
An attack on ML-DSA
using an implicit hint

P a c o A z e v e d o - O l i v e i r a 𝟏 , 𝟐

J o r d a n B e r a u d 𝟐

L o u i s G o u b i n 𝟐

𝟏
T h a l e s , F r a n c e

𝟐
U V S Q , F r a n c e

2

OPEN

Table of contents

Context

01

ML-DSA in detail

02

Fault attack on ML-DSA

03

Our optimizations

04

Practical results

05

3

OPEN

Context

Dilithium is a signature algorithm recently standardized by NIST under the name ML-DSA.

ML-DSA is recommended for computing quantum-secure signatures in most use cases.

it is necessary to investigate the security of embedded implementations. The security of ML-DSA against Side-

Channel Attacks (SCA) and Fault Attacks (FA) thus needs to be carefully assessed.

𝒎 → → 𝝈𝒎

4

OPEN

An overview of ML-DSA

ML-DSA uses two rings:

𝐴, 𝑡, 𝑠1, 𝑠2 𝐴, 𝑡

with: 𝒏 = 𝟐𝟓𝟔 and 𝒒 = 𝟖𝟑𝟖𝟎𝟒𝟏𝟕.

5

OPEN

An overview of ML-DSA

ML-DSA uses two rings:

𝐴, 𝑡, 𝑠1, 𝑠2 𝐴, 𝑡

𝜶 an even integer which divides 𝒒 − 𝟏 and:

𝒓 = 𝒓𝟏𝜶 + 𝒓𝟎 𝒘𝒊𝒕𝒉 𝒓𝟎 = 𝒓 𝒎𝒐𝒅± 𝜶 𝒂𝒏𝒅 𝒓𝟏 =
𝒓 − 𝒓𝟎

𝜶

Possible values of 𝒓𝟎: −
𝜶

𝟐
+ 𝟏, … , 𝟎, … ,

𝜶

𝟐

Possible values of 𝒓𝟏𝜶: 𝟎, 𝜶, 𝟐𝜶, … , 𝒒 − 𝟏

One note:

𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝒓, 𝜶 = 𝒓𝟏 and 𝑳𝒐𝒘𝑩𝒊𝒕𝒔𝒒 𝒓, 𝜶 = 𝒓𝟎

with: 𝒏 = 𝟐𝟓𝟔 and 𝒒 = 𝟖𝟑𝟖𝟎𝟒𝟏𝟕

6

OPEN

An overview of ML-DSA

ML-DSA uses two rings:

𝐴, 𝑡, 𝑠1, 𝑠2 𝐴, 𝑡

with: 𝒏 = 𝟐𝟓𝟔 and 𝒒 = 𝟖𝟑𝟖𝟎𝟒𝟏𝟕 𝒓 = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝒓, 𝜶 × 𝜶 + 𝑳𝒐𝒘𝑩𝒊𝒕𝒔𝒒(𝒓, 𝜶)

𝑷 = 𝑷[𝟏], … , 𝑷[𝒍]

𝑷[𝒊] = ෍ 𝒑𝒊𝒙
𝒊

𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑷[𝒊], 𝜶 = ෍ 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝒑𝒊, 𝜶 𝒙𝒊

𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑷, 𝜶 = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑷[𝟏], 𝜶 , … , 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑷[𝒍], 𝜶

7

OPEN

An overview of ML-DSA

𝐴, 𝑡, 𝑠1, 𝑠2 𝐴, 𝑡

(𝑀, 𝜎 = (𝑐, 𝒛))

Alice draws a polynomial vector at random:

𝒚 ∈𝑹 𝑹𝒍, 𝒚
∞

≤ 𝜸𝟏.

She computes a random challenge that depends on the

message:

𝒄 = 𝑯 𝑴 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒚, 𝟐𝜸𝟐 .

She provides a response to the challenge:
𝒛 = 𝒚 + 𝒄𝒔𝟏

By definition of 𝒛:

𝑨𝒛 − 𝒄𝒕 = 𝑨𝒚 − 𝒄𝒔𝟐.

