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Introduction and Motivation zkSNARK Concept

zkSNARK: Zero-Knowledge Succinct Non-interactive Argument of
Knowledge

Peggy (Prover) creates a non-interactive (publicly verifiable) argument about
x ∈ NP and she knows a witness w for this.
The argument convinces Victor (Verifier) that x ∈ NP but does not reveal any
knowledge about w.
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Introduction and Motivation zkSNARK Application

Applications of zkSNARKs
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Introduction and Motivation zkSNARK Construction

A Brief Background on zkSNARKs’ Construction
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Introduction and Motivation zkSNARK Construction

A Brief Background on zkSNARKs’ Construction

Interpolating and evaluating
polynomials

Trusted/transparent setup?
Post quantum secure?

Example:
Fast Reed-Solomon IOP (FRI) + Merkle Hash Tree (MHT) Commitment

(Ben-Sasson et al., 2018)
is a core component of many transparent setup post-quantum secure zkSNARKs.
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Introduction and Motivation zkSNARK Construction

Core Assumptions and Domains in Modern zkSNARKs

zkSNARK Cryptographic Algebraic
Assumption Domain

Groth16 KoE elliptic-curve group
PLONK KoE elliptic-curve group
HALO ECDLP elliptic-curve group
Aurora CRH any algebraic domain
STARK CRH any algebraic domain
Fractal CRH any algebraic domain
Ligero CRH any algebraic domain

FRI-based
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Introduction and Motivation zkSNARK Challenges

Challenges and Limitations in FRI-based zkSNARKs and Ligero

High prover / verifier time complexity (addressed in this paper)

Polygon ZK-EVM
Generates a proof for 27 transactions
on 128 vCPUs and 1024 GB RAM
(Chaliasos et al., 2024).

311 seconds

Preon
(Post-Quantum Signature)

Creates one signature (256-bit security)
on a single-core AMD EPYC 73F3 @ 3.5 GHz
(NIST PQC Round 1: Additional Signatures).

417 seconds

Large argument (proof) size
etc.
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Introduction and Motivation Main Contributions

Main Contributions

1. Acceleration of Aurora (Ben-Sasson et al., 2019) zkSNARK: Optimized
polynomial evaluation and interpolation via additive FFT improvements.

2. Cantor additive FFT:
Exact finite field operation counts.
Precomputation techniques and memory–runtime trade-offs, with extra savings for
structured subspaces.
Applied in Aurora to measure acceleration gains.

3. Gao–Mateer additive FFT:
Reduced finite field operation counts using Cantor special basis.
Precomputation techniques and memory–runtime trade-offs.

4. LCH additive FFT:
Compared with other FFTs when LCH uses the Cantor special basis.
Measured acceleration gains when integrated into Aurora.
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Concept of FFT Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT)

Let W = {η0, η1, . . . , ηn−1} be the evaluation set.

DFT: f(x) = c0 + c1x+ · · ·+ cn−1x
n−1 evaluation−−−−−−→


f(η0)
f(η1)

...
f(ηn−1)



IDFT:


(η0, f(η0))
(η1, f(η1))

...
(ηn−1, f(ηn−1))

 interpolation−−−−−−−−→ f(x) = c0 + c1x+ · · ·+ cn−1x
n−1

The prover algorithm in Aurora performs 7λi + λ′
i + 10 polynomial evaluations and

interpolations, where λi and λ′
i are repetition parameters 1.

1The number of times of calling lincheck and FRI-LDT subprotocols.
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Concept of FFT Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT)
Class of efficient algorithms for computing DFT:

Additive FFT
W is an additive affine

subspace of finite field Fpk .

Multiplicative FFT
W is a multiplicative subgroup

of finite field Fpk

(roots of unity).
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Class of efficient algorithms for computing DFT:

Additive FFT
W is an additive affine

subspace of finite field Fpk .

Multiplicative FFT
W is a multiplicative subgroup

of finite field Fpk

(roots of unity).

Additive FFT Benefits:
I. No root-of-unity requirement.
II. Efficient operations in F2k .

The structure of W is dictated by the polynomial commitment scheme in zkSNARKs.
FRI+MHT supports both additive affine subspaces (of binary fields) and
multiplicative subgroups (of prime fields).
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Concept of FFT Fast Fourier Transform (FFT)

Additive FFT Algorithms

Cantor (1989)
von zur Gathen and Gerhard (1996)

Wm

f(x) ∈ F2k [x]

Evaluation

f̂ = f(x)|Wm

Gao and Mateer (2010)
Lin, Chung, and Han (2014)

Wm

f(x) ∈ F2k [x]

Basis Conversion

Evaluation

f̂ = f(x)|Wm
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Cantor Additive FFT Algorithm

Cantor Additive FFT Algorithm (Cantor, 1989)

ZWi(x) denotes a vanishing polynomial over
Wi := ⟨β0, β1, . . . , βi⟩.
ZWi(x) is a linearized polynomial →
ZWi(x+ θ) = ZWi(x) + ZWi(θ)

For f(x) ∈ F2k [x], with k = t · 2ℓ (2ℓ ≥ m)
{β0, β1, . . . , βm−1} denotes Cantor special
basis if βi−1 = β2

i + βi and β0 = 1 .

If Wi is spanned by the Cantor special basis:

ZWi
(βi+ℓ) = βℓ → ZWi

(βi) = 1
ZWi

(x) ∈ F2[x]

f(x) ∈ F2k [x], deg(f) < 2m

Wm = ⟨β0, β1, . . . , βm−1⟩, βi ∈ F
2k
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(x) ∈ F2[x]

f(x) ∈ F2k [x], deg(f) < 2m

Wm = ⟨β0, β1, . . . , βm−1⟩, βi ∈ F
2k

f0(x), deg(f0) < 2m−1 f1(x), deg(f1) < 2m−1

Wm−1 βm−1 + Wm−1

m
od

Z m
−
1
(x
)

m
od

Z
m
−
1 (x

+
β
m
−
1 )
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Cantor Additive FFT Algorithm

Cantor Additive FFT: Polynomial Division Algorithm

f(x)

f0(x) f1(x)

m
o
d
Z m

−
i
(x

+
θ
)

m
o
d
Z
m

−
i (x

+
θ
+

β
m

−
i )

≡

f(x) ∈ F2k [x],

deg(f) < 2m−i+1
f(x)

Polynomial Division
f(x)/Zm−i(x)

q(x)r(x)

Zm−i(θ)

×+

+

f0(x) f1(x)f0(x) = r(x) + ZWm−i(θ) q(x),

f1(x) = f0(x) + q(x)

2 · 2m−i additions

2m−i multiplications

2m−i(2wt(m−i) − 1)

additions (This work)
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additions (This work)
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Cantor Additive FFT Algorithm

Cantor Additive FFT: Finite Field Operations

The exact number of finite field additions and multiplications in the Cantor additive FFT

Additions:
1

2
n log2 n+

1

2
n

log2(n)−1∑
r=0

2wt(r)

Multiplications:
1

2
n log2 n
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Cantor Additive FFT Algorithm

Cantor Additive FFT: Final Structure
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Cantor Additive FFT Algorithm

Cantor Additive FFT: Precomputation

ZWi,r(θi,r) can be precomputted for any predetermined θ +Wm

This requires 2m − 1 elements in F2k .
Special Case θ ∈ {β0, β1, . . . , βb−1}:

It is only required to compute ⟨β0, β1, . . . , βb−1⟩ for any FFT of length 2m < 2b.
Multiple lookup tables:

⟨β0, . . . , β b
ℓ
−1⟩, ⟨β b

ℓ
, . . . , β2 b

ℓ
−1⟩, . . . , ⟨β(ℓ−1) b

ℓ
, . . . , βℓ b

ℓ
−1⟩

which requires ℓ · 2
b
ℓ elements in F2k .
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Gao–Mateer Additive FFT Algorithm
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Gao–Mateer Additive FFT Algorithm

Gao–Mateer Additive FFT (Gao and Mateer, 2010)

Applicable to f(x) ∈ F2k [x] for any arbitrary k.

Optimizations:
Precomputation:

Level 1: Basis elements for each round of the
Expand and Aggregate module.
Level 2: All multiplication factors in the both
modules.

Using the Cantor Special Basis:
Saves n log2 n− n+ 1 multiplications in the
Expand module.

Wm

f(x) ∈ F2k [x]

Expand module
(basis conversion)

Aggregate module
(evaluation)

f̂ = f(x)|Wm

Polynomial scaling
+

Taylor expansion
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Gao–Mateer Additive FFT Algorithm

Gao–Mateer Additve FFT Optimization: Expand Module

M. Badakhshan et al. (University of Waterloo) Accelerating PQ zkSNARKs with FFTs SAC 2025 22 / 33



Gao–Mateer Additive FFT Algorithm

Gao–Mateer Additve FFT: Cost of Each Component
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Comparison and Benchmark Finite Field Operations

Finitie Field Operation Comparison

FFT Basis Basis Conversion Evaluation

GM
General

#A: 1
4n(log2 n)

2 − 1
4n log2 n #A: n log2 n

#M: n log2 n− n+ 1 #M: 1
2n log2 n

Cantor
#A: 1

4n(log2 n)
2 − 1

4n log2 n #A: n log2 n

#M: 0 #M: 1
2n log2 n

LCH
General

#A: O(n(log2 n)
2) #A: n log2 n

(Lin et al., 2016) #M: O(n log2 n) #M: 1
2n log2 n

Cantor
#A: O(n log2 n log2 log2 n) #A: n log2 n

(Lin et al., 2016) #M: 0 #M: 1
2n log2 n

Cantor Cantor N/A
#A:

1

2
n log2 n+

1

2
n

log2(n)−1∑
r=0

2wt(r)

#M: 1
2n log2 n
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Comparison and Benchmark Standalone FFT

Additive FFT Benchmark (input length: n = 2m)
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Comparison and Benchmark Aurora Runtime

Aurora Prover Timing Comparison Across FFT Implementations
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Conclusions and Future Works Conclusions

Conclusions

Leveraging the Cantor special basis enables the integration of Cantor and LCH
additive FFTs into post-quantum secure zk-SNARKs, e,g., Aurora.

Replacing the Gao–Mateer FFT with Cantor and LCH additive FFTs significantly
reduces computation time.
The results are justified by a detailed cost analysis (finite field additions and
multiplications) of additive FFTs and the complexity evaluation of FFT calls in
Aurora.
We proposed precomputation techniques that reduce overhead for both Cantor and
Gao–Mateer FFTs when the affine subspace basis is fixed.
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Conclusions and Future Works Future Works

Future Works

Extend FFT optimizations such as applying tower field constructions to accelerate
field multiplications.

Improve the Cantor additive FFT throughput through parallelization as it has pure
divide-and-conquer (radix-4 or over processing-in-memory).
Extend the optimizations to other post-quantum secure zkSNARKs over binary
extension fields, such as STARK, Fractal, Ligero, etc.
Side-channel analysis of additive FFT implementations.
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