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Introduction and Motivation

zkSNARK Concept

zkSNARK: Zero-Knowledge Succinct Non-interactive Argument of
Knowledge

x € NP

e Peggy (Prover) creates a non-interactive (publicly verifiable) argument about
z € NP and she knows a witness w for this.

@ The argument convinces Victor (Verifier) that z € NP but does not reveal any
knowledge about w.
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A Brief Background on zkSNARKSs’ Construction

Arithmetic Interpolating and evaluating

Circuit RiCS Encoding to polynomials
Satisfiability Polynomials
- - Polynomial
A= B= .
@{g = [ } [ } =—> According to an -
o
AR

Interactive Trusted /transparent setup?
} st.AzoBz-Cz=0 Oracle Proof Post quantum secure?
(IOP)
Example:

Fast Reed-Solomon IOP (FRI) + Merkle Hash Tree (MHT) Commitment
(Ben-Sasson et al., 2018)
is a core component of many transparent setup post-quantum secure zkSNARKSs.
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Core Assumptions and Domains in Modern zkSNARKSs

KSNARK Cryptographic Algebrf’;lic
Assumption Domain
Groth16 KoE elliptic-curve group
PLONK KoE elliptic-curve group
HALO ECDLP elliptic-curve group
Aurora CRH any algebraic domain
STARK CRH any algebraic domain
Fractal CRH any algebraic domain
Ligero CRH any algebraic domain
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Challenges and Limitations in FRI-based zkSNARKSs and Ligero

e High prover / verifier time complexity (addressed in this paper)

Generates a proof for 27 transactions
Polygon ZK-EVM on 128 vCPUs and 1024 GB RAM 311 seconds
(Chaliasos et al., 2024).

Creates one signature (256-bit security)
on a single-core AMD EPYC 73F3 @ 3.5 GHz 417 seconds
(NIST PQC Round 1: Additional Signatures).

Preon
(Post-Quantum Signature)

e Large argument (proof) size

o etc.
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Main Contributions

1. Acceleration of Aurora (Ben-Sasson et al., 2019) zkSNARK: Optimized
polynomial evaluation and interpolation via additive FFT improvements.
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Main Contributions
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polynomial evaluation and interpolation via additive FFT improvements.

2. Cantor additive FFT:

o Exact finite field operation counts.

e Precomputation techniques and memory-runtime trade-offs, with extra savings for
structured subspaces.

o Applied in Aurora to measure acceleration gains.

3. Gao—Mateer additive FFT:

e Reduced finite field operation counts using Cantor special basis.
e Precomputation techniques and memory—runtime trade-offs.

4. LCH additive FFT:

e Compared with other FFTs when LCH uses the Cantor special basis.
e Measured acceleration gains when integrated into Aurora.
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Discrete Fourier Transform (DFT)
Discrete Fourier Transform (DFT)

Let W = {no,m,...,mm—1} be the evaluation set.

Vi i f m
DFT: f(z) =co+c1z+ -+ cpga™? evaluation, (m)

(10, f(m0))

(7717 f(771)) interpolation n—
. — f(r) =c+car+ -+ cpiz

(et £ (1))

IDFT: 1

The prover algorithm in Aurora performs | 7)\; + \; + 10 | polynomial evaluations and

interpolations, where \; and A, are repetition parameters 1.

!The number of times of calling lincheck and FRI-LDT subprotocols.
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Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT)

Class of efficient algorithms for computing DFT:

O~

Additive FFT LGl pibieniise [0
W is a multiplicative subgroup
of finite field ]Fpk

(roots of unity).

W is an additive affine
subspace of finite field IFpk.
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Additive FFT R
W is a multiplicative subgroup
of finite field Fpk

(roots of unity).

W is an additive affine
subspace of finite field Fpk.

o The structure of W is dictated by the polynomial commitment scheme in zkSNARKs.
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Fast Fourier Transform (FFT)
Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT)

Additive FFT Benefits: Class of efficient algorithms for computing DFT:

I. No root-of-unity requirement.

II. Efficient operations in Fok .

Additive FFT Ll ey s [0
W is a multiplicative subgroup
of finite field ]Fp;C

(roots of unity).

W is an additive affine
subspace of finite field Fpk.

o The structure of W is dictated by the polynomial commitment scheme in zkSNARKs.

e FRI4+MHT supports both additive affine subspaces (of binary fields) and
multiplicative subgroups (of prime fields).
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(Ol IS WUNNE Fast Fourier Transform (FFT)

Additive FFT Algorithms

e Cantor (1989) e Gao and Mateer (2010)
e von zur Gathen and Gerhard (1996) e Lin, Chung, and Han (2014)
Wi Wi
f(z) € For[z] f(z) € For[z]

!

