition 12. Let IKD = (KGen, Ext-pk, Ext-sk) be an IKD scheme and PKE =
(KGen, Enc,Dec) be a PKE scheme, such that IKD and PKE are compatible. If IKD
has a superpolynomial set of public keys, then we call IBE = (KGen, Enc, Ext, Dec)
a canonical IBE scheme, where

IBE.KGen(1*

) := IKD.KGen(1")
IBE.Enc(mpk,id, m) :

):

) :

I
PKE.Enc(IKD.Ext-pk(mpk,id), m)
I
P

IBE.Ext(msk,id
IBE.Dec(sk, ¢

KD.Ext-sk(msk, id)
KE.Dec(sk, c).

We notice that the canonical IBE definition obviously matches with most
of the constructions in the literature: in particular, the pairing-based scheme
by Boneh and Franklin [10]; the lattice-based scheme by Gentry, Peikert, and
Vaikuntanathan [38]; the code-based scheme by Gaborit et al. [34]; and the
isogeny-based scheme by Fouotsa and Marco [33]. At first glance, the tree-based
constructions by Déttling and Garg [27], and by Brakerski et al. [13] appear

" Looking ahead, we discuss this at the end of the paper in Isogeny Construction 5.



to be non-canonical because they are not constructed from a PKE scheme—
like the aforementioned IBE schemes—but rely on more advanced primitives. It
turns out, however, that every IBE scheme can generically be transformed into
a canonical one by properly constructing a PKE along with a compatible IKD
scheme out of it. With this observation, the focus on canonical IBE schemes is
not a restriction but simplifies the exposition as we can focus on the IKD scheme
in the following. This definition is useful in several ways; it provides an abstrac-
tion, it is modular, and it helps us reflect the obstacles of isogeny-based IBE
construction through only one component in isolation—as the inherent problem
reveals itself in the construction of the IKD scheme.

In the next three sections, we present the potential ways of a canonical
isogeny-based IBE construction, along with the challenges of each approach.
The challenges will appear in two ways:

1. there will be an efficient key-recovery attack,

2. the construction will require the trusted party to solve the underlying hard-
ness assumption, i.e., Problem 1 (Isogeny Problem) and Problem 2 (Endo-
morphism Ring Problem).

We note that, the challenges occur regardless of the isogeny setting (SIDH, CSIDH,
SQISign, etc). The key-recovery attacks will make use of general techniques, and
in all the settings, Problem 1 and Problem 2 are assumed to be hard.

To still be able to refer to the parameters of the PKE scheme, regardless of
the setting, here we will define generic notations that will be used throughout
this section. Assuming they align with the PKE scheme, we will denote the set
of all supersingular elliptic curves as £Il, the underlying prime as p, field as
K = F,« (for an unspecified degree k), the degree of the secret isogeny as Dy,
the set of all isogenies of degree D with domain F as g p.

3.2 Using Isogenies as Secret Keys

We now restrict ourselves to the prevalent structure where all elliptic curves
are supersingular, the secret key is an isogeny, where the domain and codomain
curves are included in the public key. This is the typical setup for isogeny-based
key-exchange/encryption schemes, and we will not make any further restrictions
regarding the PKE scheme to be used.

An isogeny-based IKD scheme involves two elliptic curves that are connected
by a secret isogeny. Although the domain curve is usually fixed in the public
parameter in most schemes, e.g., SIDH [39], CSIDH [15], and SQISign [23], we will
not restrict ourselves in this sense, and put both curves in the public key. For the
same reason, we will diverge from the common notation used in the literature
where the domain and codomain curves are denoted Fy and F,; respectively.
Throughout the text, the public domain and codomain curves of the user with
identity i¢d will be denoted as Ej ;q, E1 4, respectively. In some cases, the public
key curves will happen to be fixed for all users, and we will denote this with id*,
e.g., Foa, and Fy ;q-. We will abuse notation by writing £ € mpk to denote
that elliptic curve F is part of the master public key mpk.
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To cover all possible isogeny-based IKD constructions in a structured order,
we will categorize the approaches with respect to the public curves being fixed
or variable with respect to the identity. As subconstructions of these approaches,
we will be investigating the ways the public curves can be generated. This can
happen in 3 ways; via SECUER?, SECKER, and CGL generators. A CGL gener-
ator can produce either a SECUER or a SECKER depending on the setting, but
we opt to investigate it separately as it is the usual way of generating random
curves.

Whether the endomorphism rings of the curves are known or not is crucial
to be able to discuss the achievability of the constructions. Thus, we specify
this information by using the superscripts; o, o, o, when denoting the curves,
for unknown, unspecified, and known endomorphism rings, respectively. By un-
specified we mean, the endomorphism ring can be known or unknown, and we
consider both cases at once.

The constructions will be illustrated with isogeny diagrams in the remainder
of this work. There, public isogenies that are known to all users will be shown
with a black, solid arrow. A secret isogeny will be represented with red, and
densely dashed arrows. In some cases, we will also illustrate the attacks against
the constructions. Some attacks will involve isogenies which are not public by
default, but computable by the attacker. These computable isogenies will be
shown with blue and loosely dashed arrows.

Approach 0: Fixed Domain and Codomain Curves. We start with a
naive IKD construction to illustrate the pattern one can follow comprehensively.
We fix the public key curves and obtain a clearly insecure setting; however,
it emphasizes the inherent problem of fixed curves that will be clearer as we
progress.

Isogeny Construction 0 (IKDy) The IKD can be described with the following
algorithms:

KGen(1*) On input a security parameter, choose two curves E®, ., E®,,. € El,
and output the key-pair (msk, mpk), such that Eo‘iid*,Efid*’ € mpk.

Ext-pk(mpk,id) On input a master public key and an identity, output EJ; .
and B, ;..

Ext-sk(msk,id) On input a master secret key and an identity, compute and
output an isogeny si: B ;g — EPq- .

The construction is simply achievable, if KGen picks Eg,;. and gy first to
compute El‘fid*, and puts @g in msk. Therefore, Ext-pk simply outputs mpk,
and the trusted party can extract the secret key which is already included in
msk.

8 There is no efficient SECUER generator construction in the literature. Nonetheless,
we take them into account for the sake of future advancements.
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Fig. 2: Tllustration of the Ext-pk algorithm for IKDy. Both curves are fixed by
Ext-pk, so is the secret key isogeny.

Problem of Isogeny Construction 0. Trivially, the secret and public keys are
the same for every user, i.e., every user can use its own secret key to decrypt
messages sent to other users. We will call this type of attack an insider attack
from now on. It is important to note that if the endomorphism rings are known,
Le., Eg,4 and E, ., then even a party who is not involved in the system can
compute the secret keys of the users and decrypt messages sent to the users in
the system. This is possible due to the Deuring correspondence, which provides
an efficient method to compute the isogeny connecting two curves with known
endomorphism rings. However, in any variation where at least one of the curves
has an unknown endomorphism ring, an outsider, i.e., an adversary that is not
part of the system and therefore does not get a secret key from the trusted party,
cannot attack the scheme as it needs to solve Problem 1 to compute the secret
key.

Approach 1: Fixed Domain Curve, Variable Codomain Curve. The
next approach keeps only the domain of the secret key isogeny fixed and allows
the codomain to change regarding the identity. This is the general setting for
isogeny-based schemes, e.g., SIDH, CSIDH, and SQISign.

Isogeny Construction 1 (IKD;) The IKD can be described with the following
algorithms:

KGen(1") On input a security parameter, choose a curve E&id* € &ll, and output
the key-pair (msk, mpk), such that Eo‘fid* € mpk.

Ext-pk(mpk,id) On input a master public key and an identity, output Eo‘fid*
and a random’ EP;; depending on id and mpk.

Ext-sk(msk,id) On input a master secret key and an identity, compute and
output an isogeny si: B4 — EP .

There are 3 variations'” of this construction depending on how Ext-pk gener-
ates the public key curve, i.e. with a SECUER, SECKER, or CGL generator. Ef-
ficient SECUER generator constructions in the literature require either a trusted
party setup, or a distributed protocol. Although, IBE schemes involve a trusted
party, the Ext-pk algorithm is a publicly available algorithm by definition, and

9 Here and in the rest of the text, by “random”, we mean deterministically computed
by a random oracle. In particular, Ext-pk is deterministic in the sense that, for fixed
mpk and id, it will produce the same output.

10 The case of variable domain curve and fixed codomain curve is entirely symmetrical,
which is why we do not consider it explicitly here.
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should not require an interaction with the trusted party. For the same reason,
Ext-pk cannot be a distributed protocol either. However, taking into account
possible future advancements on this problem, we will assume the existence of
efficient SECUER generators, without trusted party interactions or distributed
protocols.

Now, we describe the construction with a SECUER generator.

Isogeny Construction 1.1 (IKD; ) Let HE, be a SECUER generator. The
IKD can be described with the following algorithms:

KGen(1") On input a security parameter, choose a curve E&id* € Ell, and output
the key-pair (msk,mpk), such that E&id* € mpk.

Ext-pk(mpk,id) On input a master public key and an identity, output E(?,id*
and EP,; < B (mpk,id).

Ext-sk(msk,id) On input a master secret key and an identity, compute and
output an isogeny si: B4 — BT

Fig. 3: llustration of the Ext-pk algorithm of IKD; ;. The domain curve is fixed
by the KGen algorithm. The codomain curve has unknown endomorphism ring,
and is random with respect to the identity id.

Problem of Isogeny Construction 1.1. Here, assuming Eﬁid is random, the task
of Ext-sk algorithm is to find an isogeny between two given curves, where one has
unknown endomorphism ring. This requires solving Problem 1, which is assumed
to be hard. However, the information included in msk cannot be overlooked.
Assume msk includes a trapdoor information that recovers ¢g. If End(Eq ;q-)
is known to the trusted party, then End(E; ,q) is also known via g, which
contradicts with E; ;4 being a SECUER. Conversely, if End(Ep ;q+) is unknown
to the trusted party, then the trapdoor information breaks Problem 1. There
exists isogeny-based trapdoor functions that offer a similar functionality in a
more restricted setting where the codomain curve does not fit in our SECUER
definition but still provides security guarantees. We will investigate them in
detail in Section 3.4, and explain why current isogeny trapdoors are not suitable
for this task, and what can be done to overcome the difficulties. Delaying the
discussion on trapdoors, we conclude that this construction is not possible to
achieve.

The second approach is using a SECKER generator in the construction of
Ext-pk. This approach is insecure for trivial reasons, yet worth mentioning to
better illustrate the pattern.

13



Isogeny Construction 1.2 (IKDy ) Let HE, be a SECKER generator. The
IKD can be described with the following algorithms:

KGen(1") On input a security parameter, choose a curve E&id* € &ll, and output
the key-pair (msk, mpk), such that E&id* € mpk.

Ext-pk(mpk,id) On input a master public key and an identity, output Eg,,.
and E?;, < BE (mpk,id).

Ext-sk(msk,id) On input a master secret key and an identity, compute and
output an isogeny Qs E(fid* = EP
As the public key curve E,, has known endomorphism ring, the Ext-sk

)

algorithm is achievable if End(Eg;,.) € msk.

[ ]
El,idA
A
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Pska ,° !
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it !
’
. Y
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(a) The Ext-pk algorithm (b) The attack that re-
of IKD; 5. veals msk and/or the se-
cret key of other parties via

the computation of isogeny
A

Fig. 4: Mlustration of IKD; » and the attack.

Problem of Isogeny Construction 1.2. The Deuring correspondence allowing the
realization of Ext-sk also enables a trivial attack to the construction. Since all
public key curves have known endomorphism rings, Bob can compute the isogeny
A connecting Alice’s public key curve £, to his public key curve £, . Then,
once Bob learns his secret key isogeny ¢, the composition Ao Ysky gives the
secret key of Alice, as described in Fig. 4b. There is an even stronger attack
leaking the msk. Bob can compute End(E(,;;-) via Deuring correspondence with
the knowledge of End(EY,; ) and @sp,.

Last but not least, E,, can be generated via a CGL generator, i.e., Ef,,
would be the codomain of a random walk on the isogeny graph. This approach’ is
achievable and being used in isogeny-based schemes, but the IKD construction,
described below, suffers from an insider attack.

Isogeny Construction 1.3 (IKDy3) Let HE be a CGL generator. The IKD
can be described with the following algorithms:
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KGen(1*) On input a security parameter, choose two curves E®, ., E® € Ell,
and output the key-pair (msk, mpk), such that E,;., E® € mpk

Ext-pk(mpk,id) On input a master public key and an identity, compute an
isogeny wia < HEjr (B, mpk,id), such that g;q: Ef — EP,;. Output Eg, .
and Ef ;.

Ext-sk(msk,id) On input a master secret key and an identity, compute and
output an isogeny Qsj, : E&id* — El‘fid.

©
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’ ’
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(a) The Ext-pk algorithm (b) The attack that reveals the se-
of IKD; 3. cret key of other parties via the
computation of isogeny A.

Fig. 5: llustration of IKD; 3 and the attack.

To include the information of an isogeny \: E(f q- — B in msk would easily
allow trusted party to extract the secret keys. But as before, the problem appears
as an insider attack.

Problem of the Isogeny Construction 1.3. In this construction, Bob, who en-
rolls with the system and learns his secret key ¢, is able to find the isogeny
A Eg;q- — EP through the composition @4, © @sk,. With the knowledge of A
and publicly computable ¢;q4,, he can compute the isogeny (‘O;kA = Qid, O A, @S
described in Fig. 5. This isogeny is not necessarily the secret key ¢gp, of Alice,
as we do not specify how the trusted party computes the secret key of Alice.
Therefore, we need to make a case distinction to further analyze.

Now, consider two cases: (1) at least one of the endomorphism rings is known
(2) none of the endomorphism rings are known. In the first case, any user can
compute all the other endomorphism rings due to the known connections, which
falls into the previous case in Construction 1.2. In the second case, the only way
the trusted party can extract secret keys is via the knowledge of A. Otherwise, i.e.,
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Pska # Php s the trusted party could compute non-trivial'' endomorphisms in
the form @g, 0 ¢, k.- Polynomially-many independent endomorphisms suffice to
compute the whole endomorphism ring, which contradicts with the assumption
that the trusted party does not know any endomorphim rings. Thus, either
Yska = Pid, © A, such that any party can compute A € msk, or the construction
is insecure for the same reasoning as in Construction 1.2.

It is important to note that the random walks in CGL generators cannot be
hidden to the one who generates, i.e., the users in the system. This would be
possible in a setting where the Ext-pk algorithm involves an interaction with the
trusted party. However, this is not the case in the definition of IBEs.

Therefore, Isogeny Construction 1, is either not possible to achieve or inse-
cure. The construction appears to be impossible when the variable curve Ef,i d
that changes depending on the identity, is sampled via a SECUER generator.
When Efid is sampled via a SECKER generator, the dangers of known endomor-
phism rings emerge inevitably. The plausible and straightforward approach is to
sample E’;, via a CGL generator; however this requires another fixed curve, £
in Fig. 5, in the scheme. Similar to the situation in Approach 0, the existence of
two fixed curves enables an attack, as the isogeny between them gets revealed
unavoidably.

Approach 2: Variable Domain and Codomain Curves. To circumvent
the pitfalls of fixed curves, we take the natural next step and make the domain
curve of the secret key variable as well.

Isogeny Construction 2 (IKDy) The IKD can be described with the following
algorithms:

KGen(1*) On input a security parameter, output a key-pair (msk, mpk).

Ext-pk(mpk,id) On input a master public key and an identity, output a random
pair (Eg,;q4, EY.4) depending on id and mpk.

Ext-sk(msk,id) On input a master secret key and an identity, compute and
output an isogeny psi: B,y — EY 4

Similar to Isogeny Construction 1, the random public key curves can be
generated via a SECUER, SECKER, or CGL generator. This propagates to
6 variations'?. We divide the variations into 2 categories, and investigate the
variants within these categories as one, since the complications are either the
same or alike.

We start with the first three variations, where at least one of the public
key curves has unknown endomorphism ring. This results in the impossibility of
achieving Ext-sk.

11 More specifically, non-scalar endomorphisms. In the CSIDH setting, however, the ones
that are in the subring of a quadratic imaginary field Q(v/—D) are also considered
trivial.

12°As in Approach 1, we ignore the symmetric versions.
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Isogeny Construction 2.1 (IKDy 1) Let HZ,, HE, and HES be a SECUER
generator, a SECKER generator, and a CGL generator, respectively. The IKD
can be described with the following algorithms:

KGen(1") On input a security parameter, output a key-pair (msk, mpk).

Ext-pk(mpk,id) On input a master public key and an identity, output a random
pair (Eé’,infid) depending on id and mpk, where Eg,; is generated via
Hgj, and EP,, is generated via Hgjy, HE]), or BEp. If EP,, is generated via
HEE, we assume there exists EP € mpk s.t. @iq < HEr(EP).

Ext-sk(msk,id) On input a master secret key and an identity, compute and
output an isogeny Qs : E&d — Efid.

©
E,
tpidl
k Psk Psk
] [¢] ©
Egiq ----- > Erliq Eqia----- > By 4 Egiq----- > Epiq

Fig. 6: Illustrations of the variations of IKDy ;, which are impossible.

Problem of Isogeny Construction 2.1. Similar to Isogeny Construction 1.1, one
of the curves, i.e. E(fid have an unknown endomorphism ring, and the Ext-sk
algorithm needs to find an isogeny between this curve and some other random
curve. This is again hard, due to Problem 1. Once more we postpone the discus-
sion to Section 3.4 on the prospect of msk containing a trapdoor information
that will ease this task. Besides that, we conclude all 3 variations of Isogeny
Construction 2.1, as seen in Fig. 6, are not possible to achieve.

The other 3 variations include only the SECKER and CGL generators. This
time, the constructions are all achievable but insecure. We wrap up the remaining
in the following description, and continue with the attacks to the constructions.

Isogeny Construction 2.2 (IKD; o) Let HE; be a SECKER generator, and

HEE be a CGL generator. The IKD can be described with the following algorithms:

KGen(1*) On input a security parameter, output a key-pair (msk, mpk).

Ext-pk(mpk,id) On input a master public key and an identity, output a random
pair (EQ 4, £F,4) depending on the id and mpk, where the curves are either
generated via HE, or HEF.

Ext-sk(msk,id) On input a master secret key and an identity, compute and
output an isogeny gsi: ;g — E¥y-
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(b) One can compute Mo (c) Both Ag and A1 can be computed
via the known endomorphism as the random walks are public. Bob
rings, and A; via public ran- can learn @, 4 = 5\1 O QYskg O Ao
dom quks. Bob can learn

Pska = A O Pskp O Ao.

Fig. 7: Tllustrations of the variations of Ext-pk algorithms of IKDg o, and the
attacks to IKDg 5.

Problem of Isogeny Construction 2.2. The complications of using SECKER and
CGL generators appear once again in the remaining variations of the construc-
tion. When both domain and codomain have known endomorphism rings, as can
be seen in Fig. 7a, an outsider attack exists which reveals ¢4 via the known
endomorphism rings. In the variation shown in Fig. 7b, only the domain curves
have known endomorphism rings, and codomain curves are generated via ran-
dom walks from E. The isogeny A can be computed with the information of
known endomorphism rings of the domain curves. Moreover, the isogeny A; is
also computable as a composition of the random walks shown with black arrows.
Therefore, Bob as a party in the system, can compute g’y = M\ o Yskp © Ag.
As in Construction 1.3, this isogeny is not necessarily the secret key of Alice,
and a case distinction is required depending on whether the endomorphism rings
of the codomain curves are known: If the endomorphism rings are known, then
any party can compute all the endomorphism rings, resulting in the same setup
as in Fig. 7a; Assuming the endomorphism rings are unknown, again leads to a
contradiction. In the last variation shown in Fig. 7c, both domain and codomain
curves are generated via random walks from E$ and EP, respectively. This en-
ables the same attack as before, the mere difference is that Bob computes \g
differently. Namely, also as the composition of the random walks. Thus, all vari-
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ations of Isogeny Construction 2.2 are insecure, where the first one suffers from
an outsider attack while the other two suffer from an insider attack.

Approach 3: Larger Public Keys. To further broaden our scope, we dis-
cuss whether having larger public (and secret) keys helps circumvent the ob-
stacles. We argue that increasing the number of curves in the user’s public
keys—therefore having multiple secret isogenies in the secret keys—does not
mitigate the attacks. The public random walks, starting from a fixed curve in
mpk, will nevertheless reveal all the secret isogenies to the other users, as before.
However, it is reasonable to consider having multiple fixed curves in mpk to sep-
arate the public random walks. A similar structure can be seen in the signature
schemes [9,22]. This approach would require a different curve in the master pub-
lic key for each user—otherwise our attacks are still applicable, though restricted
to users that share the same curve from the master public key. In this sense, the
number of curves in the master public key scales with the number of users which
would render it impractical. On top of that, the number of users would need to
be fixed in advance when generating the master key-pair.

3.3 Using Endomorphism Rings as Secret Keys

Computing the endomorphism ring of a supersingular elliptic curve, i.e., Prob-
lem 2, is at heart of the security of several isogeny-based primitives, e.g., SQISign
digital signature scheme [23] and its variants [6,20,23,49]. Therefore, the setting
where the secret key is the knowledge of the endomorphism ring of the public
key curve cannot be ignored when building an isogeny-based scheme. As proven
by Page and Wesolowski [52], the endomorphism ring problem reduces to the
one endomorphism problem, i.e., one can compute the whole endomorphism ring
given access to an oracle OneEnd that repsonds with independent non-scalar en-
domorphisms on the curve. Benefiting from this result, when we talk about the
security of the IKD construction, we will investigate whether the adversary can
build this oracle—that implies it can compute the whole endomorphism ring
which is the secret key.'?

As before, the security of such construction boils down to how the public key
curve is generated. Assuming the public key curve is sampled via a SECUER
generator, the trusted party is required to solve Problem 2 to extract the secret
key—which hinders the realization of the Ext-sk algorithm. Further, we imme-
diately discard the option of using a SECKER generator as it contradicts the
fact that the endomorphism ring is the secret, and should be unknown to other
parties. Using a CGL generator seems to be the plausible approach; and in fact,
it is what underlies the isogeny-based IBE scheme proposed by Fouotsa and
Marco [33]. Unfortunately, the construction suffers from an attack which caused

13 1t is slightly easier to build this oracle in the CSIDH setting where the Frobenius en-

domorphism always exists. Nevertheless, we will present the generic attacks without
using any setting-specific information.
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the proposal to be retracted afterwards. The construction, as we abstract via
the IKD definition, is as follows.

Isogeny Construction 3 (IKD3) Let HEF be a CGL generator. The IKD can
be described with the following algorithms:

KGen(1*) On input a security parameter, output a key-pair (msk, mpk).
Ext-pk(mpk,id) On input a master public key and an identity, output a random

curve E, depending on the id and mpk, where the curve is generated via

CGL
HEZl .

Ext-sk(msk,id) On input a master secret key and an identity, compute and
output the endomorphism ring End(ES).

Jor Pid 4 E° =
0yidx —————————————> L4, ’9
1
1
Y
Pidp 1
A\
EO_ /\‘
l,idp 0p

Fig. 8: Tllustration of IKD3 and the attack.

Problem of Isogeny Construction 3. The attack is a combination of the gener-
alized lollipop attack [16] and the reductions given in [52]. As can be seen in
Fig. 8, the public isogenies ¢;q, and ¢;q, allow one to compute the connecting
isogeny A : E1 4, — Fh1idp- Then, once Alice learns her secret endomorphism
ring End(EJ)), she can build the oracle OneEnd as follows: She samples an endo-
morphism 64, computes the endomorphism Ao, 0\ = 65 € End(Ey;,, ). Alice
then can compute the whole endomorphism ring End( ﬁidB) using this oracle,
and thus learn the secret key of Bob.

Thus, we conclude that the endomorphism ring approach similarly fails to
give a secure IKD construction.

3.4 Trapdoors

In all constructions where the Ext-sk algorithm is needed to solve the underlying
hardness assumption, it is only natural to ask if we can empower the trusted
party with extra information. This information included in msk can allow the
trusted party to solve the assumed to be hard problem. Especially since the
Ext-pk algorithm that generates the public curves, takes mpk as input. This
means the trusted party can make use of a trapdoor function family, so that the
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public key curves generated under mpk can be inverted via msk to compute the
secret isogeny/endomorphism.

To the best of our knowledge, FESTA [7] and SILBE [29] are the only isogeny-
based trapdoor functions proposed in the literature.'* Now, we recall FESTA, and
discuss the construction of IKD via trapdoor functions with it.

Definition 13 (FESTA). Let Ey be a supersingular elliptic curve defined over
Fy2 for a prime p. Define (Py, Qp) = Eo[2°] to be a fived torsion basis, da,d1, and
dy be predefined degrees. The FESTA trapdoor function family FESTA(KGen, f, f~1)
can be described with the following algorithms:

KGen(1*) On input a security parameter, set pp = (Eo,p, Py, Qp,da,d1,ds).
Choose an isogeny pa: Ey — FEa of degree da, and an invertible diagonal

matriz A. Compute the scaled image points <§A> =A (SOA(Pb)). Output
A

0a(Q)
(sk,pk) = ((A,a), (pp, Ea, Ra, Sa)).
f(* pk,x) On input a security parameter, a public key pk, and an input z, parse
pk = (pp,Ea,Ra,S4), and x = ((K1),(K3), B). Compute two isogenies
p1: Eg — Ey and po: Ea — Es with kernels (K1), (K3) and of degree dy and

ds respectively. Compute <];11) =B <;§11((g;))) and (g;) =B (iéif;‘:;)
Output y = (E1, R1,S1, Ea, Ra, S2).

(1, pk, sk,y) On input a security parameter, a public key pk, a secret key
sk, and an output y, parse pk = (pp, Ea,Ra,Sa), sk = (A,04), and y =
(E1, Ry, 51, Es, R2,S2). Compute the isogeny v: @30 wa 0 ¢1: By — FEs
via an SIDH attack. Recover the kernels (K1), (K3) of the isogenies o1, p2
respectively, and the matriz B. Output x = ((K4), (K3), B).

It is crucial here to note that the inversion function f~' is only guaranteed
to invert valid output generated by f. This means, the trapdoor information
(A, @a) is not enough by itself, to recover a secret isogeny connecting random
public key curves [21]. In fact, this is a property of preimage sampleable trapdoor
functions as defined in the lattice-based IBE paper [38]. In other words, for a
uniformly chosen y, there exists an = such that f(x) = y, and the inversion
function can efficiently find it via f~!(y) = . Since both FESTA and SILBE do
not have this arbitrary output inversion property, it is not possible to randomly
generate the public key curves, and extract the secret isogeny connecting them.
Therefore, the only possible way is to generate the public key curves via the
function f.

Isogeny Construction 4 (IKD,) Let the parameters be the same as in the de-
scription of FESTA. The IKD can be described with the following algorithms:

KGen(lA) On input a security parameter 1)‘, compute
(Apsks Pmsk)s (PP, Evpls Rinpks Smpk) <5 FESTA.KGen(1%) .
14 Although the abbreviations FESTA and SILBE stand for the encryption schemes, we

refer to the underlying trapdoor function for sake of conciseness.
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Let H be a random oracle that on input an id, outputs ((K1), (K2), B), where
(K1), (K2) are cyclic subgroups of Ey[di1] and Eppilds], and B is an invert-
ible diagonal matriz. Let (Amsk, Pmsk) € msk, and (pp, Empr, Rimpks Smpk, H) €
mpk, and output the key pair (msk, mpk).
Ext-pk(mpk,id) On input a master public key and an identity, output a public
key pk = (Eo iq, Ro,id, So.ids Enias Riias S,ia) < f(1*, mpk, H(id)).
Ext-sk(msk,id) On input a master secret key and an identity, compute pk <
F(1* mpk, H(id)). Invert the public key ((K1), (Ks), B) + f~1(1*, mpk, msk, pk).
Recover and output ps: Eoiq — Eiq from the information of msk and
(K1), (Ka), B).

Pmsk
Ey ------- > E
@i//%,m wl,zcu\ Plidg
Pska
Eoidg FEojdy —--------- > Evia,  Ehidg
N
Ny 7
-~ sk -

Fig.9: Illustration of IKD4 and the attack that reveals the master secret key
Pmsk-

Problem of Isogeny Construction 4. There is an insider attack to the scheme, as
shown in Fig. 9, that works in the following way. Once Alice learns her secret
isogeny @si,, she can compute the composition @p,sk = P1,ids © Pska © P0ida-
This partially reveals msk. Then, she can compute Bob’s secret key via g, =
©1,idp © Pmsk © P0,idy -

The instruments that enable the attack are reciprocal; either the fact that f
runs a CGL generator revealing an isogeny path to the msk curves, or that f~!
cannot revert uniformly sampled outputs. The attack similarly applies when
SILBE trapdoor function is used in place of FESTA, due to the same reasons.

4 How to Build IBE from Isogenies

It is apparent that the achievable constructions are insecure due to the vulnera-
bilities stemming from SECKER and CGL generators. On the other hand, when
only SECUER generators are used, the trusted party is required to solve the un-
derlying hardness assumption. Therefore, one needs a trapdoor function family—
that provides the trusted party with the trapdoor information to solve the un-
derlying hardness assumption. Admitting the difficulty of efficient SECUER gen-
erator instantiation, we claim it is still insufficient for an IBE construction, as
we also require such trapdoor mechanism that we describe in Appendix A.
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A SECUER Trapdoors

To pinpoint what exactly is required for a secure isogeny-based IBE construction,
we give the description of a strong primitive—as we call, a SECUER trapdoor
function family.

Definition 14. Let HZ, be a SECUER generator. The SECUER trapdoor func-
tion family X = (KGen, f, f~1) consists of the following algorithms:

KGen(1") On input a security parameter, output a key-pair (pk, sk).
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f(pk,xz) On input pk and x, output E, <sHZ, (pk, x).
f~Y(sk,E;) On input sk and E,, output End(E,).

This trapdoor function family is the analogue of preimage sampleable func-
tion families defined in [38]. The SECUER generator samples an element from
the range of function f, and f~! achieves to find its preimage. Nevertheless,
we use the term SECUER to point out that it is strictly necessary for such
construction to work.

We now give the description for an IKD construction that would work un-
der the assumption that there exists an efficient SECUER trapdoor function
instantiation.

Isogeny Construction 5 (IKD5) Let ¥ = (KGen, f, f~!) be a SECUER trap-
door function family. The IKD can be described with the following algorithms:

KGen (1) On input a security parameter, output a master key-pair (msk, mpk) <
X KGen(1?).

Ext-pk(mpk,id) On input a master public key and an identity, output E;q +
f(mpk,id).

Ext-sk(msk,id) On input a master secret key and an identity, compute and
output a secret key End(E;q) < f~(msk, E;q).

Since the public key curves are generated via a SECUER generator, the
attacks that stem from the usage of SECKER and CGL generators no longer
remain. Moreover, notice that due to the reductions between Problem 1 and
Problem 2, the secret endomorphism ring End(F;4) can be replaced with a secret
isogeny w;q : E9 — E;q, where Fy € mpk is a supersingular elliptic curve
with unknown endomorphism ring included in. Meaning, the instantiation of
SECUER trapdoor function family implies an IBE scheme in both settings we
discussed, i.e., secret key being either an isogeny or an endomorphism ring.
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