
Picking up the Fallen Mask:
Breaking and Fixing the RS-Mask Countermeasure

Dilara Toprakhisar1[0000−0003−4551−6775], Svetla Nikova1[0000−0003−3133−9261],
and Ventzislav Nikov2

1 COSIC, KU Leuven, Leuven, Belgium
{dilara.toprakhisar,svetla.nikova}@esat.kuleuven.be

2 NXP Semiconductors, Leuven, Belgium
venci.nikov@gmail.com

Abstract. Physical attacks pose a major challenge to the secure imple-
mentation of cryptographic algorithms. Although significant progress has
been made in countering passive attacks such as side-channel analysis
(SCA), protection against fault attacks is still less developed. One reason
for this is the broader and more complex nature of fault attacks, which
makes it difficult to create standardized fault evaluation methodologies
for countermeasures like those used for SCA. This makes it easier to
overlook potential vulnerabilities that attackers could exploit. RS-Mask,
published at HOST 2020, is such a countermeasure that has been affected
by the absence of a systematic analysis method. The fundamental concept
behind the countermeasure is to maintain a uniform distribution of vari-
ables, regardless of whether they are faulty or correct. This property is
particularly effective against Statistical Ineffective Fault Attacks (SIFA),
which exploit the dependency between fault propagation and the secret
data.
In this work, we present several fault scenarios involving single fault
injections on the AES implementation protected with RS-Mask, where
the fault propagation depends on the secret data. This happens because
the random space mapping used in RS-Mask countermeasure retains a
dependency on the secret data, as it is derived based on the S-box input.
To address this, we propose a new countermeasure based on the core
concept of RS-Mask, implementing a single mapping for all S-box inputs,
involving an intrinsic duplication. Next, we evaluate the effectiveness of
the new countermeasure against fault attacks by comparing the fault
detection rate across all possible fault locations and values for every
input. Additionally, we examine the output differences between faulty
and correct outputs for each input. Our results show that the detection
rate is uniform for each input, which ensures security against statisti-
cal attacks utilizing both effective and ineffective faults. Moreover, the
output differences being uniform for each input ensures security against
differential fault attacks.

Keywords: Fault Attacks · SIFA · AES.

1 Introduction

Cryptographic algorithms are designed to be secure against cryptanalytic attacks;
however, their physical implementations in embedded devices remain vulner-
able to physical attacks. These attacks exploit the physical characteristics of
the cryptographic implementations and can be broadly classified into two cate-
gories: passive attacks, which involve observing the device’s behavior (e.g., power
consumption [22], timing [21], and electromagnetic emanation [15]), and active
attacks, which induce errors in the computation through physical manipula-
tions (e.g., clock/voltage glitching [2], electromagnetic interference [9], and laser
injections [17]).

Side-channel analysis (SCA), being a passive attack technique, leverages the
information leakage arising from physical characteristics of the implementations
such as timing and power consumption. To protect against SCA, masking [5, 20, 27,
16] stands out as the most prominent countermeasure. Masking relies on splitting
the secret input into a number of statistically independent shares, ensuring that
even observing all but one share does not compromise the secret input. Notable
approaches include, among others, Domain Oriented Masking (DOM) [16], which
associates each share of the secret input with a distinct domain, and Threshold
Implementations (TI) [24], which computes over coordinate functions operating
on non-complete sets of secret input shares.

Differing from the passive observations exploited in SCA, fault attacks ac-
tively disrupt computations by injecting faults through physical fault injection
mechanisms. Since Boneh et al. [3] first demonstrated fault attacks on RSA,
numerous attack techniques have emerged to exploit injected faults in crypto-
graphic implementations. These attacks exploit the data-dependent response
to these injected faults. To protect against these attacks, redundancy is widely
employed as a countermeasure, by employing temporal, spatial, or informational
replication to detect whether a fault is injected or not. Upon a fault detection,
redundancy-based techniques either suppress the output or infect it to prevent
the adversary from extracting secret information. This approach has been further
leveraged to enable error correction. Recent countermeasures combine redundancy
with masking to provide simultaneous protection against both SCA and fault
attacks, with masking also serving to enhance the protection against fault attacks.
Such countermeasures were generally regarded as effective in protecting against
fault attacks. However, Statistical Ineffective Fault Attacks (SIFA) [13], intro-
duced in 2018, exploit data dependent fault propagation by collecting non-faulty
ciphertexts, rendering redundancy vulnerable to such attacks. Building on this
attack, Dobraunig et al. [12] utilized SIFA to overcome simple combination of
masking with redundancy by faulting non-linear operations. Notable examples
of such combined countermeasures include, but are not limited to, ParTI [31],
CAPA [28], Private Circuits II [19], M&M [23], Impeccable Circuits [1, 32, 26],
and Transform-and-Encode (TaE) [29], which were developed both before and
after the introduction of SIFA. All these countermeasures employ redundancy
in various forms (e.g., linear codes, MAC tags) with different levels of error
detection/correction granularity. Taking a different approach, Daemen et al. [8]

2

proposed the use of reversible operations, Toffoli gates, to ensure fault prop-
agation independent of the secret data, with a single error check at the end
of the encryption. Along the similar lines, the StaTI countermeasure [10] in-
troduced the notion of “stability”, a composable security property that ensures
fault propagation independent of the secret data, enabling a single error check
at the end of the encryption. Building on this concept, StaMAC [11] adopts
the stability notion within MAC tags. Another countermeasure, Random Space
Masking (RS-Mask) [25] that is published at HOST 2020, performs the S-box
computations in a random space, eliminating any bias introduced by injected
faults to the computations.

Despite these advancements in fault countermeasures, fault attacks still present
a more complex and diverse attack surface compared to passive attacks, making
the development of standardized fault evaluation methodologies challenging.
The lack of systematic fault evaluation methodologies increases the risk of
overlooking exploitable vulnerabilities in the countermeasures. Similarly, the
RS-Mask countermeasure, while conceptually shows promise, particularly against
statistical (ineffective) fault attacks, its fault evaluation is not comprehensive,
leaving several attack scenarios unaddressed.

Contributions. In this work, we address existing gaps in the fault evaluation of
RS-Mask and uncover previously overlooked vulnerabilities through specific fault
scenarios involving single fault injections in the protected AES implementation.
We demonstrate that RS-Mask’s random space mapping retains a dependency
on the secret data, therefore, failing to protect against statistical (ineffective)
fault attacks, as well as differential fault attacks. These findings underscore the
importance of thorough and systematic fault evaluations.

The identified vulnerabilities in RS-Mask stem from the use of distinct map-
pings derived for the S-box inputs (zero input vs. non-zero inputs), which are
combined using an auxiliary variable. To address this issue, we propose an im-
proved countermeasure that incorporates a single random space mapping for all
S-box inputs. Our evaluation demonstrates that this approach achieves a uniform
fault detection rate across all S-box inputs, ensuring robust protection against
both statistical and differential fault attacks through intrinsic duplication. We
additionally evaluate the side-channel security, and present hardware benchmark
results.

Outline. In Section 2, we discuss the adversary and security models that are
considered in this work, and provide an overview of the RS-Mask countermeasure.
In Section 3, we discuss the fault security of the RS-Mask countermeasure, and
outline the fault scenarios against the protected AES S-box implementation. Next,
we describe our proposed countermeasure involving the random space masking
specifically derived for the AES S-box in Section 4, and present its security and
performance evaluation.

3

2 Preliminaries

In this section, we introduce the probing and the gate/register-faulting adversaries
along with their respective security models assumed in this work. We then provide
an overview of the RS-Mask countermeasure [25] and its hardware implementation
details of the protected AES as described by the authors.

2.1 Adversary and Security Models

We consider an adversary with probing and faulting capabilities, assuming that
these capabilities are not used in combination. The attack surface is considered
as a Boolean circuit, a directed acyclic graph where the vertices correspond to
Boolean gates, and the edges correspond to the wires. This circuit takes an input
and calculates an output while having an internal state corresponding to the
sharing of the secret data stored in the registers.

Probing capabilities. We assume the d-probing model introduced by Ishai et
al. [20] to capture an attacker with probing capabilities. In this model, the
adversary is restricted to observing at most d wires of the Boolean circuit, with
the selected wires being specified before the circuit is executed. Additionally, we
assume the glitch-extended robust probing model introduced by Faust et al. [14]
to account for the physical effects of hardware glitches.

Faulting capabilities. We rely on the gate/register-faulting model [10] to capture
an attacker with faulting capabilities. In this model, the adversary can replace
an upper bounded number of gates or registers to output zero (through a reset
fault), output one (through a set fault), or flip the output (through a bitflip
fault). In this work, we consider a single gate/register-faulting adversary, where
the adversary is capable of replacing one gate or register in the circuit throughout
the whole computation, consistent with the single-fault attacks assumed in the
RS-Mask countermeasure.

We adopt a more relaxed security model compared to the security guaran-
tees associated with the gate/register-faulting model described in [10]. In our
correctness model, we introduce a relaxation that allows the adversary to receive
an incorrect output. However, this output remains unexploitable for all possible
single fault injections. Specifically, the difference between the outputs of the
faulty and correct circuits, given the same inputs, is uniformly distributed and
independent of both the injected fault and the secret inputs. Moreover, the fault
detection rate across all input values is also uniformly distributed. In our privacy
model, we assume the same model described in [10]. Specifically, for every fixed
injected fault, the probability of the abort signal is independent of the secret
inputs of the circuit.

4

2.2 RS-Mask: Random Space Masking as an Integrated
Countermeasure against Power and Fault Analysis

The RS-Mask countermeasure [25] ensures that intermediate variables maintain
a uniform distribution, even in the presence of fault injection. This uniformity
protects implementations against statistical fault attack techniques such as SIFA,
which exploit the bias in the distribution of intermediate variables. The core idea
of the countermeasure is to map the intermediate variables into a random space,
perform operations within this random space, and then transform the cipher
output back to the original space. By employing uniform random mapping, the
operations performed on the intermediate variables remain independent of the
secret data.

The linear operations of the cipher are inherently protected through masking,
requiring no additional protective measures. The S-box computations, however,
are performed in a random space where intermediate variables maintain a uniform
distribution. In the RS-Mask paper, the random space masking is designed such
that the S-box outputs the correct value XORed with a uniform random value,
neutralizing any bias induced by fault injection. The faults injected to the
intermediate variables in the random space are influenced by the random values,
ensuring that their propagation remains independent of the secret data.

8

4

4

4

2

2

2

2

2

4

4

4

8

Fig. 1: Canright implementation of the F28 inverter in the AES S-box.

Derivation of RS mapping for AES. The mapping derived for the F28 inversion
in the AES S-box ensures that, for a given input x, the output is x−1 + r, where
r is a uniform random value. The mapping is specifically designed for the AES
implementation based on the Canright construction [4], as depicted in Figure 1.
In this construction, the input to the F28 inversion is denoted by x = x1||x0, the
input to the F24 inversion by y, the output of the F24 inversion by y−1, and the
output of the F28 inversion by z = x−1 = z1||z0.

For inputs where x ̸= 0, the following output is computed:

z′1 = z1 + r1 = (x0 + yr1)y
−1

z′0 = z0 + r0 = (x1 + yr0)y
−1 , (1)

where r = r1||r0 is the uniform random value masking the inversion output. To
account for faults injected earlier in the inversion, the value y is derived along

5

a separate data path from the input x, ensuring that y−1 does not correspond
to the inverse of faulty y (or, conversely, that a faulty y−1 is not the inverse of
correct y).

However, this approach does not apply to the case when x = 0, as both
y and y−1 evaluate to zero. To handle the zero input case, the inverse of the
random value r is XORed with the input x. This ensures that the output remains
consistently masked with r, without relying on the calculations used for non-zero
inputs (Equation 1):

z′ = (0 + r−1)−1 = 0 + r , (2)

thereby aligning the behavior with that of non-zero inputs. To derive a unified
mapping for all inputs, an auxiliary variable f ∈ F24 is introduced, along with
its bitwise negation f̄ :

f =

{
(1, 1, 1, 1), x ̸= 0 (f̄ = (0, 0, 0, 0))

(0, 0, 0, 0), x = 0 (f̄ = (1, 1, 1, 1)) ,
(3)

where (1, 1, 1, 1) = 15 is the multiplicative unity in F24 . Using this, the overall
mapping is expressed as:

z′1 = z1 + r1 = (x0 + r−1
0 f̄ + yr1f)y

−1

z′0 = z0 + r0 = (x1 + r−1
1 f̄ + yr0f)y

−1 , (4)

where r−1 = r−1
1 ||r−1

0 .

Hardware implementation. The overall block diagram of the AES S-box imple-
mentation protected with RS-Mask countermeasure is presented in Figure 2. In
this implementation, the AES state is split into three shares, where one of the
shares is the RS share, the random value r. The round keys are split into two
shares, with the RS share set to zero. After the linear map is applied to the
S-box input x, the RS share is added to one of the two data shares. All non-linear
components in the design are implemented using threshold implementations
(TI) [24] with three shares as the masking technique.

As the random value r is independent of all other shares, its inverse r−1 is
computed in an unshared form. To protect against the effects of hardware glitches,
the RS-Mask paper specifies that the non-linear components of this inversion
circuit are registered. In parallel to the computation of r−1, the auxiliary variable
f ∈ F24 is computed using the Kronecker delta function. To maintain throughput,
the whole design is implemented as a 10-stage pipeline.

Although RS-Mask maps intermediate variables to a random space, the
authors acknowledge that the distribution of the output differences resulting
from the injected faults may still be non-uniform. This non-uniformity makes the
implementation vulnerable against differential fault attacks (DFA). To address
this vulnerability, the authors propose an infection mechanism as an additional
protection layer against DFA. As described above, the variables x0, x1 and y−1

6

Fig. 2: AES S-box protected by RS-mask. Red components are the additional
computations required for the RS mapping, green components are the additional
components required for the infection mechanism.

are already available in the RS-Mask circuit. Using these, the output of the S-box
inversion z can be recomputed with two additional F24 multipliers as shown in
Figure 2.

If no error occurs during the inversion, the expression ε = z+ r+ z′ evaluates
to zero (see Equation 4). Consequently, multiplying ε by a random value εr1
(with r1 being uniformly distributed) yields zero, and adding this to the S-box
output has no effect. If an error occurs in the inversion circuit, then ε ̸= 0, and
the resulting product εr1 ̸= 0 infects the S-box output.

However, this infection mechanism still does not protect against DFA, as an
error in one byte propagates to the entire column with deterministic relations
through the MixColumns operation. To mitigate this, the infection mechanism is
extended by computing four random variables εi = εri for i = 0, ..., 3 using four
uniformly random values ri. εi is then added to the i-th byte of the respective
column, randomizing all four bytes.

3 Security Analysis of RS-Mask

This section highlights the limitations of the AES S-box implementation protected
using the RS-Mask countermeasure.

First of all, one notable consideration is the computation of r−1, which
includes additional register layers intended to mitigate the physical effects of
hardware glitches. However, under the glitch-extended robust probing model
introduced by Faust et al. [14], r, being a single share, can be directly provided
to the simulator. As a result, these additional registers attempt to address an
issue that is not relevant in this context, potentially introducing unnecessary
implementation overhead.

Beyond the aforementioned overhead, another limitation of the RS-Mask
countermeasure arises in its infection mechanism intended to protect against
differential attacks. Specifically, the infection mechanism reuses the same S-box
input x to recompute the expected output z, which is then compared with the
actual output to generate the infection value εr1. However, if a fault is injected
to x, both the recomputed and actual outputs are affected similarly, causing ε,

7

and thus the infection value, to evaluate to zero. As a result, the fault remains
undetected and the state is uninfected. This allows DFA to still be successfully
performed on the RS-Mask countermeasure by injecting a fault to the S-box
input. We further explore this drawback in a fault scenario, which is elaborated
upon later in this section.

Finally, in the rest of this section, we present several fault scenarios that
demonstrate the vulnerability of the AES S-box implementation protected by
RS-Mask countermeasure. Specifically, we identify and describe four groups of
single fault locations that are vulnerable, as depicted in Figure 3.

Fig. 3: Fault locations on AES S-box protected by RS-mask.

Fault location 1: Kronecker delta function. The Kronecker Delta function is
evaluated at x + 255 to compute f . In one fault scenario, an attacker injects
an additive fault ∆ at the XOR operation that computes x+ 255 (indicated as
number 1 in Figure 3). As a result, the input to the Kronecker delta function
becomes x+255+∆. The function then outputs f = 0 (f̄ = 1) if x+∆ = 0 (i.e.,
x = ∆). Otherwise, if x ̸= ∆, the function outputs f = 1.

We analyze this fault scenario for three cases: x = ∆, x = 0 and x ̸= {0, ∆},
where z′ is the RS-Mask S-box output and z is the redundantly computed value
used in the infection mechanism, as shown in Figure 2 (if no fault is injected
z′ = z + r).

First, x = ∆ implies f = 0. Then, using Equation 4, we find:

z′1 = (∆0 + r−1
0)y−1

z′0 = (∆1 + r−1
1)y−1 ,

where z′ = (∆+ r−1)−1, and

z1 = ∆0y
−1

z0 = ∆1y
−1 ,

where z = ∆−1. Then,

ε = z + r + z′

= ∆−1 + r + (∆+ r−1)−1 .

8

If r ̸= 0, then, ε ̸= 0. Thus, the computation is infected.
Second, x = 0 implies f = 1 (and y, y−1 = 0). Then, using Equation 4, we

find z′ = 0 (z′1 = 0, z′0 = 0), and z = 0 (z1 = 0, z0 = 0). Then,

ε = z + r + z′ = r .

If r ̸= 0, then, ε ̸= 0. Thus, the computation is infected.
Third, x ̸= {0, ∆} implies f = 1. Then, using Equation 4, we find:

z′1 = (x0 + yr1)y
−1

z′0 = (x1 + yr0)y
−1 ,

where z′ = x−1 + r, and

z1 = x0y
−1

z0 = x1y
−1 ,

where z = x−1. Then,

ε = z + r + z′ = 0 .

Thus, the computation is not infected.
As a result, the computation is infected only when x = ∆ or x = 0 (assuming

r ̸= 0). The attacker can then exploit this by performing the encryption twice:
once with the fault injection and once without. If the outputs are different
(indicating the encryption with a fault injected was infected), the attacker learns
that x = ∆ or x = 0. To distinguish between these two, the attacker can repeat
the attack with a different ∆ value. If the encryption with fault injection is again
infected, it confirms that x = 0.

A potential fix involves replacing each AND gate in the Kronecker Delta
function by a gate which outputs 1 only when both inputs are zero. Then, the
Kronecker delta function can be computed directly on x, eliminating the need to
first compute x+ 255 as done in the original design.

Fault location 2: XOR of random r with the S-box input. The second fault scenario
is that, an attacker injects an additive fault ∆ at the XOR gate where the random
value r is combined with the state after the linear map (indicated as number
2 in Figure 3). This alters the S-box input to x + ∆. Consequently, the F28

inversion output becomes (x+∆)−1 + r. However, as the infection mechanism is
using the same faulty input x+∆, it fails to detect the injected fault, making
the implementation susceptible to DFA. Specifically, the infection mechanism of
the RS-Mask design only accounts for faults occurring within the F28 inversion
circuit, and does not cover the faults injected at earlier stages.

A potential fix could involve introducing a full redundancy. This would mean
replicating the entire circuit and including an error check mechanism at the end
of the computation. Such a design ensures that effective faults injected at any
point in the circuit are detected to protect against DFA.

9

Fault location 3: Inversion of r. The third fault scenario is that an attacker injects
a fault within the inversion circuit that computes r−1 (indicated as number 3 in
Figure 3) causing the output of that circuit to be r−1 +∆. We analyze this fault
scenario in two cases, x = 0 and x ̸= 0.

First, x = 0 implies f = 0. Then, using Equation 4, we find:

z′1 = (r−1 +∆0)y
−1

z′0 = (r−1 +∆1)y
−1 ,

where z′ = (r−1 +∆)−1, and z = 0 (z1 = 0, z0 = 0). Then,

ε = z + r + z′

= r + (r−1 +∆)−1 .

Since ∆ ̸= 0, ε ̸= 0. Thus, the computation is infected.
Second, x ̸= 0 implies f = 1. Then, using Equation 4, we find:

z′1 = (x0 + yr1)y
−1

z′0 = (x1 + yr0)y
−1 ,

where z′ = x−1 + r, and

z1 = x0y
−1

z0 = x1y
−1 ,

where z = x−1. Then,

ε = z + r + z′ = 0 .

Thus, the computation is not infected.
As a result, the computation is infected only when x = 0 (if r ̸= 0). Similar

to the first fault scenario, the attacker can then exploit this by performing the
encryption twice: once with the fault injection and once without. The outputs of
both encryptions being different implies that the first encryption was infected,
which also implies x = 0.

A potential fix could involve precomputing all (r, r−1) pairs before the encryp-
tion. Then, the probability of selecting the faulty pair becomes 1/256 considering
a single fault injection. While this does not fully eliminate the vulnerability, it
decreases the success probability of the attacker. A second potential fix could
involve including r and r−1 in the infection mechanism, i.e., infecting the com-
putation by randomizing (r−1)−1 + r which does not equal to zero if r−1 is
faulty.

Fault location 4: Additional RS-Mask circuit inside the inversion. The fourth fault
scenario is that an attacker injects an additive fault to one of the gates within

10

the additional RS-Mask circuit, indicated as number 4 in Figure 3. Any fault
injected to these gates causes a faulty value at the input of the F24 multiplication
with f . Then, the output of this multiplication is subsequently multiplied by y−1,
the F24 inversion output. We analyze this fault scenario in two cases, x = 0 and
x ̸= 0.

First, x = 0 implies f = 0, thereby nullifying the effect of the injected fault,
as the faulty value is multiplied by zero. Then, using Equation 4, we find z′ = r,
and z = 0. Then,

ε = z + r + z′ = 0 .

Thus, the computation is not infected.
Second, x ̸= 0 implies f = 1. Then, using Equation 4, we find:

z′1 = (x0 + (yr1 +∆1))y
−1

z′0 = (x1 + (yr0 +∆0))y
−1 ,

where z′ = x−1 + r +∆′, and

z1 = x0y
−1

z0 = x1y
−1 ,

where z = x−1. Then,

ε = z + r + z′ = ∆′ ̸= 0 .

Thus, the computation is infected.
As a result, the infection applies when x ̸= 0, due to the injected fault being

propagated to the output when f = 1. As in the previous fault scenarios, the
attacker can repeat the encryption and compare the outputs; if no difference
between the outputs is observed, they infer that x = 0.

One potential fix against this fault scenario is to multiply r0 and r1 by f
before the RS-Mask F28 inversion circuit. This ensures that any fault injected
to the gates indicated as number 4 propagates to the output, regardless of the
value of x. This is because, within the RS-Mask inversion circuit, the input to
the inversion logic is never zero, even when x = 0. Only the propagation of the
faults injected to r0 or r1 depends on f , however then, these faults are equivalent
to register faults injected to the RS-Mask random r. These would have the same
effect as using a different r value.

In the original paper, the security of RS-Mask countermeasure is evaluated
against statistical (ineffective) fault attacks, focusing on a single location of fault
injection. However, as the overall security of the countermeasure cannot be ensured
by evaluating only this single scenario, such an evaluation remains incomplete.
The fault scenarios discussed in this section highlight a critical observation:
any additional circuit introduced to protect against fault attacks inherently
expands the attack surface, and may introduce new points of vulnerability that
could be exploited. Consequently, for countermeasures without provable security

11

guarantees, it is essential to comprehensively evaluate any additional circuit
introduced against fault attacks to identify potential vulnerabilities. Similarly,
the proposed fixes for the fault scenarios presented in this section do not inherently
ensure security. These fixes may further expand the attack surface, and therefore,
they must undergo a rigorous evaluation to assess their security against fault
attacks.

In the following section, we describe a random space mapping for Canright’s
AES S-box, where we systemically evaluate each gate in the resulting circuit.

4 An AES-specific Countermeasure

In this section, we introduce an AES-specific countermeasure, based on the core
idea of the RS-Mask countermeasure, protecting against single gate/register-
faulting adversary. Unlike the RS mapping derived for the AES S-box implemented
using the Canright construction, which is conditioned on the input value x, our
proposed countermeasure derives a uniform mapping that is independent of the
value of x.

Derivation of the random mapping for the AES S-box implemented using Canright
construction. In Canright’s AES S-box, as shown in Figure 1, two inversion
operations are performed in F28 and F24 . Each involves multiplying the input of
the inversion (x, y) by the corresponding outputs of the inner inversions (y−1,
k−1). These multiplications are vulnerable to SIFA, as faults present in y−1 and
k−1 are not propagated to the S-box output when the input x is zero (which also
leads to y being zero).

The variables (x, y, k, k−1, y−1, and x−1) referenced in this section correspond
to those shown in Figure 1.

Consider the following table, which summarizes the behavior of expressions
derived from y and y−1 under different S-box input x conditions:

y y−1 yy−1 + 1 y + yy−1 + 1 y−1 + yy−1 + 1

x = 0 0 0 1 1 1
x ̸= 0 y y−1 0 y y−1

As observed in the above table, the following holds for all input values x:

(y + yy−1 + 1)(y−1 + yy−1 + 1) = 1 .

Similarly, the following expression also holds for all input values x = x1||x0:

x0(yy
−1 + 1) = 0

x1(yy
−1 + 1) = 0 .

This behavior is in contrast to the original RS-Mask countermeasure, where the
multiplication of y and y−1 introduces an input-dependent behavior.

12

We now describe the new mapping for the Canright’s AES S-box as follows:

z′1 = z1 + r1 = (x0 + (y + yy−1 + 1)r1)(y
−1 + yy−1 + 1)

z′0 = z0 + r0 = (x1 + (y + yy−1 + 1)r0)(y
−1 + yy−1 + 1) , (5)

where z′ = z′1||z′0 = x−1 + r.
Similar to the RS-Mask countermeasure, analyzing the distribution of the

output differences (between the faulty and correct S-box outputs) under faults
present in y and y−1 reveals a non-uniform pattern. This non-uniformity exposes
the design to differential fault attacks.

Rather than relying on an infection mechanism, which, when implemented
correctly (e.g., via full duplication), requires substantial area overhead, we
propose a lightweight tweak to the random mapping. Specifically, we introduce an
additional term, (yy−1+1)r′y−1 to the S-box output. In the absence of faults, this
term evaluates to zero, as shown in the table above. Here, r′ is a uniform random
value distinct from the one used in the main mapping described in Equation 4.
The modified mapping is given as follows, where r = r1||r0 and r′ = r3||r2:

z′1 = z1 + r1 = (x1 + (y + yy−1 + 1)r1)(y
−1 + yy−1 + 1) + (yy−1 + 1)r3y

−1

z′0 = z0 + r0 = (x0 + (y + yy−1 + 1)r0)(y
−1 + yy−1 + 1) + (yy−1 + 1)r2y

−1 .
(6)

It is clear that this mapping is correct if no faults occur during the computation
of y and y−1.

We note that it is essential to compute y using a redundant datapath similar
to the RS-Mask countermeasure in order to account for the faults that are injected
earlier in the circuit.

As previously noted, the inversion in Canright’s AES S-box involves two
multiplications that are susceptible to SIFA. To ensure both multiplications are
secure against SIFA, the mapping introduced in Equation 5 is also applied to the
F24 inversion. Furthermore, similar to the inversion in F28 , k is also computed
using a redundant datapath in order to account for the faults that are injected
earlier in the circuit. We describe the mapping for the F24 inversion as follows:

y−1
1 = (y1 + (k + kk−1 + 1)r5)(k

−1 + kk−1 + 1) + r5

y−1
0 = (y0 + (k + kk−1 + 1)r4)(k

−1 + kk−1 + 1) + r4 , (7)

where y−1 = y−1
1 ||y−1

0 .
Unlike the mapping derived for the inversion in F28 (Equation 4), the cor-

responding mapping for the inversion in F24 naturally yields uniform output
differences, eliminating the need for an additional random term.

To protect against differential fault attacks, we introduce an intrinsic redun-
dancy by duplicating the S-box input. The random space mapping components
computed from the first input are then used in the calculation of the second
S-box output using the duplicated S-box input as shown in Figure 4.

13

2

2

2

44

2

3

3

15

8

4

4

4

4

4

8

4

4

4

4

Fig. 4: F28 inversion of the AES S-box.

Hardware implementation. The overall block diagram of the AES S-box imple-
mentation protected using the proposed random space mapping is presented in
Figure 4. Similar to RS-Mask countermeasure, the state is split into three shares,
however we do not keep the random mask values as part of the shared state.
Meaning, all linear and non-linear components in the design operate over three
shares.

The upper circuit in Figure 4 depicts the mapping for the inversion in F24 ,
and the lower circuit depicts the mapping for the whole AES S-box implemented
using Canright’s construction. The F24 inverter (GF (24) Inv.) within the AES
S-box uses the upper circuit. Components added beyond Canright’s original AES
S-box implementation are highlighted in red.

Our implementation builds on the F28 inversion circuit from [6] based on
Consolidating Masking Schemes [27] with three shares to achieve second order se-
curity. In this construction, the inversion circuit consumes 162 bits of randomness.
Building upon this foundation, we extend the circuit by integrating the additional
components (shown as red in Figure 4) required for the random space mapping.

14

While extending the circuit, we adhere to the d+ 1-share multipliers from the
original inversion circuit. Together with the 20 bits of randomness required by
the random space mapping and additional multiplications, our implementation
consumes 344 bits of randomness. The design is implemented over 8 pipeline
stages.

4.1 Side-Channel Security

In this section, we discuss the SCA security of the AES S-box implementation
using the proposed random mapping. To evaluate the SCA security of our
design, we perform TVLA (Test Vector Leakage Assessment) [7]. We perform the
assessment for the S-box implemented with the proposed random space mapping
by supplying it with fixed versus random inputs. The S-box is placed on a Xilinx
Spartan-6 FPGA located on a SAKURA-G evaluation board [30], whereas masks
generation is located on a separate control FPGA. The devices are supplied with
a stable 6.144 MHz clock and an oscilloscope samples power consumption traces
at a rate of 1GS/sec. The results of the first and second-order tests are depicted in
Figure 5. The results report no leakage regarding first and second-order probing
security.

Fig. 5: TVLA result of the AES S-box implemented with the proposed random
space mapping, first and second-order security, 100 million traces, and a sample
trace.

4.2 Fault Security

We now discuss the fault security of the AES S-box implementation using the
proposed random space mapping.

15

Existing provable methods for fault security evaluation, typically based on
error detection or correction, are not applicable to our design. Rather than
preventing the propagation of injected faults through detection or correction
mechanisms, our countermeasure ensures that the injected faults are deliberately
propagated to infect the circuit’s state. As a result, the infected output that is
not detected by the error detection circuit at the end of the encryption becomes
unexploitable.

To evaluate the fault security of our AES-specific countermeasure, we analyze
the detection rate of the injected faults. A uniform detection rate across all input
values indicates resistance against statistical fault attacks. We performed an
attack simulation on the C implementation of the AES S-box design to evaluate
the security against a single gate/register-faulting adversary. Faults were modeled
as XOR additions applied to the intermediate variables. To simulate this, we
extended the C code of the design by XORing a fault variable with selected
critical intermediate values. Specifically, faults were injected to each component
of the S-box, namely XOR gates and all field operations as shown in Figure 4).
For each experiment, we marked the fault as detected if the outputs differed. For
each input value, 500,000 experiments are conducted to account for wide range of
fault values and random values introduced by the random mapping. The results
demonstrated that the detection rate remains uniform across all input values for
each fault location and fault value.

Figure 6a and 6b illustrate that the detection rate remains uniform across all
S-box input values when a fault is injected to the output of the F22 multiplier
(similar to the fault scenario used in the RS-Mask countermeasure). In our design,
the multiplier is duplicated as part of the random mapping, corresponding to
fault locations 1 and 2 in Figure 4).

100 200

92

94

96

98

100

S-box Input Value

D
et

ec
ti

on
ra

te
(%

)

(a) Fault location 1

100 200

92

94

96

98

100

S-box Input Value

D
et

ec
ti

on
ra

te
(%

)

(b) Fault location 2

Fig. 6: Distribution of the detection rate across all S-box input values when a
fault is injected to the output of the duplicated F22 multipliers denoted with
fault location 1 and 2 in Figure 4.

16

Figure 7 shows a uniform detection rate (%100 detection) across all S-box
input values when simulating fault scenario 4, previously proposed against the
RS-Mask countermeasure, by injecting a fault to the F24 constant multiplier as
denoted with fault location 3 in Figure 4.

100 200

92

94

96

98

100

S-box Input Value

D
et

ec
ti

on
ra

te
(%

)

Fig. 7: Distribution of the detection rate across all S-box input values when a
fault is injected to the output of the F24 constant multiplier (of the random
mapping circuit) denoted with fault location 3 in Figure 4.

We repeated the evaluation, this time focusing on the distribution of output
differences. As before, for each experiment, the resulting output differences were
recorded. The results show that the output differences are uniformly distributed
across all S-box input values for every fault location and fault value tested.
Together, these two evaluations demonstrates the correctness and the privacy of
the protected AES S-box with the proposed random space mapping.

4.3 Hardware Benchmarks

In this section, we evaluate the hardware performance of our protected AES
S-box implementation. We use the Synopsys Design Compiler (version S-2021.06-
SP3) together with the open source NANGATE 45nm library. The hierarchical
structure is preserved during the synthesis, and undesired optimizations are
avoided.

We compare our protected AES S-box implementation secure against SCA and
fault attacks with the AES S-box implementation from [6] based on Consolidated
Masking Scheme secure against only SCA which we implemented ourselves. Both
designs provide second-order SCA security. Compared to the implementation
from [6], the number of masked field multiplications is doubled (one of which is
duplicated using same randomness) in our implementation. Together with the
extra randomness required by the random space mapping, our design requires
110 additional random bits. Regarding the area costs, our design introduces an
area overhead of approximately 2.85.

We report only the overhead factors relative to their corresponding SCA-
only designs for the RS-Mask countermeasure [25], λ-detection M&M [18] and

17

StaMAC [11], rather than absolute area numbers. The selection of these counter-
measures, in addition to RS-Mask, for comparison is motivated by the availability
of area reports for their AES (S-box) implementations, as well as their protection
against SCA and SIFA. While our design incurs a slightly higher area overhead
compared to the original RS-Mask countermeasure, it offers stronger protection
by additionally securing against SIFA and achieving second-order SCA security,
features not offered by RS-Mask.

Table 1: Hardware cost comparison of various designs.

Design
SCA S-box Randomness Area Overhead
Order Stages [bit] (kGE)

SCA only [6] 2 6 162 4.5∗∗

RS-Mask [25] 1 10 2∗

λ-detection M&M [18] 2 6 903 3.49∗

StaMAC [11] 1 9 56 3.83∗

This paper 2 8 344 12.84∗∗ 2.85
∗ overhead for the whole AES implementation

∗∗ only inversion

5 Conclusion

In this paper, we addressed the gaps in the fault evaluation of RS-Mask and
identified several vulnerabilities through which a single fault injection in the
protected AES implementation compromise its security. The attack scenarios we
present demonstrate that the random space mapping proposed for the AES S-box
in the RS-Mask countermeasure retains dependency on the secret data, allowing
attackers to exploit this dependency under specific fault scenarios. Although
RS-Mask includes a formal security proof, it only guarantees that the random
space mapping produces uniformly distributed values, and it does not address
the fault security of the additional circuit required to implement this mapping.
Our analysis shows that this overlooked aspect introduces exploitable weaknesses.
These findings highlight the critical need for more comprehensive fault evaluations
in the design of fault countermeasures, as increasing area to protect against fault
attacks may introduce new attack surface to the attackers.

Besides these attack scenarios, we proposed an AES-specific countermeasure
involving a single random space mapping for all S-box input values without
an auxiliary variable. With this unified mapping, we aimed to mitigate the
vulnerabilities we identified in the RS-Mask countermeasure. Our evaluation of
the proposed countermeasure confirms the improved robustness against statistical
and differential fault attacks.

18

Acknowledgments. This work was supported by CyberSecurity Research Flanders
with reference number VR20192203.

References

1. Aghaie, A., Moradi, A., Rasoolzadeh, S., Shahmirzadi, A.R., Schel-
lenberg, F., Schneider, T.: Impeccable circuits. IEEE Trans. Comput-
ers 69(3), 361–376 (2020). https://doi.org/10.1109/TC.2019.2948617,
https://doi.org/10.1109/TC.2019.2948617

2. Anderson, R.J., Kuhn, M.G.: Low cost attacks on tamper resistant devices. In:
Christianson, B., Crispo, B., Lomas, T.M.A., Roe, M. (eds.) Security Proto-
cols, 5th International Workshop, Paris, France, April 7-9, 1997, Proceedings.
Lecture Notes in Computer Science, vol. 1361, pp. 125–136. Springer (1997).
https://doi.org/10.1007/BFb0028165, https://doi.org/10.1007/BFb0028165

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: Fumy, W. (ed.) Advances
in Cryptology - EUROCRYPT ’97, International Conference on the Theory and
Application of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997,
Proceeding. Lecture Notes in Computer Science, vol. 1233, pp. 37–51. Springer
(1997). https://doi.org/10.1007/3-540-69053-0_4, https://doi.org/10.1007/3-540-
69053-0_4

4. Canright, D.: A very compact s-box for AES. In: Rao, J.R., Sunar, B. (eds.)
Cryptographic Hardware and Embedded Systems - CHES 2005, 7th Interna-
tional Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings.
Lecture Notes in Computer Science, vol. 3659, pp. 441–455. Springer (2005).
https://doi.org/10.1007/11545262_32, https://doi.org/10.1007/11545262_32

5. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M.J. (ed.) Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings. Lecture Notes in Computer
Science, vol. 1666, pp. 398–412. Springer (1999). https://doi.org/10.1007/3-540-
48405-1_26, https://doi.org/10.1007/3-540-48405-1_26

6. Cnudde, T.D., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Mask-
ing AES with d+1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.)
Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th Interna-
tional Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings.
Lecture Notes in Computer Science, vol. 9813, pp. 194–212. Springer (2016).
https://doi.org/10.1007/978-3-662-53140-2_10, https://doi.org/10.1007/978-3-
662-53140-2_10

7. Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P., et al.:
Test vector leakage assessment (TVLA) methodology in practice. In: International
Cryptographic Module Conference. vol. 20 (2013)

8. Daemen, J., Dobraunig, C., Eichlseder, M., Groß, H., Mendel, F., Primas, R.: Protect-
ing against statistical ineffective fault attacks. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2020(3), 508–543 (2020). https://doi.org/10.13154/TCHES.V2020.I3.508-
543, https://doi.org/10.13154/tches.v2020.i3.508-543

9. Dehbaoui, A., Dutertre, J., Robisson, B., Tria, A.: Electromagnetic transient faults
injection on a hardware and a software implementations of AES. In: Bertoni, G.,

19

Gierlichs, B. (eds.) 2012 Workshop on Fault Diagnosis and Tolerance in Cryptogra-
phy, Leuven, Belgium, September 9, 2012. pp. 7–15. IEEE Computer Society (2012).
https://doi.org/10.1109/FDTC.2012.15, https://doi.org/10.1109/FDTC.2012.15

10. Dhooghe, S., Ovchinnikov, A., Toprakhisar, D.: Stati: Protecting against fault
attacks using stable threshold implementations. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2024(1), 229–263 (2024). https://doi.org/10.46586/TCHES.V2024.I1.229-
263, https://doi.org/10.46586/tches.v2024.i1.229-263

11. Dhooghe, S., Ovchinnikov, A., Toprakhisar, D.: Stamac: Fault protec-
tion via stable-mac tags. IACR Cryptol. ePrint Arch. p. 455 (2025),
https://eprint.iacr.org/2025/455

12. Dobraunig, C., Eichlseder, M., Groß, H., Mangard, S., Mendel, F., Primas, R.: Statis-
tical ineffective fault attacks on masked AES with fault countermeasures. In: Peyrin,
T., Galbraith, S.D. (eds.) Advances in Cryptology - ASIACRYPT 2018 - 24th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 11273, pp. 315–342. Springer (2018).
https://doi.org/10.1007/978-3-030-03329-3_11, https://doi.org/10.1007/978-3-
030-03329-3_11

13. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F.,
Primas, R.: SIFA: exploiting ineffective fault inductions on sym-
metric cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(3), 547–572 (2018). https://doi.org/10.13154/tches.v2018.i3.547-572,
https://doi.org/10.13154/tches.v2018.i3.547-572

14. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.:
Composable masking schemes in the presence of physical defaults &
the robust probing model. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(3), 89–120 (2018). https://doi.org/10.13154/TCHES.V2018.I3.89-120,
https://doi.org/10.13154/tches.v2018.i3.89-120

15. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete re-
sults. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) Cryptographic Hardware
and Embedded Systems - CHES 2001, Third International Workshop, Paris,
France, May 14-16, 2001, Proceedings. Lecture Notes in Computer Science,
vol. 2162, pp. 251–261. Springer (2001). https://doi.org/10.1007/3-540-44709-1_21,
https://doi.org/10.1007/3-540-44709-1_21

16. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact
masked hardware implementations with arbitrary protection order. In: Bil-
gin, B., Nikova, S., Rijmen, V. (eds.) Proceedings of the ACM Work-
shop on Theory of Implementation Security, TIS@CCS 2016 Vienna, Austria,
October, 2016. p. 3. ACM (2016). https://doi.org/10.1145/2996366.2996426,
https://doi.org/10.1145/2996366.2996426

17. Habing, D.H.: The use of lasers to simulate radiation-induced transients in semicon-
ductor devices and circuits. IEEE Transactions on Nuclear Science 12(5), 91–100
(1965)

18. Hirata, H., Miyahara, D., Arribas, V., Li, Y., Miura, N., Nikova, S., Sakiyama,
K.: All you need is fault: Zero-value attacks on AES and a new λ-detection m&m.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2024(1), 133–156 (2024)

19. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.A.: Private circuits II: keeping se-
crets in tamperable circuits. In: Vaudenay, S. (ed.) Advances in Cryptology - EURO-
CRYPT 2006, 25th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceed-

20

ings. Lecture Notes in Computer Science, vol. 4004, pp. 308–327. Springer (2006).
https://doi.org/10.1007/11761679_19, https://doi.org/10.1007/11761679_19

20. Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003, 23rd
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 17-21, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2729,
pp. 463–481. Springer (2003). https://doi.org/10.1007/978-3-540-45146-4_27,
https://doi.org/10.1007/978-3-540-45146-4_27

21. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 18-22, 1996, Proceedings. Lecture Notes in Computer Science,
vol. 1109, pp. 104–113. Springer (1996). https://doi.org/10.1007/3-540-68697-5_9,
https://doi.org/10.1007/3-540-68697-5_9

22. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J.
(ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceed-
ings. Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer (1999).
https://doi.org/10.1007/3-540-48405-1_25, https://doi.org/10.1007/3-540-48405-
1_25

23. Meyer, L.D., Arribas, V., Nikova, S., Nikov, V., Rijmen, V.: M&m: Masks
and macs against physical attacks. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2019(1), 25–50 (2019). https://doi.org/10.13154/tches.v2019.i1.25-50,
https://doi.org/10.13154/tches.v2019.i1.25-50

24. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) Information
and Communications Security, 8th International Conference, ICICS 2006, Raleigh,
NC, USA, December 4-7, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 4307, pp. 529–545. Springer (2006). https://doi.org/10.1007/11935308_38,
https://doi.org/10.1007/11935308_38

25. Ramezanpour, K., Ampadu, P., Diehl, W.: Rs-mask: Random space mask-
ing as an integrated countermeasure against power and fault analy-
sis. In: 2020 IEEE International Symposium on Hardware Oriented Secu-
rity and Trust, HOST 2020, San Jose, CA, USA, December 7-11, 2020.
pp. 176–187. IEEE (2020). https://doi.org/10.1109/HOST45689.2020.9300266,
https://doi.org/10.1109/HOST45689.2020.9300266

26. Rasoolzadeh, S., Shahmirzadi, A.R., Moradi, A.: Impeccable circuits III. In: IEEE
International Test Conference, ITC 2021, Anaheim, CA, USA, October 10-15,
2021. pp. 163–169. IEEE (2021). https://doi.org/10.1109/ITC50571.2021.00024,
https://doi.org/10.1109/ITC50571.2021.00024

27. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 9215, pp. 764–783. Springer (2015). https://doi.org/10.1007/978-3-662-47989-
6_37, https://doi.org/10.1007/978-3-662-47989-6_37

28. Reparaz, O., Meyer, L.D., Bilgin, B., Arribas, V., Nikova, S., Nikov, V., Smart, N.P.:
CAPA: the spirit of beaver against physical attacks. In: Shacham, H., Boldyreva,
A. (eds.) Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,

21

Part I. Lecture Notes in Computer Science, vol. 10991, pp. 121–151. Springer (2018).
https://doi.org/10.1007/978-3-319-96884-1_5, https://doi.org/10.1007/978-3-319-
96884-1_5

29. Saha, S., Jap, D., Roy, D.B., Chakraborti, A., Bhasin, S., Mukhopadhyay,
D.: Transform-and-encode: A countermeasure framework for statistical ineffec-
tive fault attacks on block ciphers. IACR Cryptol. ePrint Arch. p. 545 (2019),
https://eprint.iacr.org/2019/545

30. SAKURA: Side-channel Attack User Reference Architecture.
http://satoh.cs.uec.ac.jp/SAKURA/index.html

31. Schneider, T., Moradi, A., Güneysu, T.: Parti - towards combined hardware coun-
termeasures against side-channel and fault-injection attacks. In: Robshaw, M., Katz,
J. (eds.) Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 9815, pp. 302–332. Springer (2016).
https://doi.org/10.1007/978-3-662-53008-5_11, https://doi.org/10.1007/978-3-
662-53008-5_11

32. Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable cir-
cuits II. In: 57th ACM/IEEE Design Automation Conference,
DAC 2020, San Francisco, CA, USA, July 20-24, 2020. pp. 1–
6. IEEE (2020). https://doi.org/10.1109/DAC18072.2020.9218615,
https://doi.org/10.1109/DAC18072.2020.9218615

22