Basis Conversion

Evaluation L
Evaluation
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Cantor Additive FFT Algorithm

Cantor Additive FFT Algorithm (Cantor, 1989)

@ Zw,(z) denotes a vanishing polynomial over
m = </807617 o 7/B’L>
o 7

w; () is a linearized polynomial —
ZWi (33 + 0) = ZWi (x) + ZWi (0)

Wm = <ﬂ09 ﬁla <. ’ﬁm—1>56i S FQk

f(@) € Farlz], deg(f) <27
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Cantor Additive FFT Algorithm

Cantor Additive FFT Algorithm (Cantor, 1989)

@ Zw,(z) denotes a vanishing polynomial over
Wi = (Bo, B1, .., Bi)-

e Zw,(z) is a linearized polynomial —
Ly, (x+0) = Ly, (z) + Lyy, (0)

‘ Wi = (B0, B, -+ Brm—1), Bi € Fyp

f(z) € For[z], deg(f) < 2™

D
&
N
/

1\)&‘"
g X
s =
£
& B W |
fO(fE), deg( f()) < gm—1 fl(m), (1(\%((}01) < gm—1

-

W1
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Cantor Additive FFT Algorithm

Cantor Additive FFT Algorithm (Cantor, 1989)

[ Win = (B0:B1. o B} B € P

f(z) € Fylal, des(/) < 2"

@ Zw,(x) denotes a vanishing polynomial over
Wi = (Bo, Br, - -+, Bi)-

® Zw,(z) is a linearized polynomial —
Ly, (‘T + 9) = Zw, ((E) + Zw, (0)

fio()
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Cantor Additive FFT Algorithm

Cantor Additive FFT Algorithm (Cantor, 1989)

[ Wi = (Bo:B1s - Bn) i € B |

f(@) € Foxla], deg(f) < 2™

@ Zw,(x) denotes a vanishing polynomial over
Wi = (Bo, Br, - -+, Bi)-

® Zw,(z) is a linearized polynomial —
Ly, (I + 9) = Zw, (x) + Zw, (0)

o For f(x) € Fyr[z], with k =¢-2¢ (2 > m)
{Bo, B, -, Pm—1} denotes Cantor special

basis if | 81 = 82+ B and By = 1|
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Cantor Additive FFT Algorithm (Cantor, 1989)
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Cantor Additive FFT Algorithm (Cantor, 1989)

[ Win = (B0:B1. o B} B € P

f(z) € Fylal, des(/) < 2"

@ Zw,(x) denotes a vanishing polynomial over
Wi = (Bo, Br, - -+, Bi)-

® Zw,(z) is a linearized polynomial —
Ly, (I + 9) = Zw, (x) + Zw, (0)

o For f(x) € Fyr[z], with k =¢-2¢ (2 > m)
{Bo, B, -, Pm—1} denotes Cantor special

basis if | 81 = 82+ B and By = 1|

o If W, is spanned by the Cantor special basis:

o Zw,(Bive) = Be — Zw,(Bi) =1
° ZWi (x) ey [ac]
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Cantor Additive FFT Algorithm

Cantor Additive FFT Algorithm (Cantor, 1989)
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Cantor Additive FFT Algorithm

Cantor Additive FFT: Polynomial Division Algorithm

f(x) € ]FQk [CC],
deg(f) < 2m—i+1

fo(z) = r(z) + Zw,,_,(0) q(z),
fi(@) = fo(x) + q(x)

M. Badakhshan et al. (University of Waterloo)
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Cantor Additive FFT: Polynomial Division Algorithm

f(x) € ]FQk [CC],
deg(f) < 2m—i+1

f(x)
.

Polynomial Division }

f(@) ) Lm—i(x)

2. 2m~ additions
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Cantor Additive FFT Algorithm

Cantor Additive FFT: Polynomial Division Algorithm

f(x) € ]FQk [CC],
deg(f) < 2m—i+1

f(x)
.

Polynomial Division }

f(@) ) Lm—i(x)

= 1 1
r(z) q(x)

2. 2m~ additions

om—i multiplications

folz) =r(x) + Zw,,_,(0) q(x), Jo(x) fi(z)

fi(@) = fo(z) + q(x)
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Cantor Additive FFT Algorithm

Cantor Additive FFT: Polynomial Division Algorithm

f(x) € ]FQk [CC],
deg(f) < 2m—i+1

f(x)

1

T
Polynomial DivisionD

additions (This work)

2. 2m~ additions

om—i multiplications

fo(z) = r(z) + Zw,,_,(0) q(z),
fi(@) = fo(x) + q(x)
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Cantor Additive FFT Algorithm

Cantor Additive FF'T: Finite Field Operations

The exact number of finite field additions and multiplications in the Cantor additive FFT
1 logy(n)—1
e Additions: inloan—F K ZO gwt(r)
r=

1
o Multiplications: §n10g2 n
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Cantor Additive FFT Algorithm

fra(@) = f(0 + Ws[7])
foola) = f(x)

fo3(x) = f(6+ Ws[6])

<7 QO f55(2) = £(0 + Wil3)
fas(x) = f(0+W3[4))

B12 =001+ By
: f33(x) = f(0 +W3[3))
fo3(x) = f(0+ W3[2])

fra(x) = f(0+W3[1))

f(x), deg(f) <8 L
0+ W3 ]

>0

o

g foale) fralz)
]

(@)

foa(x) = f(0+ W3[0])
] [l =

DA
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Cantor Additive FFT Algorithm

Cantor Additive FFT: Precomputation

® Zw,,(0;,) can be precomputted for any predetermined 6 + W,

e This requires 2™ — 1 elements in Fox.

Special Case 6 € {5y, 51,.--,0p-1}:
e It is only required to compute (g, B1,. .., By—1) for any FFT of length 2™ < 2°.
o Multiple lookup tables:

B0+ B 1)s 4B 2By 1) (Bepypr - By o)

which requires £ - 2¢ elements in Fox.
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Gao—Mateer Additive FFT Algorithm

Gao—Mateer Additive FFT (Gao and Mateer, 2010)

e Applicable to f(z) € For[z] for any arbitrary k. Wi
f(x) € Foxlz]
|

Expand module

Optimizations: (basis conversion)

@ Precomputation:

o Level 1: Basis elements for each round of the Aggregate module
Expand and Aggregate module.

e Level 2: All multiplication factors in the both (evelucion)
modules. l
e Using the Cantor Special Basis: f= F(@)]y

e Saves nlogsn —n + 1 multiplications in the
Expand module.

Polynomial scaling

+

Taylor expansion

M. Badakhshan et al. (University of Waterloo) SAC 2025 21 /33
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Gao—Mateer Additive FFT Algorithm

Gao—Mateer Additve FEFT: Cost of Each Component

0.6
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m
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3

Initialization =~ == Scaling
Basis Computation &z Bit reverse

Merging

Taylor Expansion
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Comparison and Benchmark

Finitie Field Operation Comparison

Finite Field Operations

FFT Basis Basis Conversion Evaluation
General #A: In(logyn)? — Inlogyn #A: nlogyn
M #M: nlogoyn —n+1 #M: %nlogz n
Cantor #A: In(logyn)? — Inlogyn #A: nlogyn
HM: 0 #M: Inlogyn
General #A: O(n(logyn)?) #A: nlogyn
LCH (Lin et al, 2016)  #M: O(nlogy n) H#M: %nlogQ n
Cantor #A: O(nlogy nlog,logy n) #A: nlogyn
(Lin et al., 2016) #M: 0 #M: %nlogQ n
1 log,(n)—1
A: —nl - 2wt(r)
Cantor Cantor N/A # gt 82" + 2" ;
#M: %nlogz n
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Comparison and Benchmark [ESIEReTe ENISTIl NN

Additive FFT Benchmark (input length: n = 2™)

Time (microseconds)

—— GM -4- GM PCL2 GM CO PCL2 -~m- Cantor PC —— LCH PC
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Comparison and Benchmark [RASITEMRTNa100

Aurora Prover Timing Comparison Across FFT Implementations

’DD Gao-Mateer [0 Cantor [0 LCH ‘

20 19.47 |
15| 1
@ 12'0112.44
()
g 100 8.53 |
&
6.02 5.95
= 3.99 -
5 2.91 2.93
: 1.44
0.9 0.67 071y 1'36m
0 [ [ [ [ I
210 211 212 213 214

Number of Constraints (N)
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Comparison and Benchmark [RASITEMRTNa100

Aurora Prover Timing Comparison Across FFT Implementations

20

’DD Gao-Mateer [0 Cantor [0 LCH ‘

19.47 N
Preon PQ DSA
< s
Poseidon MHT (220 Leaves) 12.0112.44
< \
A 4
8.53 N
6.02 5.95
3.99 N
2.91 2.93
- 1.44
0.9 0.67 0.71 1.3
T T T T
210 211 212 213 214
Number of Constraints (N)
SAC 2025
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Conclusions and Future Works

o Leveraging the Cantor special basis enables the integration of Cantor and LCH
additive FFTs into post-quantum secure zk-SNARKSs, e,g., Aurora.
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Conclusions

e Leveraging the Cantor special basis enables the integration of Cantor and LCH
additive FFTs into post-quantum secure zk-SNARKSs, e,g., Aurora.

o Replacing the Gao—Mateer FFT with Cantor and LCH additive FFTs significantly
reduces computation time.

@ The results are justified by a detailed cost analysis (finite field additions and
multiplications) of additive FFTs and the complexity evaluation of FFT calls in
Aurora.

@ We proposed precomputation techniques that reduce overhead for both Cantor and
Gao—Mateer FF'Ts when the affine subspace basis is fixed.
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Future Works

Extend FFT optimizations such as applying tower field constructions to accelerate
field multiplications.

Improve the Cantor additive FFT throughput through parallelization as it has pure
divide-and-conquer (radix-4 or over processing-in-memory).

Extend the optimizations to other post-quantum secure zkSNARKSs over binary
extension fields, such as STARK, Fractal, Ligero, etc.

e Side-channel analysis of additive FFT implementations.
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Thank You!
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