

Selected Areas in Cryptography 2025

Downlink (T)FHE ciphertexts compression

Presents: Antonina BONDARCHUK*

Olive CHAKRABORTY*, Geoffroy COUTEAU**, Renaud SIRDEY*

*name.surname@cea.fr

**surname@irif.fr

Context

Fully Homomorphic Encryption (FHE)

$$\boxed{x} + \boxed{y} = \boxed{x+y}$$

Context

TFHE Overview

LWE

TFHE (over the torus)

 \mathbb{T} is the real [0,1) torus, $\mathbb{T}_N[X]$ denotes $\mathbb{R}[X]/(X^N+1) \bmod 1$ and $\mathbb{B}_N[X]$ denotes polynomials in $\mathbb{Z}[X]/(X^N+1)$ with binary coefficients

TLWE

$$m+1$$
 $=(a_0,\ldots,a_{n-1},b), ext{ where } b=\sum a_is_i+rac{m}{t}+e\in\mathbb{T}$ $a_i\in\mathbb{T}$ uniform random $e
eq 0.1\}^n$ Gaussian coefficient

$$m \in \mathbb{Z}_t \quad s \in \{0,1\}^n$$

$$\mathbb{T} \in \mathbb{Z}_t[X]/(X^N+1)$$

TRLWE
$$m=m_0+m_1x+\ldots+m_{N-1}x^{N-1}\in \mathbb{Z}_t[X]/(X^N+1)$$
 \uparrow $(a,b), \text{ where } b=a\cdot s+rac{m}{t}+e\in \mathbb{T}_N[X]$ \downarrow $a\in \mathbb{T}_N[X]$ uniform random coefficients $e\stackrel{\mathcal{N}(0,\sigma^2)}{\longleftarrow}\mathbb{T}_N[X]$ Gaussian coefficients

.

Expansion factor

How to compress TFHE ciphertexts?

Plaintext

$$t = 16$$

4 bits

TLWE

$$q=2^{32}, n=750$$

Plaintext

$$t = 16$$

4 bits

TLWE

$$q = 2^{32}, n = 750$$

24032 bits

How to compress TFHE ciphertexts?

Plaintext

$$t=16$$
 $q=2^{32}, n=750$ 4 bits 32 bits

TLWE

Plaintext

$$t=16$$
 $q=2^{32}, n=750$ 4 bits 24032 bits

TLWE

$$\varepsilon = 6008$$

Transciphering

1-rate expansion!

Expansion is large...

Transciphering on the downlink?

Transciphering on the downlink?

Downlink

 $[x]_{
m AES} = {\sf Eval}({
m FHE}^{-1}, [x]_{
m FHE}, [{\sf s}]_{
m AES})$?

Try to perform transciphering to Linear Homomorphic Encryption (LHE)

Reminder: a part of decryption function is linear

$$b-\sum a_i s_i = \Delta m + e$$

TLWEtoTRLWE packing

Shrinking

 ℓ -truncation

Switching GSW to LHE - - - - Switching LWE to LHE

Main idea

Study different (T)LWE compression techniques

LSB truncation

Definition

Let $\mathbf{c}=(a_0,\ldots,a_{n-1},b=a_n)$ denotes a TLWE encryption of m. Given $\ell<\lceil\log_2(q)\rceil$, we define the following three operations:

- $\operatorname{Dec}(\mathbf{c}, \mathbf{s})$: return $\lceil (a_n \langle \mathbf{a}, \mathbf{s} \rangle) / \Delta \rfloor = m$, with $\Delta = \frac{q}{t}$.
- PartialDec(\mathbf{c}, \mathbf{s}): return $a_n \langle \mathbf{a}, \mathbf{s} \rangle = \Delta m + e$.
- Trunc(\mathbf{c}, ℓ): set $a'_i = \left| \frac{a_i}{2^{\ell}} \right|$ for $i \in \{0, ..., n\}$ and return $\mathbf{c}' = (a'_0, ..., a'_n)$.
- Rescale(\mathbf{c}', ℓ): set $a_i'' = 2^{\ell} a_i'$ for $i \in \{0, ..., n\}$ and return $\mathbf{c}'' = (a_0'', ..., a_n'')$.

It follows that when ${\bf c}$ is a TLWE encryption of m with noise e, then ${\bf c}''$ is an encryption of m with noise

$$e'' = e - \sum_{i=0}^{n-1} e''_i s_i + e''_n$$

where $e_i'' = -(a_i \mod 2^\ell)$.

Relationship between truncation and probability of errorless decryption

$$a_n'' - \sum_{i=0}^{n-1} a_i'' s_i = b + e_n'' - \sum_{i=0}^{n-1} a_i s_i - \sum_{i=0}^{n-1} e_i'' \cdot s_i = \Delta m + e - \sum_{i=0}^{n-1} e_i'' \cdot s_i + e_n''$$

Proposition 1. Let \mathbf{c} denote a TLWE encryption of m subject to a centered Gaussian noise e with variance σ^2 , and let $\mathbf{c}' = Trunc(\mathbf{c}, \ell_0)$ with

$$\ell_0 \le \left[\log_2 \left(\frac{1}{n+1} \left(\frac{\Delta}{2} - \sigma \sqrt{2(k+1)\ln 2} \right) + 1 \right) \right],$$

and $\Delta = \frac{q}{t}$. Then, $\left\lceil \frac{1}{\Delta} PartialDec(Rescale(\mathbf{c}', \ell_0), \mathbf{s})) \right\rfloor = m$ with probability at least $1 - 2^{-k}$.

Intuition: bound the probability that $\mathbf{c}'' = \mathsf{Rescale}(\mathbf{c}', \ell)$ incorrectly decrypts, i.e. $\Pr\left(|e''| \geq \frac{\Delta}{2}\right)$, using a Chernoff bound.

TLWE
$$(a_0,\ldots,a_{n-1},b)$$
, where $b=\sum a_is_i+\Delta m+e\in\mathbb{Z}_q$ PartialDec $(\mathbf{a},b):b-\sum a_is_i=\Delta m+e$

Linear Homomorphic Encryption

Why switching is needed?

- > Just one LHE ciphertext is transferred rather than n+1 elements in \mathbb{Z}_q , achieving compression as soon as the size of an LHE ciphertext is smaller than $(n+1)\log_2 q$.
- ➤ Depending on the LHE, several dot products may be packed in a single LHE ciphertext in order to further enhance compression.

Summary of main characteristics of the listed LHE schemes

Cryptogystom	Plaintext	Ciphertext	Plaintext Ciphertext		Expansion	
Cryptosystem	domain	domain	size (bits)	size (bits)	factor	
Paillier	\mathbb{Z}_{μ}	\mathbb{Z}_{μ^2}	$\log_2 \mu$	$2\log_2\mu$	2	
Dåmgard-Jurik	\mathbb{Z}_{μ^y}	$\mathbb{Z}_{\mu^{y+1}}$	$y \log_2 \mu$	$(y+1)\log_2\mu$	$1 + \frac{1}{y}$	
EC ElGamal	\mathbb{F}_{ω}	\mathbb{F}^2_ω	p	$2\log_2\omega$	$\frac{2\log_2\omega}{\mathfrak{p}}$	
BCP03	\mathbb{Z}_{μ}	$\mathbb{Z}^2_{\mu^2}$	$\log_2 \mu$	$4\log_2\mu$	4	

Contribution

Compressed Paillier-ElGamal

A variant of BCP03 with shorter ciphertexts

KeyGen: μ be an RSA modulus. For some $\alpha \leftarrow \mathbb{Z}_{\mu^2}^*$ and $d \leftarrow [1, \operatorname{ord}(\mathbb{G})]$,

set $g=lpha^2 mod \mu$ and $h=g^{\mu \cdot d} mod \mu^2$. Return $\mathsf{pk}=(\mu,g,h)$ and $\mathsf{sk}=d$.

Enc: For message $m \in \mathbb{Z}_{\mu}$, return a ciphertext $\mathbf{c} = (c_0, c_1)$, where $c_0 = g^r \mod \mu$ and $c_1 = h^r (1 + \mu)^m \mod \mu^2$ for some random pad $r \leftarrow \mathbb{Z}_{\mu^2}$.

Dec: Compute $c=c_1(c_0)^{-\mu\cdot d} mod \mu^2$ and return $m=\frac{c-1}{\mu}$.

Remark: compared to BCP03, h is computed as a μ -th power and c_0 is now given modulo μ , reducing the ciphertext size by 25%.

Contribution

Compressed Paillier-ElGamal

Compress:
$$c_0 = g^r mod \mu, c_1 = h^r (1+\mu)^m mod \mu^2$$

 DDLog_{μ} : given divisive shares of $(1+\mu)^m \mod \mu^2$ over $\mathbb{Z}_{\mu^2}^*$ allows to non-interactively derive substractive shares of m over \mathbb{Z}_{μ} .

Compressing ciphertexts via DDLog_u

Down from $3\log_2\mu$ idea: given c_0 , the holder of $\mathsf{sk}=d$ can locally compute $u=c_0^{\mu\cdot d}=h^r \mod \mu^2$. Then, u and c_1 form divisive shares of $(1+\mu)^m \mod \mu^2$ apply DDLog_μ to derive v',v substractive shares of m over \mathbb{Z}_{μ} : $m=v'-v \bmod \mathbb{Z}_{\mu}$.

Down from
$$2\log_2\mu$$
 to $\log_2\mu + \log_2U$

Subtractive shares over the integers.

Idea: if m is known to be smaller than a bound $U<\mu/2^{\lambda}$, then v',v form subtractive shares of m over the integers: $m = [v' \bmod U] - v \bmod U$.

The compression procedure is incompatible with the homomorphic features of the scheme

"Decrypt-then-pack"

1 Generate parameters:

j TLWE ciphertexts:

Switching explained

"Decrypt-then-pack"

Ciphertext multiplication by constant Ciphertext-ciphertext addition $a_{1,0}$ s_0 $a_{0,0}$ pk

TLWE decryption:

Parallelize

 b_0 m_0 Add constant to ciphertext m_{j-1} $\log_2 \mu$ bits

q is a 32 bit TFHE ciphertext modulus μ is a 2048 bit Paillier plaintext modulus μ^2 is a 4096 bit Paillier ciphertext modulus

Pack:

$$y = \lceil \log_2(n+1) + \log_2 q
ceil$$
 bits: slot size $j = \lfloor rac{\lfloor \log_2 \mu
floor}{y}
floor$: pack j TLWEs

Decrypt and unpack:

$$m_1$$

$$..$$
 m_{j-1}

Experimental study

Which compression technique to choose?

How many TLWEs do we want to transmit?

t = 16:

K	1	50	150	250	500	∞
TLWE	6008	6008	6008	6008	6008	6008
TLWE ℓ -truncation	2628.5	2628.5	2628.5	2628.5	2628.5	2628.5
Shrinking	16393	328.8	110.2	66.5	33.7	9
TLWEtoTRLWE	16392	335.6	117.2	73.5	40.7	16
$TLWEtoTRLWE + \ell\text{-truncation}$	7171.5	146.8	51.2	32.1	17.8	7
Paillier (w. packing)	1024	40.9	27.3	24.5	22.5	21.3
ℓ -truncation + Paillier (w. packing)	1024	20.4	13.6	12.2	12.2	12
Dåmgard-Jurik (w. packing)	1536	30.7	20.4	18.4	18.4	15.8
ℓ -truncation + DJ. (w. packing)	1536	30.7	10.2	12.2	9.2	9
CPG (w. packing)	522.5	30.9	24.1	22.7	21.7	21.1
ℓ -truncation + CPG (w. packing)	518.0	16.2	12.8	12.1	12.1	12
EC ElGamal	128	_	_	_	_	_

Experimental study

Which compression technique to choose?

How many TLWEs do we want to transmit?

t = 16:

K	1	50	150	250	500	∞
TLWE	6008	6008	6008	6008	6008	6008
TLWE ℓ -truncation	2628.5	2628.5	2628.5	2628.5	2628.5	2628.5
Shrinking	16393	328.8	110.2	66.5	33.7	9
TLWEtoTRLWE	16392	335.6	117.2	73.5	40.7	16
$TLWEtoTRLWE + \ell\text{-truncation}$	7171.5	146.8	51.2	32.1	17.8	(7)
Paillier (w. packing)	1024	40.9	27.3	24.5	22.5	21.3
ℓ -truncation + Paillier (w. packing)	1024	20.4	13.6	$\begin{array}{c} 12.2 \end{array}$	12.2	12
Dåmgard-Jurik (w. packing)	1536	30.7	20.4	18.4	18.4	15.8
ℓ -truncation + DJ. (w. packing)	1536	30.7	(10.2)	12.2	$\left(\begin{array}{c} 9.2 \end{array}\right)$	9
CPG (w. packing)	522.5	30.9	24.1	22.7	21.7	21.1
ℓ -truncation + CPG (w. packing)	518.0	(16.2)	12.8	12.1	12.1	12
EC ElGamal	128		_	_	_	_

Remind: the uplink PRF synchronisation $\varepsilon=8$ For the downlink we decrease ε from 6008 to a value between 16 and 7

Compression techniques for TFHE ciphertexts

Significantly reduce the expansion factor

Most appropriate compression methods in function of *K*

K	Most compressive method
$1 \le K \le 2$	Switch. to EC ElGamal
$2 < K \le 81$	ℓ-truncation + switch. to CPG (w.pack.)
$81 < K \le 163$	ℓ -truncation + switch. to DJ. (w.pack.)
$163 < K \le 243$	ℓ-truncation + switch. to CPG (w.pack.)
$243 < K \le 1141$	ℓ -truncation + switch. to DJ. (w.pack.)
$1141 < K \le 1228$	TLWEtoTRLWE $+ \ell$ -truncation
$1228 < K \le 1304$	ℓ-truncation + switch. to DJ. (w.pack.)
K > 1304	TLWEtoTRLWE $+ \ell$ -truncation

- First complete study on TFHE downlink ciphertext compression.
- Provide concrete guidelines on how to choose the best compression technique depending on a ciphertext number to transmit.
- Demonstrate that downlink expansion factors **below 10** are practically achievable and comparable with the expansion factor for the simple uplink ciphertext compression technique (have the same order of magnitude).
- Propose a new CPG LHE. Switching to CPG makes a transition from the FHE to the not-at-all HE scheme and is the most communication-efficient option for transmitting up to around 100 evaluated TFHE ciphertexts.
- The techniques developed in this paper are beneficial only to LWE-based schemes, as the LHEs have a plaintext domain that is too small to absorb the large N typically used for RLWE schemes.
- The LSB truncation technique is not universally applicable, as it significantly increases the ciphertext noise. It can be applied only to schemes with an efficient bootstrapping procedure (like TFHE).

Thank you for your attention!

If you liked the presentation and want to know more, contact me!

antonina.bondarchuk@cea.fr

References

- Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In: TCC. pp. 407–437 (2019)
- [2] Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications. In: ASIACRYPT. pp. 37–54 (2003)
- [3] Checri, M., Sirdey, R., Boudguiga, A., Bultel, J.P.: On the practical cpad security of "exact" and threshold FHE schemes. In: CRYPTO (2024)
- [4] Cheon, J.H., Choe, H., Passelègue, A., Stehlé, D., Suvanto, E.: Attacks against the IND-CPAD security of exact FHE schemes. In: Tech. Rep. 127, IACR ePrint (2024)
- [5] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds. In: Advances in Cryptology ASIACRYPT 2016. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 3–33 (2016), isbn: 978-3-662-53887-6
- [6] Damgård, I., Jurik, M., Nielsen, J.B.: A generalization of Paillier's public-key system with applications to electronic voting. In: Int. J. Inf. Secur. 9, 371–385 (2010)

- [7] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: EUROCRYPT. pp. 1–23 (2010)
- [8] Menezes, A.: Elliptic Curve Public Key Cryptosystems. In: Springer Science and Business Media, vol. 234 (1993)
- Orlandi, C., Scholl, P., Yakoubov, S.: The rise of paillier: Homomorphic secret sharing and public-key silent OT. In: EUROCRYPT. pp. 678–708 (2021)
- [10] Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: EUROCRYPT. pp. 223–238 (1999)
- [11] Python Paillier lib.: https://python-paillier.readthedocs.io/en/develop/
- [12] Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing (Baltimore, MD, USA: ACM. pp. 84–93 (2005)
- [13] Sagemath lib.: https://www.sagemath.org/
- [14] TFHE lib.: https://tfhe.github.io/tfhe/

 Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds (2016)

Assembling TLWEs to TRLWE

Up to N TLWE ciphertexts can be assembled into 1 TRLWE ciphertext, whereby N TLWE messages m_0,\ldots,m_{N-1} maps to $m(x)=\sum_{i=0}^{N-1}m_ix^i$

Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption: Rate-1 fully homomorphic encryption and time-lock puzzles (2019)

Switch GSW to LHE

Shrinking TRLWE

Compute a helper $r \in \mathbb{Z}_q$ and a value $w \in \mathbb{Z}_t$. The decryption of the original TRLWE can be corevered exactly from r, w and a secret key s

 Chen, H., Chillotti, I., Ren, L.: Onion ring ORAM: Efficient constant bandwidth oblivious RAM from (leveled) TFHE (2019)

LSB truncation TLWE and TRLWE

Remove ℓ less significant bits in a's and b's coefficients of TLWE or TRLWE sample by dividing the coefficients by 2^ℓ

 Mahdavi R. A., Diaa A., Kerschbaum F.: HE is all you need: Smaller FHE Responses via Additive HE (2024)

Switch LWE to LHE [1]: switch LWEs to Paillier, Damgard-Jurik LSB truncation: modswitch LWEs to the lowest modulus in the BGV parameter set

Positioning

'1-rate FHE' and 'HE is all you need'

- Provisit ideas from both '1-rate FHE' and 'HE is all you need', but adapt them to the specificities of the TFHE scheme.
- Focuse mainly on the non-asymptotic regime.
- Provide a rigorous analysis of the induced decryption error probability, eventually leading to better compression ratios (4 to 5 times better than in 'HE is all you need').
- Consider a more exhaustive set of LHE depending on the number *K* of TFHE ciphertexts to transmit (including a new variant of the BPC03 scheme that allows us to achieve best-in-class compression in the regime where *K* is a few tens).

Compressed Paillier-ElGamal

Distributed discrete logarithm

The scheme above enjoys shorter ciphertexts than BCP, but still larger than Paillier ($3 \log \mu$ versus $2 \log \mu$). At a high level, this procedure allows two parties, given divisive shares of $(1 + \mu)^m \mod \mu^2$ over $\mathbb{Z}_{\mu^2}^*$, to non-interactively derive *substractive shares* of m over \mathbb{Z}_{μ} .

DDLog_{μ} :

Input. An element $u \in \mathbb{Z}_{\mu^2}^*$.

Output. A value $v \in \mathbb{Z}_{\mu}$.

Procedure. Write $u = u_0 + \mu \cdot u_1$, where $u_0, u_1 \in \mathbb{Z}_{\mu}$ denote the base- μ decomposition of u. Return $v = u_1/u_0 \mod \mu$.

We now explain why this procedure has the intented behavior. Let u, u' denote two divisive shares over $\mathbb{Z}_{\mu^2}^*$ of $(1+\mu)^m \mod \mu^2$; that is, $u'/u = (1+\mu)^m = 1 + \mu m \mod \mu^2$. Writing $u = u_0 + \mu \cdot u_1$ and $u' = u'_0 + \mu \cdot u'_1$, we obtain

$$u'_0 + \mu \cdot u'_1 = (u_0 + \mu \cdot u_1) \cdot (1 + \mu \cdot m) \mod \mu^2.$$

The above equation yields $u_0 = u_0' \mod \mu$ and $u_1' = u_1 + u_0 m \mod \mu$. Therefore, $m = u_1'/u_0' - u_1/u_0 \mod \mu$: u_1'/u_0' and u_1/u_0 form substractive shares of m over \mathbb{Z}_{μ} , as intended.

Compressed Paillier-ElGamal

Compressing ciphertexts via DDLog_{μ} . The distributed discrete logarithm procedure implies a simple and efficient compression mechanisms for Paillier-ElGamal. The key observation is that given $c_0 = g^r \mod \mu$, the holder of the secret key d can locally compute $u = c_0^{\mu \cdot d} = h^r \mod \mu^2$. Then, u and c_1 form divisive shares of $c_1/u = (1 + \mu m) \mod \mu^2$. This immediatly yields the following compression mechanism:

- Compress (c_0, c_1) : run $v' \leftarrow \mathsf{DDLog}_{\mu}(c_1)$. Output (c_0, v') .
- $\operatorname{Dec}'(c_0, v')$: compute $u \leftarrow c_0^{\mu \cdot d} \mod \mu^2$ and $v \leftarrow \operatorname{DDLog}_{\mu}(u)$. Output $m = v' v \mod \mu$.

The resulting compressed ciphertext size is $2\log\mu$, down from $3\log\mu$, matching the size of a standard Paillier ciphertext.

Compressed Paillier-ElGamal

However, if m is known to be smaller than a bound $B<\mu/2^\lambda$ (where λ denotes a security parameter), we can do better. The main observation is that with overwhelming probability, v',v form substractive shares of m over the integers. This observation allows to further reduce the compressed ciphertext size by reducing v' modulo B:

- Compress (c_0, c_1) : run $v' \leftarrow \mathsf{DDLog}_{\mu}(c_1)$ and set $v'' \leftarrow [v' \bmod B]$. Output (c_0, v'') .
- $\operatorname{Dec}'(c_0, v')$: compute $u \leftarrow c_0^{\mu \cdot d} \mod \mu^2$ and $v \leftarrow \operatorname{DDLog}_{\mu}(u)$. Output $m = v'' v \mod B$.

With this last optimization, the ciphertext size went down to $\log \mu + \log B$ bits. When B is small (e.g. $B \approx 2^{40}$ as in our application), this yields an almost twofold size improvement over a standard Paillier encryption.

Switching explained

"Pack-then-decrypt"

Add constant to ciphertext

Ciphertext multiplication by constant Ciphertext-ciphertext addition a_{n-1} a_0 a_1 s_0 TLWE decryption: b m_{j-1} m_0 m_1

Conclusion

Compression techniques for TFHE ciphertexts

Significantly reduce the expansion factor

Most appropriate compression methods in function of *K*

K	Most compressive method		Timing			
IX			(2)	(3)		
$1 \le K \le 2$	Switch. to EC ElGamal	0.02	0.01	0.001		
$2 < K \le 81$	ℓ -truncation + switch. to CPG (w.pack.)	6.93	5.66	0.86		
$81 < K \le 163$	ℓ -truncation + switch. to DJ. (w.pack.)	13.87	11.32	1.73		
$163 < K \le 243$	ℓ -truncation + switch. to CPG (w.pack.)	20.79	16.89	2.58		
$243 < K \le 1141$	ℓ-truncation + switch. to DJ. (w.pack.)	97.09	79.24	12.11		
$1141 < K \le 1228$	TLWEtoTRLWE $+ \ell$ -truncation	0.4				
$1228 < K \le 1304$	ℓ-truncation + switch. to DJ. (w.pack.)	110.96	90.56	13.84		
K > 1304	TLWEtoTRLWE $+ \ell$ -truncation		0.4			

The timings are given in seconds for the maximum value of K on the intervals:

- (1): "Pack-then-decrypt" switching
- (2): "Decrypt-then-pack" switching
- (3): Parallelized "decrypt-then-pack" switching