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Quantum Threats and Cryptographic Key Sizes

Grover’s algorithm halves the bit security

Example: Transition from AES-128 bits to AES-256 bits

Do we really get uniforms keys in practice?
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From Statistical Distance to Bit Security
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Key Search in the Classical Setting
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Bit Security: Intuitively Definitions

A cryptographic system offers λ-bit security if any attacker is
expected to require the effort of at least 2λ to break the system.
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Bit Security: Key Definitions

Bit Security

• Bs
MW

= minA log
(

TA
advMW (A)

)
[MW18]

• Bs
WY

= minA,B {log (NB · TA) : PrA,B ≥ 1− δ} [WY21]

A X...

... ...

A X...

B

[MW18]: Micciancio, Walter. On the bit security of cryptographic primitives. Eurocrypt 2018
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Bit Security via Observation Game

Baseline (Dummy) Adversary [Lee24]

Adummy X
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win/lose

Advantage Observation Game [Lee24]
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dHell(Pr
G
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Classic!

Sample Complexity Bounds [Lee24]

1

4 ln 2
·
ln( 1

4δ(1−δ))

dHell(P,Q)2
≤ Nδ(P,Q) ≤

ln( 1
2δ )

dHell(P,Q)2

dHell(P,Q)2 = 1
2

∑
x∈Ω

(√
P(x)−

√
Q(x)

)2
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[WY21]: Watanabe, Yasunaga. Bit security as computational cost for winning games with high probability. Asiacrypt 2021

[Lee24]: Lee. Bit security as cost to demonstrate advantage. Communications in Cryptology, Vol. 1, No. 1, 2024
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Proposed Hybrid Observation Game

Baseline Adversary [Lee24] ⇒ Quantum Dummy Adversary
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Our Definition of Post-Quantum Bit Security

Definition (Post-Quantum Bit Security)

PQBS
GQ ,δ
Dem (λ) := min

AQ ,B

{
log(TAQ

· NB) : Pr
ĜQ

B (λ) ≥ 1− δ(λ)
}

Definition (Hellinger Post-Quantum Bit Security)

PQBS
GQ

Hell2
(λ) = min

AQ

log

 TAQ

dHell
(
Pr

GQ

AQ
(λ),Pr

GQ

D[TAQ
](λ)

)2

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Quantum Key Search Game Model

Xks
Q Aks

Q

...∑
αxy |x⟩ |y⟩∑

αxy |x⟩ |y ⊕ Ik(x)⟩

...

k′
win/lose

k
µ
←$ {0, 1}λ

[k
?
= k′]
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Baseline and Success Probability

Quantum Dummy Adversary:

Keys

Pr

2−λ2−λ ≤ Pr
Gks,µ,∆
Q

D[TQ ]
(λ) ≤ 2−λ +∆

Independent of runtime

Quantum Adversary:

T 2
Aks

Q
· 2−λ ≤ Pr

Gks,µ,∆
Q

Aks
Q

(λ) ≤ 16T 2
Aks

Q
· 2−λ + 2 ·∆
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Bounds with ∆ ≤ 2−λ

Assumption: Adversary runtime is TAks
Q
≤ 2λ/2

Lower-Upper Bound

min
Aks

Q

(λ− logTAks
Q
− 5) ≤ PQBS

GQ

Hell2
(λ) ≤ min

Aks
Q

(λ− logTAks
Q
+ 3)

Implications:

• Bounds match up to a constant number of bits

• For TAks
Q
= 2λ/2 ⇒ PQBS

GQ

Hell2
(λ) ≈ λ/2

• No further gain when ∆ < 2−λ
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Bounds for 2−λ ≤ ∆ ≤ 2−λ/2

Example: Let ∆ = 2−λ/2

Lower-Upper Bound

min
Aks

Q

(λ/2 + logTAks
Q
− 5) ≤ PQBS

GQ

Hell2
(λ) ≤ min

Aks
Q

(λ− logTAks
Q
+ 3)

Implications:

• TAks
Q
= 1 ⇒ Lower bound offers at least λ/2 bit security

• TAks
Q
= 2λ/2 ⇒ Bounds matching

Example: When ∆ = 2−λ

⇒ PQBS
GQ

Hell2
(λ) ≈ λ− logTAks

Q
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Bounds when ∆ > 2−λ/2

Lower-Upper Bound

min
Aks

Q

(logTAks
Q
− log∆− 5) ≤ PQBS

GQ

Hell2
(λ) ≤ min

Aks
Q

(λ− logTAks
Q
+ 3)

Example: For ∆ = 2−λ/4 and TAks
Q
= 1

min
Aks

Q

(λ/4− 5) ≤ PQBS
GQ

Hell2
(λ) ≤ min

Aks
Q

(λ+ 3)

Interpretation:

• Notably decreased lower bound

• Upper bound is not tight compared with the lower bound

• Worst-case testing only one key
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Takeaways

✓ Studied the Bit Security of the with Statistical Distance

✓ Proposed a definition for PQBS based on Hybrid Observation Game

✓ Fixed bounds for the PQBS based on a Quantum Key Search Game

✓ Gave the interpretation of the bounds:

⇒ ∆ < 2−λ, not any advantage for the bit security

⇒ 2−λ ≤ ∆ ≤ 2−λ/2, ∆ = 2−λ is conservative choice
⇒ ∆ > 2−λ/2, is unclear as result for the bit security

Keys

Pr

2−λ

pre-proceeding version SAC 2025

evangelos.gkoumas@tu-darmstadt.de

Thank you !

XQ Ab
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X̂Q
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b′
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Q
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Upper Bound for the Post-Quantum Bit Security I

• dHell(P,Q)2 = 1−
√

ϵP · ϵQ −
√

(1− ϵP) · (1− ϵQ)

Use upper bounds on ϵP and ϵQ to lower-bound the distance:

ϵP · ϵQ = (16T 2
Aks

Q
· 2−λ + 2∆) · (2−λ +∆)

(1− ϵP) · (1− ϵQ) = (1− T 2
Aks

Q
· 2−λ) · (1− 2−λ)

• Case 1: ∆ ≤ 2−λ, TAks
Q
≥ 48 :

dHell

(
Pr

GQ

AQ
(λ),Pr

GQ

D[TAks
Q
](λ)

)2

≥ 1
8T

2
Aks

Q
· 2−λ [Lower bound]

⇒ [Upper bound] PQBS
GQ

Hell2
(λ) ≤ min

Aks
Q

(λ− logTAks
Q
+ 3).
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Upper Bound for the Post-Quantum Bit Security II

• Case 2: 2−λ < ∆ ≤ 1
482

T 2
Aks

Q
· 2−λ, with

√
γ ≤ 1

48 , then:

dHell

(
Pr

GQ

AQ
(λ),Pr

GQ

D[TAks
Q
](λ)

)2

≥ 1
8T

2
Aks

Q
· 2−λ [Lower bound]

⇒ [Upper bound] PQBS
GQ

Hell2
(λ) ≤ min

Aks
Q

(λ− logTAks
Q
+ 3).
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Lower Bound for the Post-Quantum Bit Security I

• Hellinger Distance:

dHell(P,Q)2 ≤ dTV

(
Pr

GQ

AQ
(λ),Pr

GQ

D[TAks
Q
](λ)

)
≤ 16T 2

Aks
Q
· 2−λ + 2 ·∆

• Case 1: ∆ ≤ T 2
Aks

Q
· 2−λ

dHell

(
Pr

GQ

AQ
(λ),Pr

GQ

D[TAks
Q
](λ)

)2

≤ 18T 2
Aks

Q
· 2−λ [Upper bound]

⇒ [Lower bound] PQBS
GQ

Hell2
(λ) ≥ min

Aks
Q

(λ− logTAks
Q
− 5)
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Lower Bound for the Post-Quantum Bit Security II

• Case 2: ∆ > T 2
Aks

Q
· 2−λ

dHell

(
Pr

GQ

AQ
(λ),Pr

GQ

D[TAks
Q
](λ)

)2

< 18 ·∆ [Upper bound]

⇒ [Lower bound] PQBS
GQ

Hell2
(λ) ≥ min

Aks
Q

(logTAks
Q
− log∆− 5)

If ∆ = γ · T 2
Aks

Q
· 2−λ, with γ > 1, then

PQBS
GQ

Hell2
(λ) ≥ min

Aks
Q

(λ− logTAks
Q
− log γ − 5)

9 / 11



QKD Error Parameters

Error Decomposition in QKD
[RK05, MQR09, TGR12, MCIT15, TL17, BGKE20, PR22, LYW+21, RW23]:

ε = εcorrect + εsecure

⇒ εcorrect: Not Identical keys for both parties.
⇒ εsecure : Adversary has information about key.

• In [RK05, MQR09, TL17, BGKE20, PR22, RW23] trace distance ≈ statistical
distance.

Discussion Points:

• εsecure corresponds to our statistical distance.
• Choosing εcorrect = εsecure is cryptographically problematic:

• Correctness is verifiable; secrecy is not.
• So: εsecure ≪ εcorrect is often preferable.
• The more realistic option is maybe ε = 10−5 by [ZLR+22].
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Privacy Amplification and Bit Security

Impact of εsecure on Privacy Amplification:

Cut bits ≈ 2 log
1

εsecure

Example: AES-256 Key

• For εsecure = 2−40: need 80 extra bits.
⇒ 256 + 80 = 336 reconciled bits for εsecure = 2−40.

• For εsecure = 2−256: need 512 extra bits.
⇒ 256 + 512 = 768 reconciled bits for εsecure = 2−256.

Thoughts:

• The value ε in literature is maybe optimistic.

• The security level depends sensitively on εsecure, not just the sum.
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