The signature will be:

𝝈 = 𝒄, 𝒛 .

But..

8

OPEN

An overview of ML-DSA

𝐴, 𝑡, 𝑠1, 𝑠2 𝐴, 𝑡

(𝑀, 𝜎 = (𝑐, 𝒛))

But..

By definition of 𝒛:

𝒛 = 𝒚 + 𝒄𝒔𝟏

Two conditions must be fulfilled:

൞
𝒛

∞
< 𝒎𝒂𝒙𝒚 𝒚

∞
− 𝒎𝒂𝒙 𝒄,𝒔𝟏

𝒄𝒔𝟏 ∞

𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒(𝑨𝒚, 𝟐𝜸𝟐) = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒚 − 𝒄𝒔𝟐, 𝟐𝜸𝟐

The first condition is for security, the second for

verification and security.

With these conditions:

𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔 𝑨𝒛 − 𝒄𝒕 = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔 𝑨𝒚 − 𝒄𝒔𝟐 = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔(𝑨𝒚)

9

OPEN

An overview of ML-DSA

Bob can recompute 𝒘𝟏:

𝐰𝟏 = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒚, 𝟐𝜸𝟐

= 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒚 − 𝒄𝒔𝟐, 𝟐𝜸𝟐

= 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒛 − 𝒄𝒕, 𝟐𝜸𝟐

= 𝒘𝟏
′

𝐴, 𝑡, 𝑠1, 𝑠2 𝐴, 𝑡

(𝑀, 𝜎 = (𝑐, 𝒛))

10

OPEN

An overview of ML-DSA

Bob can recompute 𝒘𝟏:

𝐰𝟏 = 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒚, 𝟐𝜸𝟐

= 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒚 − 𝒄𝒔𝟐, 𝟐𝜸𝟐

= 𝑯𝒊𝒈𝒉𝑩𝒊𝒕𝒔𝒒 𝑨𝒛 − 𝒄𝒕, 𝟐𝜸𝟐

= 𝒘𝟏
′

All that aside, the most important relation is:

𝒛 = 𝒚 + 𝒄𝒔𝟏

𝐴, 𝑡, 𝑠1, 𝑠2 𝐴, 𝑡

(𝑀, 𝜎 = (𝑐, 𝒛))

www.thalesgroup.com

Existing fault
attack on
ML-DSA

12

OPEN

A fault attack on ML-DSA

Main Idea: Inject a fault to obtain one of the

coefficients of 𝐲 of abnormally small degree.

They consider a signature 𝝈 = (𝒄, 𝒛) with

𝒛[𝟏] = 𝒚[𝟏] + 𝒄𝒔𝟏
[𝟏]

and 𝐝𝐞𝐠 𝒚[𝟏] = 𝒎 ≪ 𝒏

This will make 𝒔𝟏
[𝟏] the smallest vector in a lattice

of sufficiently small dimension to find it.

[EFGT17]: Published at SAC2017 and describes

a fault attack against BLISS.

13

OPEN

A fault attack on ML-DSA

Single fault attack:

One has:

𝒛[𝟏] = 𝒚[𝟏] + 𝒄𝒔𝟏
[𝟏]

Thus if c is invertible:

𝒔𝟏
[𝟏]

= 𝒄−𝟏𝒛[𝟏] − ෍

𝒊=𝟎

𝒎

𝒚𝒊
𝟏

𝒄𝒙 𝒊 𝒎𝒐𝒅 𝒒 .

Therefore,

𝒔𝟏
[𝟏]

∈ 𝑳(𝒄−𝟏𝒛[𝟏], 𝒄𝒙 𝒊
𝒊∈ 𝟎 ,…,𝒎

)

If 𝒎 is sufficently small, 𝒔𝟏
[𝟏]

can be recovered

using lattice reduction technique (LLL or BKZ).

Practical results:

Conclusion:

The fault attack is plausible.

The fault needs to be injected before the

generation of the 100 first coefficients.

Proposed countermeasure: Shuffling the

order of the coefficient’s generation.

www.thalesgroup.com

Our results

15

OPEN

A fault attack on ML-DSA

Limitations:

• Less realistic for ML-DSA.

• Simple countermeasures.

• Single fault attack?

Our questions:

• Applicable to ML-DSA?

• Possible to improve with more faults?

• Possible to overcome the simple

countermeasure?

• Turn it into a passive attack?

16

OPEN

A fault attack on ML-DSA: Improvement

Let 𝝈𝟏, … , 𝝈𝒎 be m signatures such that:

∀𝒊 ∈ 𝟏, … , 𝒎 , 𝒛𝒊
𝟏

= 𝒚𝒊
𝟏

+ 𝒄𝒔𝟏
𝟏

with 𝐝𝐞𝐠 𝒚𝒊
𝟏

≤ 𝒅 < 𝒏 − 𝟏.

Then one can construct 𝒎 lattices such that:

∀𝒊 ∈ 𝟏, … , 𝒎 , 𝐝𝐢𝐦 𝑳𝒊 ≤ 𝒅 + 𝟐 𝐚𝐧𝐝 𝒔𝟏
𝟏

∈ 𝑳 = ሩ 𝑳𝒊

17

OPEN

A fault attack on ML-DSA: Improvement

Let 𝝈𝟏, … , 𝝈𝒎 be m signatures such that:

∀𝒊 ∈ 𝟏, … , 𝒎 , 𝒛𝒊
𝟏

= 𝒚𝒊
𝟏

+ 𝒄𝒔𝟏
𝟏

with 𝐝𝐞𝐠 𝒚𝒊
𝟏

≤ 𝒅 < 𝒏 − 𝟏.

Then one can construct 𝒎 lattices such that:

∀𝒊 ∈ 𝟏, … , 𝒎 , 𝐝𝐢𝐦 𝑳𝒊 ≤ 𝒅 + 𝟐 𝐚𝐧𝐝 𝒔𝟏
𝟏

∈ 𝑳 = ሩ 𝑳𝒊

Formally:

∀𝒊 ∈ 𝟏, … , 𝒎 , 𝑳𝒊 = 𝑳 𝒄𝒊
−𝟏𝒛𝒊

[𝟏]
, 𝒄𝒊𝒙

𝒋
𝒋∈ 𝟎 ,…,𝒅

𝒂𝒏𝒅 𝑳 = ሩ 𝑳𝒊

18

OPEN

A fault attack on ML-DSA: Improvement

Let 𝝈𝟏, … , 𝝈𝒎 be m signatures such that:

∀𝒊 ∈ 𝟏, … , 𝒎 , 𝒛𝒊
𝟏

= 𝒚𝒊
𝟏

+ 𝒄𝒔𝟏
𝟏

with 𝐝𝐞𝐠 𝒚𝒊
𝟏

≤ 𝒅 < 𝒏 − 𝟏.

Then one can construct 𝒎 lattices such that:

∀𝒊 ∈ 𝟏, … , 𝒎 , 𝐝𝐢𝐦 𝑳𝒊 ≤ 𝒅 + 𝟐 𝐚𝐧𝐝 𝒔𝟏
𝟏

∈ 𝑳 = ሩ 𝑳𝒊

Formally:

∀𝒊 ∈ 𝟏, … , 𝒎 , 𝑳𝒊 = 𝑳 𝒄𝒊
−𝟏𝒛𝒊

[𝟏]
, 𝒄𝒊𝒙

𝒋
𝒋∈ 𝟎 ,…,𝒅

𝒂𝒏𝒅 𝑳 = ሩ 𝑳𝒊

We have reformulated the problem

of finding 𝒔𝟏
[𝟏]

, as the calculation of a

lattice intersection

To have 𝒅 + 𝟐 < 𝒏, one needs 𝒅 ≤ 𝒏 − 𝟑.

The attack requires knowledge of 2 coefficients.

19

OPEN

Classic method: Using duality

Let 𝑳𝟏 = 𝑳 𝑩𝟏 and 𝑳𝟐 = 𝑳(𝑩𝟐) be two lattices.

Union: 𝑳𝟏 ∪ 𝑳𝟐 = 𝑳 𝑯𝑵𝑭 𝑩𝟏 𝑩𝟐 and Duality relation: 𝑳𝟏 ∪ 𝑳𝟐
∗ = 𝑳𝟏

∗ ∩ 𝑳𝟐
∗

Lead to:

𝑳𝟏 ∩ 𝑳𝟐 = 𝑳 𝑯𝑵𝑭 𝑫𝟏 𝑫𝟐

∗
,

with 𝑫𝟏, 𝑫𝟐 such that 𝑳𝟏
∗ = 𝑳(𝑫𝟏) and 𝑳𝟐

∗ = 𝑳(𝑫𝟐).

A fault attack on ML-DSA: How to intersect lattices efficently?

20

OPEN

Classic method: Using duality

Let 𝑳𝟏 = 𝑳 𝑩𝟏 and 𝑳𝟐 = 𝑳(𝑩𝟐) be two lattices.

Union: 𝑳𝟏 ∪ 𝑳𝟐 = 𝑳 𝑯𝑵𝑭 𝑩𝟏 𝑩𝟐 and Duality relation: 𝑳𝟏 ∪ 𝑳𝟐
∗ = 𝑳𝟏

∗ ∩ 𝑳𝟐
∗

Lead to:

𝑳𝟏 ∩ 𝑳𝟐 = 𝑳 𝑯𝑵𝑭 𝑫𝟏 𝑫𝟐

∗
,

with 𝑫𝟏, 𝑫𝟐 such that 𝑳𝟏
∗ = 𝑳(𝑫𝟏) and 𝑳𝟐

∗ = 𝑳(𝑫𝟐).

Problems: For 𝑳 ⊂ ℤ𝒏 generally 𝑳∗ ⊄ ℤ𝐧. One have to compute HNF over ℚ, and numerators and

denominators explode. This leads to rounding errors when calculating the HNF and an

explosion in calculation time.

A fault attack on ML-DSA: How to intersect lattices efficently?

21

OPEN

A fault attack on ML-DSA: How to intersect lattices efficently?

Optimized method: Using 𝔽𝒒-subspaces.

Let 𝑳𝟏 = 𝑳 𝑩𝟏 and 𝑳𝟐 = 𝑳(𝑩𝟐) be two lattices, such that 𝑳𝟏, 𝑳𝟐 ⊂ 𝒒ℤ𝒏

1. View 𝐋𝟏, 𝑳𝟐 as 𝔽𝒒-subspaces

2. Compute an intersection of subspaces: ത𝑳 = 𝑳𝟏 ∩ 𝑳𝟐 and 𝑩 a basis of ത𝑳.

3. View ത𝑳 as an integer lattice by considering: 𝑳 = 𝑳 𝑩, 𝒒𝒙𝒋
𝒋∈ 𝟎,…,𝒏−𝟏

Solution: No need to work in rationnal field. Better complexity.

1. Attack can be improved with more faults

2. No restriction on fault injection at the time of y generation

22

OPEN

A fault attack on ML-DSA: How to intersect lattices efficently?

Optimized method: Using 𝔽𝒒-subspaces.

Let 𝑳𝟏 = 𝑳 𝑩𝟏 and 𝑳𝟐 = 𝑳(𝑩𝟐) be two lattices, such that 𝑳𝟏, 𝑳𝟐 ⊂ 𝒒ℤ𝒏

1. View 𝐋𝟏, 𝑳𝟐 as 𝔽𝒒-subspaces

2. Compute an intersection of subspaces: ത𝑳 = 𝑳𝟏 ∩ 𝑳𝟐 and 𝑩 a basis of ത𝑳.

3. View ത𝑳 as an integer lattice by considering: 𝑳 = 𝑳 𝑩, 𝒒𝒙𝒋
𝒋∈ 𝟎,…,𝒏−𝟏

23

OPEN

A fault attack on ML-DSA: How to intersect lattices efficently?

Optimized method: Using 𝔽𝒒-subspaces.

Let 𝑳𝟏 = 𝑳 𝑩𝟏 and 𝑳𝟐 = 𝑳(𝑩𝟐) be two lattices, such that 𝑳𝟏, 𝑳𝟐 ⊂ 𝒒ℤ𝒏

1. View 𝐋𝟏, 𝑳𝟐 as 𝔽𝒒-subspaces

2. Compute an intersection of subspaces: ത𝑳 = 𝑳𝟏 ∩ 𝑳𝟐 and 𝑩 a basis of ത𝑳.

3. View ത𝑳 as an integer lattice by considering: 𝑳 = 𝑳 𝑩, 𝒒𝒙𝒋
𝒋∈ 𝟎,…,𝒏−𝟏

Solution: No need to work in rationnal field. Better complexity.

1. Attack can be improved with more faults

2. No restriction on fault injection at the time of y generation

24

OPEN

A fault attack on ML-DSA: How to intersect lattices efficently?

Optimized method: Using 𝔽𝒒-subspaces.

Let 𝑳𝟏 = 𝑳 𝑩𝟏 and 𝑳𝟐 = 𝑳(𝑩𝟐) be two lattices, such that 𝑳𝟏, 𝑳𝟐 ⊂ 𝒒ℤ𝒏

1. View 𝐋𝟏, 𝑳𝟐 as 𝔽𝒒-subspaces

2. Compute an intersection of subspaces: ത𝑳 = 𝑳𝟏 ∩ 𝑳𝟐 and 𝑩 a basis of ത𝑳.

3. View ത𝑳 as an integer lattice by considering: 𝑳 = 𝑳 𝑩, 𝒒𝒙𝒋
𝒋∈ 𝟎,…,𝒏−𝟏

Solution: No need to work in rationnal field. Better complexity.

1. Attack can be improved with more faults

2. No restriction on fault injection at the time of y generation

But how do you turn it into a passive attack?

25

OPEN

A fault attack on ML-DSA: Considering affine lattices

To switch from a fault-based attack to a side channel attack, the attack must operate with a single

coefficient.

But:

𝐝𝐢𝐦 𝑳𝒊 = 𝑳 𝒄𝒊
−𝟏𝒛𝒊

[𝟏]
, 𝒄𝒊𝒙

𝒋
𝒋∈ 𝟎 ,…,𝒅

= 𝒅 + 𝟐.

To have 𝒅 + 𝟐 < 𝒏, one needs 𝒅 ≤ 𝒏 − 𝟑.

The attack requires knowledge of 2 coefficients.

26

OPEN

A fault attack on ML-DSA: Considering affine lattices

Easy fix: By considering affine lattices,

∀𝒊 ∈ 𝟏, … , 𝒎 , 𝑨𝒊 = 𝒄𝒊
−𝟏𝒛𝒊

[𝟏]
+ 𝑳 𝒄𝒊𝒙

𝒋
𝒋∈ 𝟎 ,…,𝒅

𝒂𝒏𝒅 𝑨 = ሩ 𝑨𝒊

This time, 𝐝𝐢𝐦 𝑨𝒊 = 𝒅 + 𝟏. We simply need to adapt the attack to the affine case:

27

OPEN

A fault attack on ML-DSA: Considering affine lattices

Easy fix: By considering affine lattices,

∀𝒊 ∈ 𝟏, … , 𝒎 , 𝑨𝒊 = 𝒄𝒊
−𝟏𝒛𝒊

[𝟏]
+ 𝑳 𝒄𝒊𝒙

𝒋
𝒋∈ 𝟎 ,…,𝒅

𝒂𝒏𝒅 𝑨 = ሩ 𝑨𝒊

This time, 𝐝𝐢𝐦 𝑨𝒊 = 𝒅 + 𝟏. We simply need to adapt the attack to the affine case:

𝑳𝒊 = 𝑳 𝒄𝒊
−𝟏𝒛𝒊

[𝟏]
, 𝒄𝒊𝒙 𝒋

𝒋∈ 𝟎 ,…,𝒅
𝒂𝒏𝒅 𝑳 = ሩ 𝑳𝒊 𝑨𝒊 = 𝒄𝒊

−𝟏𝒛𝒊
[𝟏]

+ 𝑳 𝒄𝒊𝒙 𝒋
𝒋∈ 𝟎 ,…,𝒅

𝒂𝒏𝒅 𝑨 = ሩ 𝑨𝒊

𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 ത𝑳 = ሩ ഥ𝑳𝒊 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 ഥ𝑨 = ሩ 𝑨𝒊

𝐔𝐬𝐢𝐧𝐠 𝐋𝐋𝐋 𝐔𝐬𝐢𝐧𝐠 𝐁𝐚𝐛𝐚𝐢′𝐬 𝐍𝐏𝐀

www.thalesgroup.com

Practical
results

29

OPEN

A fault attack on ML-DSA: Results

The code is publicly available: GitHub - AzevedoPaco/AttackML-DSA

• The attack is applicable to ML-DSA and more

effective with a few faults.

• The suggested countermeasure is not

sufficient.

• If the attacker knows a single coefficient, he

needs 𝟏𝟔𝟎 signatures to find the secret key.

https://github.com/AzevedoPaco/AttackML-DSA

Thank you

www.thalesgroup.com

www.thalesgroup.com

https://www.thalesgroup.com/

31

OPEN

References:

[EFGT17]: Thomas Espitau, Pierre-Alain Fouque, Benoit Gérard, Mehdi Tibouchi. Loop abort Faults on

LatticeBased Fiat-Shamir & Hash’n Sign signatures. 23rd Conference on Selected Area In

Cryptography, Aug 2016, Saint John’s, Canada.

	Slide 1: An attack on ML-DSA using an implicit hint
	Slide 2: Table of contents
	Slide 3: Context
	Slide 4: An overview of ML-DSA
	Slide 5: An overview of ML-DSA
	Slide 6: An overview of ML-DSA
	Slide 7: An overview of ML-DSA
	Slide 8: An overview of ML-DSA
	Slide 9: An overview of ML-DSA
	Slide 10: An overview of ML-DSA
	Slide 11: Existing fault attack on ML-DSA
	Slide 12: A fault attack on ML-DSA
	Slide 13: A fault attack on ML-DSA
	Slide 14: Our results
	Slide 15: A fault attack on ML-DSA
	Slide 16: A fault attack on ML-DSA: Improvement
	Slide 17: A fault attack on ML-DSA: Improvement
	Slide 18: A fault attack on ML-DSA: Improvement
	Slide 19: A fault attack on ML-DSA: How to intersect lattices efficently?
	Slide 20: A fault attack on ML-DSA: How to intersect lattices efficently?
	Slide 21: A fault attack on ML-DSA: How to intersect lattices efficently?
	Slide 22: A fault attack on ML-DSA: How to intersect lattices efficently?
	Slide 23: A fault attack on ML-DSA: How to intersect lattices efficently?
	Slide 24: A fault attack on ML-DSA: How to intersect lattices efficently?
	Slide 25: A fault attack on ML-DSA: Considering affine lattices
	Slide 26: A fault attack on ML-DSA: Considering affine lattices
	Slide 27: A fault attack on ML-DSA: Considering affine lattices
	Slide 28: Practical results
	Slide 29: A fault attack on ML-DSA: Results
	Slide 30
	Slide 31: References:

