. fWA 7
> @ ,
THALES

Building a future we can all trust

it hint

N ¥

g an implic

Jordan Beraud 2
Louvis Goubin 2

Thales, France

2 UVSQ, France

/777

Table of contents

01 02 03

Context ML-DSA in detail Fault attack on ML-DSA

04 05

Our optimizations Practical results

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

Context
Dilithium is a signature algorithm recently standardized by NIST under the name ML-DSA.

ML-DSA is recommended for computing quantum-secure signatures in most use cases.

mos 204 \

Federal Information Processing Standards Publication

Module-Lattice-Based Digital
Signature Standard

Category: Computer Security Subcategory: Cryptography

Information Technology Laboratory
Mational Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
https://doi.org/10.6028/NIST.FIPS.204

Published August 13, 2024

it is necessary to investigate the security of embedded implementations. The security of ML-DSA against Side-
Channel Attacks (SCA) and Fault Attacks (FA) thus needs to be carefully assessed.

OPEN

I I I /'\ L E 5 REF xxxxxxxxxxxx rev xxx - date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

An overview of ML-DSA

ML-DSA uses two rings:

R=Zl/(a"+1) Ry=Za/(a" +1)

with: n = 256 and q = 8380417.

Algorithm KeyGen

Ensure: (pk, sk)
1: A« RgXl
2: (Sl,Sz) — Sf? X Sf;
3: t:=As; + sy
4: return pk = (A,t), sk = (A, t,s1,82)

N

U@Lt
(A, t,Sl, Sz) (A, t)

OPEN
we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved. 4

n
>

/777

An overview of ML-DSA

ML-DSA uses two rings:

R=Zl/(a"+1) Ry=Za/(a" +1)

with: n = 256 and q = 8380417

Algorithm KeyGen a an even integer which divides q — 1 and:

Ensure: (pk, sk)
1: A« RgXl
2: (Sl,Sz) — 5717 X Sf;
3: t:=As; + sy
4: return pk = (A,t), sk = (A, t,s1,82)

r—ry

r=ria+1rywithry = rmod*(a) and r, =

Possible values of r,: {—% +1,..,0, g}

Possible values of rya: {0,a,2a,...,q—1}

One note:
/N

HighBits,(r,a) = ry and LowBits,(r,a) =y

v

U@Lt
(A, t,Sl, Sz) (A, t)

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

An overview of ML-DSA

ML-DSA uses two rings:
R =Zlz]/(x™ + 1) Ry = Zg|x]/ (2™ + 1)

with: n = 256 and q = 8380417 r = HighBits,(r,a) X a + LowBits,(r, a)

Algorithm KeyGen
Ensure: (pk, sk) p=(p . pl)
1: A« RgXl
2: (s1,82) S% X 57’7‘“ plil — Zpixi
3: t:=As; + sy
4: return pk = (A,t), sk = (A, t,s1,82)

HighBits,(P!", a) = z HighBits,(p;, a)x'

N

i HighBits, (P, a) = (HighBitsq(P[l], a), .., HighBits, (P, a))
(A, t,Sl, Sz) (A, t)

OPEN
we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

n
>

/777

An overview of ML-DSA

Alice draws a polynomial vector at random:

Algorithm Sig

Require: sk, M Yy Eg Rl, ||y||ooS V1.
Ensure: o = (¢,2)
1. z=1
5. while z — | do She computes a random challenge that depends on the
3y S message:
4 wip = HighBits(Ay, 27s) c=H (M | | HighBits,(Ay, Zyz)).
5: ¢ € By := H(M||wy)
6 z:=y+tces: She provides a response to the challenge:
7: if ||z||cc = v1 — B or LowBits(Ay — ¢s2,2%2)||ex = 72 — B then Z=7y+cs,q
8: zZ:=1
9: endif By definition of z:

10: end while
11: return o = (¢, z)

[Az —ct =Ay — csz.l

The signature will be:

(M, 0 = (c,2)) o)

g o= (c, 2).
i But..
(A, t, 51152) (A; t)
OPEN
T H A L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007

Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

An overview of ML-DSA

But..
Algorithm Sig
Require: sk, M By definition of z:
Ensure: o = (c,z)
cz=1
bz Z=y+cs;

2: while z =1 do

3y« S Two conditions must be fulfilled:

4: wi := HighBits(Ay, 272)

5. ce B, = H(M|lwi) |lz|| < max, (llylloo) _max{c,sl}(“CSl”oo)

6: Z:=y+cs

7 if ||z||cc > 1 — B or LowBits(Ay — ¢S2,2%2)||ec = 2 — 3 then HighBitSq(Ay» 2y2) = HighBitSq(Ay — €S3,2Y2)
8: z:=1

9: end if The first condition is for security, the second for

10: end while

verification and security.
11: return o = (¢, z)

With these conditions:

(M, 0 = (c,2)) o)

V7 4
(A,t,51,55) (4,1t)

v

[HighBits(Az — ct) = HighBits(Ay — cs,) = HighBits(Ay) }

OPEN

I I I A L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
3uilding a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

An overview of ML-DSA

Algorithm Sig

Require: sk, M
Ensure: o = (c,z)
1. z=1

2: while z =1 do
3: y S',lh

4: w1y := HighBits(Ay, 2v9)

5: ¢ € By := H(M||wy)

6: Z:=y+cs

7 if ||z||cc > 1 — B or LowBits(Ay — ¢S2,2%2)||ec = 2 — 3 then
8: z:=1

9: end if

10: end while
11: return o = (¢, z)

(M,o = (c,2))

AN

) V7 4
(4,t)

v

(A, t, S1, Sz)

THALES

we can all trust

OPEN

Algorithm 1 Ver

1: w) :=HighBits(Az — ct, 2v2)
2: Accept if ||z||cc <71 — B and ¢ = H(M||w))

Bob can recompute wy:

Wy = nghBltSq(Ay; ZYZ)
= HighBits, (Ay — cs,2Y>)
= HighBits,(Az — ct, 2y,)
= wj

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

An overview of ML-DSA

Algorithm Sig

Require: sk, M
Ensure: o = (c,z)
1. z=1
2: while z =1 do

3: y S',lh

4: w1y := HighBits(Ay, 2v9)

5: ¢ € By := H(M||wy)

6: Z:=y+cs

7 if ||z||cc > 1 — B or LowBits(Ay — ¢S2,2%2)||ec = 2 — 3 then
8: z:=1

9: end if

10: end while
11: return o = (¢, z)

AN

) V7 4
(4,t)

(M,o = (c,2))

v

(A, t, S1, Sz)

THALES

we can all trust

OPEN

Algorithm 1 Ver

1: w) :=HighBits(Az — ct, 2v2)
2: Accept if ||z||cc <71 — B and ¢ = H(M||w))

Bob can recompute wy:

Wy = nghBltSq(Ay; ZYZ)
= HighBits, (Ay — cs,2Y>)
= HighBits,(Az — ct, 2y,)
= wj

[Z=y+cs;]

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

uuuuuuuuuuuuuuuuuuuuuuuuuuuu

4
fillics

= | | =

Existing fault - |
attack on .
ML-DSA A A ENTENT

ol |
= nggnnnl |||||“«H|l-

www.thalesgroup.com

Y4
A fault attack on ML-DSA

4 Loop-Abort Faults on Lattice-Based)
Fiat—Shamir and Hash-and-Sign Signatures [EFGT17]: Published at and describes

a fault attack against BLISS.

Thomas Espitau?, Pierre-Alain Fouque?,
Benoit Gérard!, and Mehdi Tibouchi®

A\ .
Algorithm 1 Sig Main Idea: Inject a fault to obtain one of the
Require: sk, M coefficients of y of abnormally small degree.
Ensure: 0 = (¢, 2)
1. z=1 o N o
s while 7 — | do They consider a signature ¢ = (c, z) with
3y« S
4: w; := HighBits(Ay, 2vs)
5 ce B, = H(M||lw) z =yl 4 cs[ll] and deg(y!)=m«n
6: Z: =Yy +csy
7: if ||z]|cc > 71 — B or LowBits(Ay — ¢s2,272)||ec = 72 — 3 then
8 z =1 This will make s, the smallest vector in a lattice
o endif of sufficiently small dimension to find it.
10: end while
11: return o = (¢, z)

OPEN

I I I /'\ L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

A fault attack on ML-DSA

One has:
Fault after iteration number m = 20 40 60 80 100
Theoretical minimum dimension fmin 22 44 66 88 110
zI1 = yl1l 4 ¢l
- y 1 Dimension £ in our experiment 24 50 80 110 140
Lattice reduction algorithm LLL BKZ-20 BKZ-25 BKZ25 BKZ25
. o o . . Success probability (%) 100 100 100 100 —
ThUS If ciIs Inverhble‘ Avg. CPU time to recover £ coeffs. (s) 0.23 7.3 119 941 10500
Avg. CPU time for full key recovery 5s 80 s 14 min 80 min 12 h
m
N R | 1] i
sy =c 120 — %y (cx)! mod(q).
i=0
Therefore, The fault attack is plausible.

5[11] € L(c™1zM { (cx)} The fault needs to be injected before the

.)
(et0,..mJ generation of the 100 first coefficients.

If m is sufficently small, 3[11] can be recovered

. . . i Shuffling the
using lattice reduction technique (LLL or BKZ).

order of the coefficient’'s generation.

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

THALES

Building a future we can all trust

(=

ll

= | I

|
<=0 gy
=

Our results

www.thalesgroup.com

/777

A fault attack on ML-DSA

Limitations:

Our questions:

« Applicable to ML-DSA?

* Possible to improve with more faults?

» Possible to overcome the simple
countermeasure?

* Turn it into a passive attack?

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

OPEN

Algorithm 34 ExpandMask(p, xt)

Samples a vectory € RY such that each polynomial y[r| has coefficients between —~, + 1 and
Y1
Input: A seed p € B% and a nonnegative integer .
Output: Vector y € RR°.
1 c < 1+ bitlen (4, —1) > -y, is always a power of 2
| 2: forrfromOto/ — 1do |
3: p" < pl|IntegerToBytes(p + r,2)
4: v+ H(p’, 32¢) [> seed depends on p + r
5: y[r| < BitUnpack(v,v; — 1,7;)
6: end for
7: return y

Algorithm 19 BitUnpack(v, a, b)

Reverses the procedure BitPack.

Input: a,b € N and a byte string v of length 32 - bitlen (a + b).
Output: A polynomial w € R with coefficients in [b — 2¢ + 1, b], where ¢ = bitlen (a + b).
When a + b + 1 is a power of 2, the coefficients are in [—a, b].
c < bitlen (a + b)
z «— BytesToBits(v)
: for i from O to 255 do
w; < b— BitsTolnteger((z[ic], z[ic + 1], ... z[ic + ¢ — 1]), ¢)
end for
return w

U e

Y4
A fault attack on ML-DSA:

Let 04, ..., 0,,, be m signatures such that:

vie{1,..,m} zgl] = ygl] + cs[ll] with deg (ygl]) <d<n-1.

Then one can construct m lattices such that:

Vie{l,..,m}, dim(L;) <d+ 2 and 5[11] eEL = ﬂ L;

OPEN
THALES

e can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

A fault attack on ML-DSA:
Let 04, ..., 0,,, be m signatures such that:
vie{1,..,m} zgl] = ygl] + cs[ll] with deg (ygl]) <d<n-1.

Then one can construct m lattices such that:

Vie{l,..,m}, dim(L;) <d+ 2 and 5[11] eEL = ﬂ L;

Formally:

Il - 1 .
Vi € {1,...,m}, Li=L (Ci 1Z£];{ (cix) }je{o,...,d}) and L = ﬂ L

OPEN

THALES

e can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

A fault attack on ML-DSA:
Let 04, ..., 0,,, be m signatures such that:
vie{1,..,m} zgl] = ygl] + cs[ll] with deg (ygl]) <d<n-1.

Then one can construct m lattices such that:

vie{l,..,m}, dim(L)<d+2 and s[ll] €L = ﬂ L;

Formally:

Il - 1 .
Vi € {1,...,m}, Li=L (Ci 1Z£];{ (cix) }je{o,...,d}) and L = ﬂ L

We have reformulated the problem

of finding 5[11], as the calculation of a
lattice intersection

Tohaved +2 < n,oneneedsd <n — 3.
The attack requires knowledge of 2 coefficients.

OPEN

I I I A L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
3uildin jture we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/17

A fault attack on ML-DSA:

Classic method: Using duality

Let L, = L(B,) and L, = L(B,) be two lattices.

Union: L, U L, = L(HNF(B4|B,)) and Duadlity relation: (L U L,)" = L} n L}

Lead to:

[Ll NL, = (L(HNF(DI|DZ)))*,]

with D4, D, such that L] = L(D,) and L, = L(D,).

OPEN
FTHALES |) . _ ne of the company 87211168 -EN- | 19
we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/17

A fault attack on ML-DSA:

Classic method: Using duality

Let L, = L(B,) and L, = L(B,) be two lattices.

Union: L, U L, = L(HNF(B4|B,)) and Duadlity relation: (L U L,)" = L} n L}

Lead to:

[Ll NL, = (L(HNF(DI|DZ)))*,]

with D4, D, such that L] = L(D,) and L, = L(D,).

Problems: For L c 7" generally L* ¢ Z". One have to compute HNF over QQ, and numerators and
denominators explode. This leads to rounding errors when calculating the HNF and an
explosion in calculation time.

OPEN
we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved. 20

/777

A fault attack on ML-DSA:

Optimized method: Using F,-subspaces.

Let L = L(B,) and L, = L(B,) be two lattices, such that L, L, c qZ"

1. View L, L, as F,-subspaces
2. Compute an intersection of subspaces: L = L; n L, and B a basis of L.

3. View L as an integer lattice by considering: L = L (B ’ {qxj}ie{o,---,n—l})

Solution: No need to work in rationnal field. Better complexity.

1. Attack can be improved with more faults
2. No restriction on fault injection at the time of y generation

OPEN

I I I A L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

A fault attack on ML-DSA:

Optimized method: Using [,-subspaces.

Let L = L(B,) and L, = L(B,) be two lattices, such that L, L, c qZ"

1. View L, L, as F,-subspaces
2. Compute an intersection of subspaces: L = L; n L, and B a basis of L.
3. View L as an integer lattice by considering: L = L (B, {qx]}je{o,...,n— 1})

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

A fault attack on ML-DSA:

Optimized method: Using F,-subspaces.

Let L = L(B,) and L, = L(B,) be two lattices, such that L, L, c qZ"

1. View L, L, as F,-subspaces
2. Compute an intersection of subspaces: L = L; n L, and B a basis of L.

3. View L as an integer lattice by considering: L = L (B ’ {qxj}ie{o,---,n—l})

Solution: No need to work in rationnal field. Better complexity.

1. Attack can be improved with more faults
2. No restriction on fault injection at the time of y generation

OPEN

I I I A L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

A fault attack on ML-DSA:

Optimized method: Using F,-subspaces.

Let L = L(B,) and L, = L(B,) be two lattices, such that L, L, c qZ"

1. View L, L, as F,-subspaces

2. Compute an intersection of subspaces: L = L; n L, and B a basis of L.
3. View L as an integer lattice by considering: L = L (B, {qxl}je{oﬂ__’n_ 1})
Solution: No need to work in rationnal field. Better complexity.

1. Attack can be improved with more faults
2. No restriction on fault injection at the time of y generation

But how do you turn it into a passive attack?

OPEN

I I I /'\ L E 5 REF xxxxxxxxxxxx rev xxx — date Name of the company / Template: 87211168-COM-GRP-EN-007
Building a future we can all trust This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

A fault attack on ML-DSA:

To switch from a fault-based attack to a side channel attack, the attack must operate with a single
coefficient.

But:
dim (Li =L (ci_lzl[l],{ (c;x) }je{O,...,d})> =d+ 2.
Tohaved +2 < n,oneneedsd <n — 3.

The attack requires knowledge of 2 coefficients.

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

A fault attack on ML-DSA:

Easy fix: By considering affine lattices,

" - 1 .
Vi € {1,.., m}, A; = ¢ 1Z£ ! + L ({ (c;ix) }je{o,...,d}) and A = ﬂAi

This time, dim(4;) = d + 1. We simply need to adapt the attack to the affine case:

OPEN
THALES

e can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

/777

A fault attack on ML-DSA:

Easy fix: By considering affine lattices,

" - 1 .
vie{1,..,m} A; =c; 1Z£ '+ ({ (cix) }je{O,...,d}) and A = ﬂAi

This time, dim(4;) = d + 1. We simply need to adapt the attack to the affine case:

i e
_1[1 ; : 11 ;
L;=1L (ci 1210 { (epxy }jE{O,...,d}) and L = ﬂ L; ﬂ A=tz 4L ({ (cix) }je{O,...,d}) and A= ﬂAi

i N

r N i e
Computing L = ﬂ L; ‘ Computing 4 = ﬂ A;
N J .
7 A] 4
Using LLL ‘ Using Babai's NPA

N J i .

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

THALES

Building a future we can all trust

(=

ll

= | I

L%

il

Practical
results 8

uLIlJL Um ‘

www.thalesgroup.com

/777

A fault attack on ML-DSA: Results

m 220 | 200 | 180 | 160
(_)f 20 40 60 80r 90 dimp_ (L) 36 56 76 96
The'oretlcal.lmm 27 23 79 10‘: 118 Theoretical lin| 41 64 87 109
[in .practlce 27 53 79 115 | 188 | in practice 50 65 90 120
Probability of success| 1 1 1 1 4/5 f i
recover st 0.272s| 2.65s [13.69s|60.49s|866.9s Success for ﬁﬁll" : : : :
i . . . : :
used algorithm LLL |BKZ25|BKZ25 |BKZ30|BKZ30 recover 8, __|89.385|87.27s) 8195 | 172495

Attack results with m signatures against ML-DSA-II

 The attack is applicable to ML-DSA and more

effective with a few faults. « If the attacker knows a single coefficient, he

Attack results with a single signature against ML-DSA-II i used algorithm | LLL |BKZ25|BKZ25| BKZ30
needs 160 signatures to find the secret key.

GitHub - AzevedoPaco/AttackML-DSA

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

https://github.com/AzevedoPaco/AttackML-DSA

THALES
Building a future we can all trust

Thank you

&

https://www.thalesgroup.com/

Yz
References:

[EFGT17]: Thomas Espitau, Pierre-Alain Fouque, Benoit Gérard, Mehdi Tibouchi. Loop abort Faults on
LatticeBased Fiat-Shamir & Hash’n Sign signatures. 23rd Conference on Selected Area In
Cryptography, Aug 2016, Saint John’s, Canada.

OPEN

THALES

we can all trust This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2024 THALES. All rights reserved.

	Slide 1: An attack on ML-DSA using an implicit hint
	Slide 2: Table of contents
	Slide 3: Context
	Slide 4: An overview of ML-DSA
	Slide 5: An overview of ML-DSA
	Slide 6: An overview of ML-DSA
	Slide 7: An overview of ML-DSA
	Slide 8: An overview of ML-DSA
	Slide 9: An overview of ML-DSA
	Slide 10: An overview of ML-DSA
	Slide 11: Existing fault attack on ML-DSA
	Slide 12: A fault attack on ML-DSA
	Slide 13: A fault attack on ML-DSA
	Slide 14: Our results
	Slide 15: A fault attack on ML-DSA
	Slide 16: A fault attack on ML-DSA: Improvement
	Slide 17: A fault attack on ML-DSA: Improvement
	Slide 18: A fault attack on ML-DSA: Improvement
	Slide 19: A fault attack on ML-DSA: How to intersect lattices efficently?
	Slide 20: A fault attack on ML-DSA: How to intersect lattices efficently?
	Slide 21: A fault attack on ML-DSA: How to intersect lattices efficently?
	Slide 22: A fault attack on ML-DSA: How to intersect lattices efficently?
	Slide 23: A fault attack on ML-DSA: How to intersect lattices efficently?
	Slide 24: A fault attack on ML-DSA: How to intersect lattices efficently?
	Slide 25: A fault attack on ML-DSA: Considering affine lattices
	Slide 26: A fault attack on ML-DSA: Considering affine lattices
	Slide 27: A fault attack on ML-DSA: Considering affine lattices
	Slide 28: Practical results
	Slide 29: A fault attack on ML-DSA: Results
	Slide 30
	Slide 31: References:

