Algebraic Key-Recovery Side-Channel Attack on Classic McEliece

Michaël Bulois Pierre-Louis Cayrel Vlad-Florin Drăgoi Vincent Grosso

> Selected Areas in Cryptography August 11–15, 2025 Toronto, Ontario

Motivation

Post-quantum cryptography

Lattice-based, code-based, and hash-based solutions

Classic McEliece KEM
Arrived in Round 4 at NIST and ongoing candidate at ISO

Side-channel attacks

Lattice-based and code-based implementations are recently target to side-channel attacks.

What is the practical security of such cryptosystems? Is the reference implementation of *Classic McEliece* secure against side-channel attacks?

Classic McEliece - key generation

Private key: $\mathsf{sk} = (\gamma, \mathcal{L})$, where $\mathcal{L} \subseteq \mathbb{F}_{2^m}$ and $\gamma \in \mathbb{F}_{2^m}[x]$ irreducible and $\deg(\gamma) = t$

Public key: pk = T, where T is a binary $mt \times (n - mt)$ matrix derived from sk.

Key recovery

Goppa code equivalence problem: Given pk (public Goppa code) find sk (private Goppa code)

Breaking Goppa with hints

Given γ find \mathcal{L} : SSA by Sendrier

Given $\mathcal{S}\subseteq\mathcal{L}$ find sk: BGH by Kirshanova and May

How to obtain these hints?

Classic McEliece - decapsulation

Algorithm The decapsulation algorithm of the Classic McEliece KEM

Input: Ciphertext ${m z}$ and private key sk $=(\gamma,\mathcal{L})$

Output: Session key *K*

- 1: Compute $\mathbf{v} = (\mathbf{z}, 0, \dots, 0)$ of length n
- 2: Construct the matrix:

$$\boldsymbol{H}_{\text{priv}\boldsymbol{\gamma}^2} = \begin{pmatrix} \boldsymbol{\gamma}(\alpha_0)^{-2} & \cdots & \boldsymbol{\gamma}(\alpha_{n-1})^{-2} \\ \vdots & \ddots & \vdots \\ \alpha_0^{2t-1}\boldsymbol{\gamma}(\alpha_0)^{-2} & \cdots & \alpha_{n-1}^{2t-1}\boldsymbol{\gamma}(\alpha_{n-1})^{-2} \end{pmatrix}$$

- 3: Compute the syndrome: $\mathbf{s} = \mathbf{H}_{\text{priv}_{\boldsymbol{\gamma}^2}} \mathbf{v}^T$
- 4: Use the Berlekamp–Massey algorithm to compute the error locator polynomial $\sigma(x)$
- 5: Evaluate $\sigma(\alpha_0),\ldots,\sigma(\alpha_{n-1})$ for $\alpha_i\in\mathcal{L}$ and recover the error vector ${m e}$
- 6: Compute $K = hash(1||\boldsymbol{e}||\boldsymbol{z})$
- 7: return K

Side-Channel Information ■ ■ Side-Channel Information ■ Side-Channel In

Let
$$\boldsymbol{H}_{\mathrm{priv}_{\boldsymbol{\gamma}^2}} = \begin{pmatrix} \beta_0 & \dots & \beta_{n-1} \\ \alpha_0\beta_0 & \dots & \alpha_{n-1}\beta_{n-1} \\ \vdots & \ddots & \vdots \\ \alpha_0^{2t-1}\beta_0 & \dots & \alpha_{n-1}^{2t-1}\beta_{n-1} \end{pmatrix}$$
, during the syndrome computation

there is a side-channel leakage 1 which allows to obtain :

$$\boldsymbol{H}_{\text{wt}} = \begin{pmatrix} \operatorname{wt}(\beta_0) & \dots & \operatorname{wt}(\beta_{n-1}) \\ \operatorname{wt}(\alpha_0\beta_0) & \dots & \operatorname{wt}(\alpha_{n-1}\beta_{n-1}) \\ \vdots & \ddots & \vdots \\ \operatorname{wt}(\alpha_0^{2t-1}\beta_0) & \dots & \operatorname{wt}(\alpha_{n-1}^{2t-1}\beta_{n-1}) \end{pmatrix}$$

 $^{^1\}mbox{V}.$ Dragoi et al., Full Key-Recovery Cubic-Time Template Attack on Classic McEliece Decapsulation, TCHES 2025

? Conjecture

For almost all degree-m monic irreducible polynomials $\zeta \in \mathbb{F}_2[x]$, the extension field $\mathbb{F}_{2^m} \cong \mathbb{F}_2[X]/(\zeta)$ is such that almost all pairs $(\alpha,\beta) \in \mathbb{F}_{2^m}^* \times \mathbb{F}_{2^m}^*$ can be uniquely determined from H_{wt} , provided that t is sufficiently large 2

 H_{wt} is a distinguisher for \mathcal{L} !

²V. Dragoi et al., Full Key-Recovery Cubic-Time Template Attack on Classic McEliece Decapsulation, TCHES 2025

- Robust and Efficient Attack
 - Novel algebraic method tolerates noisy leakage and scales efficiently to large m.
- Algebraic Framework for Leakage Links Hamming weights to secrets under noise; applies to any \mathbb{F}_2 -linear leakage.
 - Theoretical Insights and Generalization
 - Deepens understanding of Conjecture 1; explains why field elements remain distinguishable under weaker leakage.

Linear Algebra

••• The Sequence $\mathcal{W}_{\alpha,\beta}$

Let $\alpha, \beta \in \mathbb{F}_{2^m}$.

We study the sequence:

$$\mathcal{W}_{\alpha,\beta} = (\mathsf{wt}_2(\alpha^i\beta))_{i\in\mathbb{N}} \in \mathbb{F}_2^{\mathbb{N}}$$

Where $wt_2(x)$ is the mod 2 of the Hamming weight of the binary representation of x

Key Observations:

- wt₂ is an \mathbb{F}_2 -linear form (φ)
- Multiplication by α defines an endomorphism h_{α} .
- h_{α}^* acts on the dual space: $h_{\alpha}^*(\varphi)(x) = \varphi(\alpha x)$.

✓ LFSR Interpretation and Dual Basis

Assume: $\mathbb{F}_2[\alpha] = \mathbb{F}_{2^m} \quad \Rightarrow \quad h_{\alpha}$ has irreducible characteristic polynomial.

Then:

$$(\varphi_{\alpha}[i] := (h_{\alpha}^*)^i(\operatorname{wt}_2))_{0 \le i < m}$$

is a basis B_{α}^* of $\mathbb{F}_{2^m}^*$.

LFSR Viewpoint:

$$\mathcal{W}_{\alpha,\beta} = (\varphi_{\alpha}[i](\beta))_{i}$$

is the output of an LFSR over \mathbb{F}_2 with feedback polynomial $\chi_{lpha}.$

 $\deg(\chi) = m = \dim(\mathbb{F}_{2^m}) \Rightarrow \text{ smallest sequence of LFSR has length } 2m$

Q Noise-Free Reconstruction: Overview

Given the matrix \mathbf{H}_{wt} , we aim to reconstruct the hidden pairs (α_k, β_k) .

Assumptions:

- $\alpha, \beta \in \mathbb{F}_{2^m}$ such that $\mathbb{F}_2[\alpha] = \mathbb{F}_{2^m}$ and $\beta \neq 0$,
- Define $w_i = \operatorname{wt}(\alpha^i \beta)$ and $\bar{w}_i = \operatorname{wt}_2(\alpha^i \beta)$,
- $(\bar{w}_i)_{i=0}^{2m-1}$ is the start of an LFSR sequence $\mathcal{W}_{\alpha,\beta}$.
- **© Goal:** Recover α and β using only the observed \bar{w}_i (mod 2 leakage).

T Recovering α from \bar{w}_i

- Apply Berlekamp-Massey to $(\bar{w}_i)_{i=0}^{2m-1}$ to obtain minimal polynomial χ ,
- $\chi = \chi_{\alpha}$ and has m roots: $\alpha^{(0)}, \dots, \alpha^{(m-1)}$.

These are the m possible candidates for α .

\clubsuit Computing Candidates for β

For each $\alpha^{(\ell)}$ (root of χ):

• Compute change of basis matrix:

$$C_{\ell} = \left(\operatorname{wt}_{2} \left((\alpha^{(\ell)})^{i} x^{j} \right) \right)_{0 \leq i, j < m}$$

- Form the vector $W = (\bar{w}_0, \dots, \bar{w}_{m-1})^T$
- Compute:

$$\beta^{(\ell)} = C_{\ell}^{-1} \cdot W$$

This yields a candidate pair $(\alpha^{(\ell)}, \beta^{(\ell)})$ for each ℓ .

✓ Distinguishing the Correct Pair

Although all $(\alpha^{(\ell)}, \beta^{(\ell)})$ yield the same LFSR output, only one of them matches the full Hamming weight sequence:

$$\operatorname{wt}((\alpha^{(\ell)})^i \beta^{(\ell)}) = \operatorname{wt}(\alpha^i \beta) \quad \forall i$$

This test (done for all i < m) helps uniquely identify the correct (α, β) pair.

Constructive Algorithm

- **©** Goal: recover t good pairs (α_k, β_k) from noisy weight data.
- **C** The algorithm loops through columns of \mathbf{H}_{wt} (mod 2) to extract the weight sequence \mathcal{W} .
- Berlekamp–Massey is used to derive the minimal polynomial.
- Its m roots provide m candidate α 's, from which we compute β using a linear system.
- igodeligap Among these m candidates, often only one satisfies the full (non-mod 2) Hamming weight sequence \Rightarrow succeeds.
- **Efficiency**

$$\mathcal{O}\left(\frac{(n\log_2 n)^2}{n_m}\right)$$

Heuristic success condition: the candidate pair (α_k, β_k) is unique and compatible with the observed wt $(\alpha^i\beta)$ sequence.

Theoretical Sufficiency of the Weight Sequence

- **EXECUTE:** Key Lemma. If ζ is primitive and α is primitive, then the Hamming weight sequence uniquely identifies (α, β) .
- **A** No Collision. Under these conditions, there is no other pair (α', β') sharing the same full sequence $(\text{wt}(\alpha^i\beta))_i$.
- **Why This Matters.** \Rightarrow The algorithm frequently succeeds. \Rightarrow Justifies the efficiency of the algorithm, even under noise.

Bottom line: the Hamming weight sequence carries enough information to discriminate candidate pairs early in the algorithm.

Improved Error-Correcting Algorithm (Noisy Setting)

Realistic side-channel context:

- Leakage is noisy in practice.
- Accuracy of Hamming weight distinguishers < 1 (e.g., DPA contest V3).
- Noise modeled by error vector \mathcal{E} : $\widetilde{\mathcal{W}} = \mathcal{W} + \mathcal{E}$, with $\varepsilon_{i,j} \in \{-1,0,+1\}$.

Improved Error-Correcting Algorithm (Noisy Setting)

Realistic side-channel context:

- Leakage is noisy in practice.
- Accuracy of Hamming weight distinguishers < 1 (e.g., DPA contest V3).
- Noise modeled by error vector \mathcal{E} : $\widetilde{\mathcal{W}} = \mathcal{W} + \mathcal{E}$, with $\varepsilon_{i,j} \in \{-1,0,+1\}$.

Key question: Can we recover the BM polynomial from $\widetilde{\mathcal{W}}_2 = \mathcal{W}_2 + \mathcal{E}_2$?

Success Probability of Error Correction

Objective: Estimate probability that Algo 1. outputs correct sequence from noisy input $\widetilde{\mathcal{W}}_2 = \mathcal{W}_2 + \mathcal{E}_2$.

Key probabilistic insight:

- Focus on probability that the vector e admits a zero sub-block of length 2m.
- This corresponds to the successful recovery of the correct sequence.

Objective: Estimate probability that Algo 1. outputs correct sequence from noisy input $\widetilde{\mathcal{W}}_2 = \mathcal{W}_2 + \mathcal{E}_2$.

Key probabilistic insight:

- Focus on probability that the vector e admits a zero sub-block of length 2m.
- This corresponds to the successful recovery of the correct sequence.

Core result:

Lemma 1 (Probability of Zero Block)

Let $\boldsymbol{e} \in \mathbb{F}_2^{2t}$ with $\mathrm{wt}(\boldsymbol{e}) = I$. Then:

$$\Pr\left[\exists \mathcal{I} \subset [0, 2t-1], |\mathcal{I}| \geq 2m, \boldsymbol{e}_{\mathcal{I}} = \boldsymbol{0}\right] = \sum_{j=1}^{\left\lfloor \frac{2t-j}{2m} \right\rfloor} \frac{\left(-1\right)^{j+1} \binom{l+1}{j} \binom{2t-2mj}{l}}{\binom{2t}{l}}$$

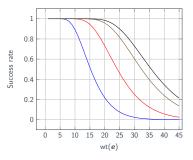
Sequence distance algorithm

Input: \overline{W}_2 — noisy mod 2 Hamming weight sequence obtained from SCA **Output:** Most probable BM polynomial χ_k and corresponding denoised sequence \mathcal{W}_2 1: $polv_saved \leftarrow 0$, $min_error \leftarrow 2t + 1$ 2: **for** $i \leftarrow 0$ to 2t - 2m **do** 3: $w \leftarrow \mathcal{W}_2[i:i+2m]$ $polv \leftarrow BM(w)$ 4: $Seq \leftarrow LFSR(poly, w, length = 2t)$ 5. $error \leftarrow \operatorname{dist}(Seq, \mathcal{W}_2)$ 6. if error < min error then 7. 8. $min\ error \leftarrow error$ poly_saved ← poly g. $sea_saved \leftarrow Sea$ 10. return poly_saved, seg_saved

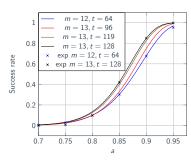
Illustration

Probability of success as a function of accuracy a:

• We have: $\Pr(e_i = 1) = 1 - a$, so $\text{wt}(e) \sim \mathcal{B}(2t, 1 - a)$.



(a) Pr(success) in function of wt(e).



(b) Pr(success) in function of a.

Figure: Theoretical probability of success of our Algorithm for all *Classic McEliece* parameters in function of a) wt(e) and b) accuracy.

B Summary:

- Theoretical analysis matches experiments closely.
- ♠ Accurate recovery of BM polynomial enables private key reconstruction.
- Distance-based error correction significantly improves robustness.

B Summary:

- Theoretical analysis matches experiments closely.
- ♠ Accurate recovery of BM polynomial enables private key reconstruction.
- **⊘** Distance-based error correction significantly improves robustness.
- **§** Key takeaway: Maintaining classifier accuracy $a \ge 0.74$ suffices to achieve meaningful success rates in realistic noisy settings.

B Summary:

- ♠ Accurate recovery of BM polynomial enables private key reconstruction.
- **⊘** Distance-based error correction significantly improves robustness.
- **Example 1 Key takeaway:** Maintaining classifier accuracy $a \ge 0.74$ suffices to achieve meaningful success rates in realistic noisy settings.
- **XApplications:** Other McEliece variants based on GRS, Alternants are subject to our attack (Vandermonde type matrix).

Source code:

https://github.com/vingrosso/keyRecoveryClassicMcEliece

B Summary:

- Theoretical analysis matches experiments closely.
- ♠ Accurate recovery of BM polynomial enables private key reconstruction.
- **⊘** Distance-based error correction significantly improves robustness.
- **Example 1 Key takeaway:** Maintaining classifier accuracy $a \ge 0.74$ suffices to achieve meaningful success rates in realistic noisy settings.
- **XApplications:** Other McEliece variants based on GRS, Alternants are subject to our attack (Vandermonde type matrix).

Source code:

https://github.com/vingrosso/keyRecoveryClassicMcEliece

— Questions? —